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There is increasing public concern about poultry welfare; the quality of animal welfare is closely related to the quality of livestock
products and the health of consumers. Good animal welfare promotes the healthy growth of poultry, which can reduce the
disease rate and improve the production quality and capacity. As behaviour responses are an important expression of welfare,
the study of behaviour is a simple and non-invasive method to assess animal welfare. The use of modern technology offers the
possibility to monitor the behaviour of broilers and laying hens in a continuous and automated way. This paper reviews the latest
technologies used for monitoring the behaviour of broilers and laying hens under both experimental conditions and commercial
applications and discusses the potential of developing a precision livestock farming (PLF) system. The techniques that are
presented and discussed include sound analysis, which can be an online tool to automatically monitor poultry behaviour
non-invasively at the group level; wireless, wearable sensors with radio-frequency identification devices, which can automatically
identify individual chickens, track the location and movement of individuals in real time and quantify some behavioural traits
accordingly and image processing technology, which can be considered a direct tool for measuring behaviours, especially activity
behaviours and disease early warning. All of these technologies can monitor and analyse poultry behaviour, at the group level or
individual level, on commercial farms. However, the popularity and adoption of these technologies has been hampered by the
logistics of applying them to thousands and tens of thousands of birds on commercial farms. This review discusses the
advantages and disadvantages of these techniques in commercial applications and presents evidence that they provide potential
tools to automatically monitor the behaviours of broilers and laying hens on commercial farms. However, there still has a long
way to go to develop a PLF system to detect and predict abnormal situations.
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Implications

Behaviour is one of the important indicators in animal welfare
assessments and can be considered in many dimensions,
including the affective state, health and needs of animals.
Technological development offers automated and continuous
detection of poultry behaviour, so farmers can take actions to
improve welfare. This review focuses on different sensor tech-
nologies to detect behaviours of broilers or laying hens, which
are applied to analyse animal welfare conditions. It has been
shown that sensor-based systems can monitor animal welfare
and behaviour continuously, precisely and automatically with
the potential to develop precision livestock farming systems.

Introduction

Currently, there is rising concern about poultry welfare, and
poultry breeding should be conducted humanely with regard
to feeding and slaughtering. Simultaneously, healthy poultry
and product quality rely heavily on good welfare conditions,
which can improve economic efficiency (Wathes et al., 2008).
A good state of welfare encompasses birds having a healthy
body, a positive affective state and the opportunity to express
natural behaviours (Sih et al., 2004). However, there are
various indexes for the comprehensive assessment of animal
welfare, such as behavioural indicators, physiological stress
and proxies of productivity. Many of them interact together,
making evaluation difficult and time-consuming, especially
at the commercial level. Among these welfare indexes,
behaviour is the most easily understood and commonly used
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welfare assessment index (De Jong et al., 2016), because
behaviours which may be influenced by living conditions,
emotions and diseases of animals can reflect physiological
conditions. Therefore, monitoring animal behaviours and for-
mulating feeding and management measures accordingly
can not only promote the growth of animals and improve
the production performance, but also protect animal welfare.

Precision livestock farming (PLF) is defined as the appli-
cation of process engineering principles and techniques to
livestock farming to automatically monitor, model and man-
age animal production (Tullo et al., 2017). The aim of PLF is to
real-time monitor animal health and welfare automatically
and continuously and prompt warning messages rapidly.
Monitoring the resource use of chickens can improve
the housing design and allocate resources optimally
(Ringgenberg et al., 2015; Li et al., 2017). Through the loca-
tion of chicken clustering, the quality of house facilities (e.g.,
feeders, drinkers) may be examined (Fraess et al., 2016).
Detecting the activity of poultry, such as eating, drinking,
moving and perching, may estimate whether they are healthy
and therefore provide early warning of diseases (Colles et al.,
2016; Dawkins et al., 2017). Accordingly, the great potential
of PLF relies on early warning, which allows farmers to take
actions in the initial stages of welfare problems or diseases.
However, to truly achieve PLF, it is necessary to monitor indi-
vidual animals. Research on individual behaviour can control
the health and production of every individual and improve
the accuracy of welfare assessment. For example, detecting
the movements of each chicken by a radio-frequency
identification (RFID) system, the chickens can be classified
into active, normal and sick level (Zhang et al., 2016). There-
fore, each sick chicken can be found in time. Comp-
ared with large animals (e.g., cattle and pig), poultry are
not only small, but raised in hundreds, thousands or hun-
dreds of thousands in a commercial farm, making it difficult
to monitor automatically and individually. However, despite
that, PLF is able to provide new opportunities to promote
animal husbandry with high-efficiency, low-cost, ecological
and sustainable development and offers consumers some
food safety assurance (Berckmans, 2014).

The PLF system is based on sensors (e.g., RFID devices,
accelerometer, camera, microphone and temperature sensor)
and collects a variety of information (e.g., activity, body
temperature, feed intake and weight) used for environmental
monitoring, individual recognition and behaviour analysis.
A range of sensor techniques are available that allow efficient
and continuous data collection from multiple sources to
monitor animal behaviour, health and production. Further-
more, advanced data processing techniques make it possible
to analyse animal behaviour continuously, automatically,
accurately and in real time (Valletta et al., 2017; Van Hertem
et al., 2017). Ben Sassi et al. (2016) reviewed the sensors and
technologies for poultry welfare monitoring based on the liter-
ature prior to 2015. The review emphasised that the monitoring
technologies could be implemented at the commercial level but
did not analyse the difficulties of commercial application.

The aim of this paper is to discuss the possibility of
accomplishing PLF though review of automatic methods
implemented to monitor behaviours of broilers or laying hens
at the experimental or commercial level in the last 5 years.
The review expounds automated techniques, including sound
analysis, RFID devices and image processing, which have
been applied to poultry welfare and behaviour analysis, with
discussion of the detection aspects of these techniques,
advantages and disadvantages on a commercial scale, and
feasibility for PLF.

Sound analysis

Vocalisations of animals contain a wealth of biological infor-
mation (e.g., their social interactions, alarm signals and
behaviour needs) and have the possibility to be used as a
welfare indicator (Manteuffel et al., 2004). When applied
to poultry systems, the microphone is always put low near
the animals and can capture sounds continuously and
non-invasively, including pecking, vocalisations and environ-
mental noises. The sound analysis techniques usually take
the duration, energy distribution, frequency and formant
amplitude as the characteristic parameters to estimate the
behaviour and health of birds. It can be automated, in
real time, and is capable of long-term monitoring without
disturbing the birds.

Growth rate detection
Monitoring feed conversion, growth rate and BW is impor-
tant to improve the efficiency and economic benefits of
broiler farmers. Considering the relationship between peck-
ing behaviour and eating, 90% of the feed intake of one
broiler was correctly detected with pecking sounds in an
experimental pen (Aydin et al., 2014). In another study,
86% of the feed intake of 10 broilers was detected accurately
(Aydin et al., 2015). Subsequently, short-term feeding behav-
iours of 10 broilers by pecking sound analysis were estimated
in real time, and the accuracy of meal size reached 90%,meal
duration reached 95%, the numbers of meals per day reached
84% and feeding rate reached 89% (Aydin and Berckmans,
2016). The above three papers were studied in an experimen-
tal pen of at most 10 chickens. However, the application to a
commercial farm needs to be validated, including filtering out
environmental noise and feasibility of individual detection
with large bird numbers.

Broiler vocalisations are highly correlated with BW, and
sound analysis could be a reliable method of measuring
the growth rate of broiler chickens. In an intensive broiler
farm, a study showed that with the growth of broiler
chickens, the peak frequency of the sounds emitted by broil-
ers decreased clearly during the entire life of the birds
(Fontana et al., 2015 and 2016). Furthermore, a model to pre-
dict the weight of broilers was built and validated by the peak
frequency analysis of the broilers’ vocalisations (Fontana
et al., 2017). Vocalisations could thus be used to assist in
the automatic monitoring of the growth of broiler chickens.
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Disease detection
There is a difference between the sound of healthy and
unhealthy chickens. Analyses of the frequency domain fea-
tures of 15 infected Clostridium perfringens type A chickens
and 15 healthy chickens, classified by a supervised learning
neural network, showed a classification accuracy of 66.6%
2 days after infection and reached 100% accuracy 8 days after
infection (Sadeghi et al., 2015). Using data-mining methods
and Dempster–Shafer evidence theory, a device was made to
detect whether a chicken was infected with Newcastle dis-
ease, bronchitis virus, avian influenza or healthy (Banakar
et al., 2016). The device could determine the type of disease
in each chicken without surrounding noises.

Others
Sound analysis could identify the sex of 1-day-old chickens as
well as different genetic strains (Cobb and Ross chickens)
(Pereira et al., 2015). Analysing four acoustic sound character-
istics showed that the second spectral peak of the sound spec-
trum could identify the sex of chicks, and both the second
spectral peak and the pitch could identify the genetic strain.
Stress, such as temperature, fear and physical stress, can affect
the health and production of commercial chickens. The sounds
of chickens under heat or fear stress were detected in a com-
mercial farm (Lee et al., 2015). The proposed system was able
to classify different stresses by support vector machine (SVM)
techniques automatically and non-invasively, and both the
stress detection accuracy and the average classification accu-
racy were greater than 96%. The vocal variations of hens
anticipating different types of rewards were investigated
and showed that different sound cues made different vocal
parameters produced by hens (McGrath et al., 2017). It was
possible to use the vocal communication of hens as indicators
of welfare (e.g., health, stress, growth).

In summary, sound analysis is able to be used as an early
warning system by interpreting the behaviours of chickens, pre-
dicting health conditions and detecting growth rates. The group
sound analysis, which was tested commercially, can isolate the
sounds of each bird, but it is impossible to find the exact bird
which makes the sound. The sound collection and analysis of
individual chicken, which can distinguish the chicken, is still at
experimental stage due to the difficulty of collecting each indi-
vidual sound in a commercial farm. Like voiceprint recognition,
if the voice feature model of each bird could be established, the
group sound collection can alsomatch chickens to their sounds.
Meanwhile, environmental noise is also a big challenge. With
the maturation of voice recognition technology and the rapid
development of artificial intelligence (AI), animal sound analy-
sis has great potential as an online detection method to
improve health and welfare in the poultry industry.

Tracking location and locomotion of individuals
by radio-frequency identification

Wireless wearable sensors (e.g., accelerometer, RFID micro-
chips) are mainly used to track the location and activity of

individuals remotely. These sensors can distinguish the
behaviours of individuals automatically, particularly when
human observations are difficult. Siegford et al. (2016)
reviewed the technologies, especially RFID, which was
applied as a research tool for tracking individual laying hens’
activity and location. However, RFID technology is rarely used
in commercial poultry farms compared with farms producing
larger animals (e.g., pigs and cattle), due to the small size and
light weight of individual birds, the required size of the
on-bird microchips and high financial investment cost. Radio-
frequency identification technology is one method for auto-
matic identification and data capture, which can be used
mainly under experimental conditions to track the location
of individual birds. An RFID microchip can also be injected
to the leg or back of a bird produces a signal to the RFID
reader when the antenna is within the magnetic field and
the signal is sent to the central information system to identify
and position the individual. Tracking the location of individ-
ual birds may allow observation of nesting, feeding, drinking,
perching behaviour or ranging behaviour and, thus, predic-
tion of health conditions.

Detecting nest use
Put RFID reader into nest and worn RFID tags on the leg of
hens can detect a hen in and out of a nest. A smart nest box
was designed to detect the laying behaviour of individual
hens (Chien and Chen, 2018). A low-frequency RFID system
was used to detect whether hens were in the nest. An egg
detection sensor could detect whether hens laid eggs and
then weigh the eggs. Design-based Internet of Things
enabled all data to be recorded simultaneously in the cloud
database and a local SD card at the same time. Assigning
each egg to an individual can achieve product traceability
and analyse the laying performance of individuals. The sys-
tem had the potential to monitor the underperforming hens
in egg production due to welfare problems.

Establishing hens’ visits to the nest can improve the nest
design. Using the Gantner Pigeon System GmbH (Schruns,
Austria) RFID system, researchers found that the nest choice
was more affected by the nest position, nest occupancy
and age of hens than by the appearance of nest curtains
(Ringgenberg et al., 2015). Detecting laying behaviour
could also examine the relationship between laying eggs
and keel bone deviations and fractures (Gebhardt-Henrich
and Frohlich, 2015).

Tracking movement and feeding behaviour of individuals
Radio-frequency identification systems can track the position
of individual birds to detect the movement and duration at a
particular location. With a low-frequency RFID system, an
environmental preference chamber with four compartments
and two tiers was designed to study the movement in differ-
ent compartments of four individual birds (Sales et al., 2015).
Compared with video observation, successful detection rates
were 62.6 ± 11.2%. The detection range of the antenna, the
scan interval of the antenna and the RFID tags conflicts
would affect the RFID system’s performance.
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By monitoring the weight and moving time of individual
hens using weighing sensors and RFID devices, poultry
behaviours such as speed, ability to acquire food and resting
time were detected, and by the K-means clustering method,
chickens were classified as active, normal or sick (Zhang
et al., 2016). An ultra-high-frequency RFID system was devel-
oped to monitor the feeding and nesting behaviours of
60 individual hens in enriched colony housing (Li et al.,
2017). Using the same experimental device, feeding behav-
iour was assessed with various feeder spaces (12.0, 9.5, 8.5
and 6.5 cm/hen) (Oliveira et al., 2018). This type of research
could contribute to housing system design, animal welfare
and resource allocation.

Ranging behaviour in free-range housing
Currently, the free-range system is considered to be more
natural and better for poultry welfare. However, each hen
within a group has a different ranging behavioural pattern.
To monitor the outdoor ranging behaviour of individual
chickens, RFID systems have been used by attaching tags
on chickens and putting antennas at pop holes, through
which chickens move inside and outside (Gebhardt-Henrich
et al., 2014; Campbell et al., 2017; Larsen et al., 2017).
The frequency and duration of visiting the outdoor areas
are then calculated by analysing data from chickens walking
over the antennas. These systems could be used in commer-
cial farms and potentially track thousands of birds. In
addition, an RFID system based on ultra-wideband technol-
ogy was developed for monitoring 42 individual chickens’
locations in the 100 m × 100 m experimental field, which
could calculate the position with 0.29 m of the median error
and 68% of the registration rate (Stadig et al., 2018a).
Monitoring of outdoor range use at the individual level
allows for correlation between ranging and welfare indica-
tors such as tonic immobility test, plumage damage, foot
health and spatial cognition (Campbell et al., 2016, 2018a
and 2018b; Hartcher et al., 2016; Larsen et al., 2018; Taylor
et al., 2018).

The impact of wearing a tag
Because the birds are small, the size, shape, weight and
attachment method of tags might influence bird behaviour
and the accuracy of the data. The behavioural and physiologi-
cal responses of laying hens which wore backpacks contain-
ing automated monitoring devices were studied and showed
that the backpacks only had a very minor effect on their
behaviour after a short acclimation period (≤2 days) (Buijs
et al., 2018). Furthermore, the effects on broiler behaviour,
leg health, cleanliness and growth were evaluated with a
tag worn on the back of birds for tracking location in a field
(Stadig et al., 2018b). Six pens with 10 birds in each were
observed with 5 birds fitted with a 36-g backpack and the
other five with coloured markings to identify individuals.
Footpad and hock dermatitis, gait and cleanliness were
scored manually. These results indicated that birds wearing
backpacks showed less activity early on, but no significant
differences were observed in long-term behaviours between

tagged birds and coloured birds. In summary, compared to
the weight of chickens, a light monitoring tag has little
impact on the behaviours of chickens after a period of adjust-
ment. Wireless sensors are a reliable tool for detecting the
location and activity of individual chickens.

Image processing

Image processing technology has been applied to automati-
cally monitor animal behaviour for the analysis of animal
welfare, health conditions, weight prediction and tracking.
Image processing used to detect chicken flocks can be auto-
matic, non-invasive and continuous. Using automated com-
puter monitoring, it is possible to record and identify different
behaviours of chickens, which is an inexpensive and cost-
effective approach. Typical materials and methods of image
processing used in chicken behaviour detection, such as
camera type, software, algorithms and application area,
are shown in Table 1.

Flock activity analysis
Through the number of changed pixels between two adjacent
frames divided by the overall number of pixels in the image,
the flock activity level can be calculated (Youssef et al., 2015;
Fraess et al., 2016). The method is heavily influenced by
plumage differences. Group activity around the food trough
was assessed by the percent pixel change (Fraess et al.,
2016). The study showed that the method could identify
changes in activity level, identify abnormal activity away
from the feeder and serve as an early health warning system.

Optical flow is a method to find the corresponding rela-
tionship between the previous frame and the current frame
by analysing the change in pixels in the time domain of the
image sequence and the correlation between adjacent
frames, to calculate the motion of objects between adjacent
frames. It is suitable for monitoring flock activity in the
commercial farm. Using the optical flow patterns of chicken
movements, infection by the human pathogen Camp-
ylobacter was detected in the early stages (Colles et al.,
2016). Optical flow data were collected, and the mean,
variance, skew and kurtosis were calculated. Infected
Campylobacter flocks had low mean optical flow and an
apparent high kurtosis, and infection was detected 7 to 10 days
earlier compared with faecal sample testing. This system
has the potential for early health and welfare warnings that
can benefit farmers and chickens. Using the camera-based
optical flow method, early-stage footpad dermatitis and hock
burn were predicted in 50 flocks from a commercial farm
(Dawkins et al., 2017). Optical flow analysed the movements
of flocks, and lower skew and higher kurtosis values indicated
heterogeneity in flock movement, which had predictive power
for footpad dermatitis and hock burn.

In commercial farms, the activity and sudden variation of
flock could be related to abnormal conditions, such as the
equipment failure and diseases. Converting images into
animal distribution index, the equipment failure in a broiler
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house could be found out in real time by the sudden changes
of the distribution index (Kashiha et al., 2014). With a
uniform moderate walking pace through the flock, four
variables were derived from the changes in activity before
and after walking, so that the gait score could be predicted
automatically (Silvera et al., 2017). The occupation index was
used instead of the distribution index, and the activity and
occupation of the flock had correlation with the welfare
scores for the footpad lesions and hock burns by human
experts (Fernandez et al., 2018). Moreover, the precise fault
location could be performed by these indices in specific areas
such as feeding, drinking and resting.

By combining a computer vision system with a novel
convolutional neural network (CNN) method, the flock
behaviour in a commercial farmwasmonitored automatically
with a Kinect camera (Pu et al., 2018). Three categories
around feeders, not crowded, slightly crowded and fairly
crowded, were labelled manually among 17 135 colour
images and 17 135 depth images, and a supervised learning
CNN was trained. The experimental results show that our
proposed CNN-based method can recognise the flock behav-
iour of chickens with an accuracy of 99.17%.

Behaviours of individuals
Gait score of an individual hen can be done automatically.
A digital video camera was mounted above the centre of a
testing corridor to record images. The image processing
method could classify the number of lying events (NOL) and
latency to lie (LTL) of broilers (Aydin, 2015, 2017a and
2017b). The background subtraction method was applied to
segment the shape, and then an elliptical shape model was

used to define the size and orientation of the chicken
(Aydin, 2015). Compared with the gait scores calculated man-
ually from 250 broilers, the automatic monitoring system had
83% accuracy of identifying NOL. Subsequently, the image
processing algorithm was improved by extracting feature var-
iables (Aydin, 2017a). Automatically collected feature varia-
bles of broilers showed a clear correlation between feature
variables and gait scores and were found to have a high level
of accuracy starting fromgait score three. Furthermore, instead
of the 2D camera, a Kinect camera was used in the same
experiment (Aydin, 2017b). Additional distance information
between the broiler and the 3D camera was collected as broil-
ers walked along a test corridor, and data were extracted to
detect NOL and assess LTL with the back posture. The accuracy
of NOL classification reached 93% compared to manual
scoring.

In addition to RFID, image processing is another technol-
ogy that has been considered to detect nest use. It can detect
double nest occupation (Zaninelli et al., 2015 and 2018),
while RFID cannot. Photographs taken in a nest that was
painted black, with the number of colour pixels counted
and compared with the threshold double nest occupation,
could detect whether there were two or more hens in a nest
(Zaninelli et al., 2015). Later, with a thermographic camera to
identify laying hens in a closed room (Zaninelli et al., 2016
and 2017), this team developed a better ‘nest usage sensor’,
which could count the number of hens in the nest (Zaninelli
et al., 2018). The thermographic images were processed by
binarisation and coloured, and the number of colour pixels
was counted to detect whether there were more than one
hen in the nest. If there had a multiple nest occupation,

Table 1 Typical materials and methods of automated image processing used in chicken behaviour monitoring

Reference Camera type
Image pixel

and frame rate Main processing method Detecting number Main software

Zaninelli et al., 2018 Thermografic
camera

320 × 240; 1 fps Threshold method and
image pattern
recognitions

10 LabVIEW, NI Vision
Acquisition Software

Li et al., 2018 IR camera – Threshold method 8 MATLAB
Pu et al., 2018 Kinect

camera
512 × 424; 30 fps CNN Commercial flocks Open CV

Zhuang et al., 2018 CCD camera 640 × 480 K-means clustering and
the ellipse model

20 Open CV

Aydin et al., 2017b Camera 1024 × 768; 5 fps Background subtraction
and feature variables

1 MATLAB

Dawkins et al., 2017 Camera 320 × 240 Optical flow Commercial flocks –

Fraess et al., 2016 IR camera 320 × 240; 30 fps The proportion of pixel
changes

34 Etho Vision XT 10

Colles et al., 2016 Web camera 320 × 240; 1 fps Optical flow Commercial flocks MATLAB Python
Youssef et al., 2015 CCD camera 640 × 480; 1 fps The proportion of pixel

changes
45 –

Kashiha et al., 2014 Camera 1280 × 960; 0.5 fps Binary image and count
the pixel proportion

Commercial flocks eYeNamic

CCD= charge coupled device; CNN= convolutional neural network.
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pattern recognition was performed to make sure how many
hens were in the nest.

The image processing algorithm could calculate the
number of hens using an IR camera in an automatic lighting
preference test system (Li et al., 2018). Original colour
images were first cropped, converted into grey scale and then
converted into binary images. The number of hens could be
concluded by the number of white pixels. The accuracy of the
image algorithm was 71.23%, due to the number of pixels
changing significantly for one hen when feeding, wing
flapping and preening.

The area required by each hen for the behaviours of stand-
ing, lying, perching, wing flapping and dust bathing was
studied using ImageJ software and MATLAB (Riddle et al.,
2018). However, it required manual selection of perfect
images. Diseased broilers were predicted and classified auto-
matically by the SVM model (Zhuang et al., 2018). To obtain
the posture features, images were segmented by K-means
clustering, and the skeleton structure was obtained by the
thinning method. Superior to other machine learning (ML)
algorithms, the SVM model obtained an accuracy rate
of 99.47%.

Weight prediction
An automatic weight prediction system based on a 3D cam-
era was developed and assessed on a commercial farm
(Mortensen et al., 2016). The algorithm consisted of a
range-based watershed algorithm and was predicted by a
Bayesian artificial neural network. The system was able to
weigh several chickens simultaneously. Due to the overlap-
ping of broilers in the image, better prediction could be
improved by a better segmentation method. Moreover, to
estimate the weight of live broiler chickens, a machine vision

method with an artificial neural network (ANN) was
proposed (Amraei et al., 2017). Compared to Levenberg–
Marquardt, scaled conjugate gradient and gradient descent,
Bayesian regulation was the best network for the prediction
of broiler weight. The maximum error of the system was less
than 50 g. The aforementioned systems weighed individual
broilers.

Discussion

Over the last few years, the prominent emergence of sensor
technology, AI and big data analysis has made it possible to
implement PLF. In this review, there are a total of 50 papers
using automated techniques to detect poultry welfare. Of
these, 14 papers including 3 of sound analysis, 4 of RFID
and 7 of image processing were tested on a commercial level
(even if just experimentally in a commercial flock). These
techniques all have the ability to monitor the behaviour of
birds under commercial conditions. Figure 1 shows the num-
ber of papers classified by detection contents and sensors.

The use of sound and image processing technologies
offers a comparatively non-invasive way to monitor the
health and behaviour of animals over the long term. Due
to the increasing size in commercial production systems
for broilers and laying hens, it is common to observe and
assess welfare at the group level. At the group level, sound
analysis technology can be used to detect weight and stress
of chickens on a commercial farm (Lee et al., 2015; Fontana
et al., 2017). Other detections based on sound analysis are at
the experimental stage with a small number of birds, but they
have a great potential to be applied in commercial chicken
houses. Due to the environmental noise and simultaneous

Figure 1 (Colour online) The articles, which monitored behaviour and welfare of broilers and laying hens automatically, are classified by detection contents
and sensors. The height of the bars denotes the number of articles. Each sensor, including microphone, RFID and camera, has two bars. The left bar shows all the
articles used in the sensor which are divided into five categories. The right bar shows the commercially tested articles which also have five categories. Activities
refer to basic behaviours, such as feeding, drinking, perching, walking ability (including gait score) and laying behaviours (multiple nest occupation). Preference
test includes environment preference, lighting preference, nest choice and free-range use. Others mean not belonging to the other four categories (e.g., equip-
ment failure, welfare assessment). RFID, radio-frequency identification.
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vocalisations, the accuracy of algorithms may be affected in
complex environments. Using image processing, the activity
of chicken flocks can be monitored on commercial farms and
in real time (Colles et al., 2016; Dawkins et al., 2017). Mainly
defined as the pixels change in the whole image, the activity
means the flock is active in general but the specific behav-
iours of the flock are not classified. Moreover, some cameras
have blind spots that cannot cover the entire chicken house.
Another problem is that cameras, except IR cameras, cannot
monitor the activity of chickens when lights are off.

However, PLF systems should be based on individual
welfare assessments, because the average group welfare
level may not accurately predict specific individual welfare.
Monitoring individual behaviour, especially monitoring
multiple individuals in a large group, requires the recognition
and tracking of animals. Radio-frequency identification tech-
nology has been utilised in PLF systems to identify, track and
register animals to detect behaviour and welfare in a reliable,
automated and inexpensive way. While the RFID system can
collect a large amount of data, it estimates behaviour by indi-
rectly tracking the position of individuals. Additionally, the
accuracy and tracking of this system depends on the number
of antennas installed and the number of chickens wearing
transponders. Because of the huge number of birds on com-
mercial farms, it is currently unrealistic for each bird to wear
an RFID tag. Typically, a random sample of birds is selected
to wear a tag. Although RFID systems can be applied to
hundreds of chickens, fitting and recycling tags is a time-
consuming and laborious problem. Image processing tech-
nology can be used for target detection and tracking. With
image target tracking and identification algorithms, an indi-
vidual bird was tracked and identified in a group of six birds
(Wang et al., 2016). Due to the high breeding density on com-
mercial farms, it is difficult to automatically identify and track
individual birds in a long time based on image processing
with currently technology. Occlusion is another considera-
tion. By combining image processing with RFID, individual
birds can be tracked and behaviour can be detected more
accurately (Nakarmi et al., 2014). The combination of multi-
ple methods is such a way to implement PLF.

Since the advent of cheaper sensors and advanced sensor
technology used for the observation of animal behaviour,
huge data sets have been collected. These data sets are large,
complex and diverse; thus, it is difficult to analyse by classical
statistical methods. Unlike classical mathematical statistics,
ML is a branch of AI that can analyse complex model data
sets with unknown relationships between measured varia-
bles. ML attempts to mine the hidden variables from large
collections of historical data for future prediction or classifi-
cation. Many ML methods, such as decision trees, SVMs
(Banakar et al., 2016; Zhuang et al., 2018) and ANNs
(Pu et al., 2018), have been used in welfare assessments.
Therefore, ML can provide strong support in developing an
early warning system for PLF systems. On the other hand,
multi-sensor integration system has a trend made for PLF
(Van Hertem et al., 2017). It is a hard work to perform a
meta-analysis of the collected data of control units and

behaviour detect devices such as climate control units, feed
distribution units, camera-based system and microphone-
based system. For farmers, only systems which are simple,
easy to understand and easy to operate are been willing
to use, for example, a visualisation tool. The stability of
the system and the accuracy of measurement and prediction
are also other factors that affect the use of farmers.

Conclusion

The development of modern technology offers powerful tools
to automatically detect poultry health and welfare. However,
most applications have the limitations of only being used in
experimental conditions, although they have the potential to
be used in commercial systems. The assessment of animal
welfare is being transformed from the group level to the
individual level. Consequently, the full implementation of
the PLF system remains a great challenge. Further research
is required to improve the accuracy of data processing and
modelling, as well as to improve device detection before
commercial validation. Once available, PLF systems will cre-
ate added value to improve animal welfare, health and effi-
ciency for farmers.
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