Propriedades de limites

Teo Sejam f, q funções tais que $z \rightarrow p$ e $z \rightarrow p$

Ento a) $\lim_{x\to b} \{f(z) \pm g(z)\} = A \pm B$

b) $\lim_{x \to p} f(x)g(x) = AB$

c) $\lim_{x \to y} f(x) = \frac{A}{B}$, we $B \neq 0$.

pt OR E, OR3 about MP tom. a) lim {f(z) + g(z) } = A+B f(x)+g(x)-(A+B) < E Dempne Fue D< |2-p |< 8. |f(x) - g(x) - (A+B)| = |f(x) - A - (g(x) - B)| $\leq |f(x) - A| + |g(x) - B| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ $0 < |x-p| < \delta$ Com lin f(x) = A e lin g(x) = B, dado E70 J 8, 8270 Le Tomamos &= min{s, s2} Im {f(x)+g(x)} = A+B

b)
$$\lim_{x \to p} f(x)g(x) = AB$$
 $|f(x)g(x) - AB| = |f(x)g(x) + Ag(x) - AB|$
 $= |(f(x) - A)g(x) + A(g(x) - B)| \le |f(x) - A||g(x)| + |g(x) - B||A|$
(1) $\exists S > 0 \Rightarrow |g(x)| \le |f(x)| + |g(x)| + |g(x) - B||A|$
De fato, $\lim_{x \to p} g(x) = B$, date $E = I$, $\exists S > 0 \Rightarrow 0 < |x - p| < S$
entax $|f(x)| = B$ entax

(ii)
$$\lim_{x\to p} f(x) = A \longrightarrow_{q} dato \in >0, \exists S_{2} = \delta_{q}.$$

$$0 < |x-p| < S_{2} \longrightarrow_{q} |f(x) - A| < \frac{\varepsilon}{2(1+|B|)}$$

entar $|g(\epsilon) - B| < \frac{\epsilon}{2|A|}$ $|f(x)g(x) - AB| < \frac{\epsilon}{2|A|} = \frac{\epsilon}{2|A|} + \frac{\epsilon}{2|A|} + \frac{\epsilon}{2|A|} = \frac{\epsilon}{2|A|} + \frac{\epsilon}$

(iii) $\lim_{x\to 0} g(x) = B \longrightarrow \exists 5_3 > 0 \text{ fal que } 0 < |x-y| < \delta_3$

 $\frac{\mathcal{E}}{2(1+|\mathcal{B}|)} < \frac{\mathcal{E}}{2|\mathcal{A}|} < \frac{\mathcal{E}}{2} \cdot (|+|\mathcal{B}|) + \frac{\mathcal{E}}{2|\mathcal{A}|} = \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} = \mathcal{E}$ $2(1+|\mathcal{B}|) \qquad 2|\mathcal{A}| \qquad 2 = 2$ As $0 < |x-y| < S = \min \{ S_1, S_2, S_3 \}$

V

c)
$$\lim_{z \to y} f(z) = \frac{A}{B}$$
, so $B \neq 0$.

$$\frac{f(x)}{g(x)} = \frac{f(x)}{B} \frac{B}{g(x)}$$
Rub lim $f(x) = \lim_{x \to y} f(x)$. $\lim_{x \to y} \frac{1}{B} = \frac{A}{B}$

Basta mostran que l'im
$$B = 1$$
 Para tanto seja $h(x) = g(x)$.

 $B = 1$ Para tanto seja $h(x) = g(x)$.

Por b) Pure
$$h(\hat{\alpha}) = 1$$
 $\frac{B}{g(\hat{\alpha})} = \frac{1}{h(\hat{\alpha})} = \frac{1}{h(\hat{\alpha})}$ $\left|\frac{1}{h(\hat{\alpha})}\right| = \frac{11 - h(\hat{\alpha})}{|h(\hat{\alpha})|}$

$$\left|\frac{1}{h(x)}\right| = \frac{|1-h(x)|}{|h(x)|} \quad \text{forms } \lim_{x \to p} h(x) = 1, \text{ entain } \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{4} \quad |h(x)-1| < \frac{\varepsilon}{2} \quad e \quad |h(x)-1| < \frac{1}{2} \quad \text{ semple } \text{ que } 0 < |x-p| < \delta.$$

$$\left|\frac{h(x)-1}{2}\right| < \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\frac{1}{h(x)} = \frac{1}{2} \quad \text{ dodo } \varepsilon > 0, \exists \delta > 0$$

$$\left|\frac{1}{h(x)}-1\right|=\frac{|1-h(x)|}{|h(x)|}<\frac{\varepsilon}{2}=\varepsilon : \lim_{n\to\infty}\frac{1}{h(x)}=\lim_{n\to\infty}\frac{1}{n+1}=\lim_{n\to$$

Too (Sondwide) Supernha
$$f(z) \leqslant g(z) \leqslant h(z) + z \neq numa$$
 vizinhança $N(f) de f$.

Se lim $f(z) = \lim_{z \to p} h(z) = A$, into $\lim_{z \to p} g(z) = A$.

 $\lim_{z \to p} 2 = \lim_{z \to p} h(z) = \lim_{z \to p} \lim_{z \to p} \frac{den}{z \to p}$

Then $\lim_{z \to p} f(z) = \lim_{z \to p} \frac{den}{z \to p} = \lim_{z \to p} \frac{den$

$$3 > 0$$
 $3 < 0 < |x-y| < 0 = 3$ $|h(x) - f(x)| < |x-y| < 0 = 3$
 $3 > 0$ $3 < 0 < |x-y| < 0 = 3$
 $3 > 0$ $3 < 0 < |x-y| < 0 = 3$
 $3 > 0$ $3 < 0 < |x-y| < 0 = 3$
 $3 > 0$ $3 < 0 < |x-y| < 0 < |x-y$

 $g(x) - \lambda = g(x) - f(x) + f(x) - \lambda$ $= g(x) - f(x) + f(x) - \lambda$

Pela parte b) tourna anterior.

W

To (bot mudade integras definedas) Seja f. [a|b]
$$\rightarrow \mathbb{R}$$
 integraved an $[a|z] + x \in [a|b]$.

Considere $F(z) = \int f(x) dx$, $x \in [a|b]$. Entroof F is continua an $[a|z]$.

 $f(x) = \int f(x) dx$, $f(x) = f(x)$.

 $f(x) - F(x) = \int f(x) dx$. $f(x) = \int f(x) dx$. See $f(x) = \int f(x) dx$.

 $f(x) - F(x) = \int f(x) dx$. $f(x) = \int f(x) dx$. See $f(x) = f(x) = \int f(x) dx$.

From outer laday, $f(x) = \int f(x) dx$. $f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$. $f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$. $f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$. $f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$. $f(x) - f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$. $f(x) - f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$. $f(x) - f(x) = \int f(x) dx$.

 $f(x) - f(x) = \int f(x) dx$. $f(x) - f(x) = \int f(x) dx$.

Sen
$$a = \int_{0}^{a} \cos z \, dx$$
 e cos $a = 1 - \int_{0}^{a} \operatorname{Ren} z \, dx$ $\forall a \in \mathbb{R}$

2)
$$\lim_{z\to 0} \frac{\sin z}{z} = 1$$
 $\sin z < \frac{1}{z} \frac{\sin z}{z} < \frac{1}{2!2} / \frac{1}{20}$

$$\lim_{z \to 0} \cos z = \cos 0 = 1$$

$$\lim_{z \to 0} \cos z = \cos 0$$

$$\lim_{z \to 0} \cos z = 1$$

$$\lim_{z \to 0} \cos z = 1$$

$$\lim_{z \to 0} \cos z = 1$$

3) Continuidade de
$$2^{\ell}$$
 com $\ell = \frac{m}{n} \in \mathbb{R}$ (m, n interior positives).

Spg supomos z > 0. A continuitable em(z=0) segue la definition (exercicio). e do fato de nom pon on impar.

$$\int_{0}^{\infty} \frac{1}{n} dt = \frac{2^{n+1}}{\binom{n+1}{n}} + 270$$

$$= \frac{2^{n+1}}{\binom{n+1}{n}} + 270$$

$$= \frac{2^{n+1}}{\binom{n+1}{n}} + 270$$

 $g(z) = \frac{x^{\frac{n+1}{n}}}{x}, x > 0 \quad \text{or} \quad g(z) = x^{\frac{n+1}{n}-1} = x$: 2^{ln} e continua de 270 \Rightarrow $2l = (2^{ln})$ e continua