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Abstract

Consumption of animal products such as meat, milk, and eggs in first-world
countries has leveled off, but it is rising precipitously in developing countries.
Agriculture will have to increase its output to meet demand, opening the
door to increased automation and technological innovation; intensified, sus-
tainable farming; and precision livestock farming (PLF) applications. Early
indicators of medical problems, which use sensors to alert cattle farmers
early concerning individual animals that need special care, are proliferating.
Wearable technologies dominate the market. In less-value-per-animal sys-
tems like sheep, goat, pig, poultry, and fish, one sensor, like a camera or robot
per herd/flock/school, rather than one sensor per animal, will become com-
mon. PLF sensors generate huge amounts of data, and many actors benefit
from PLF data. No standards currently exist for sharing sensor-generated
data, limiting the use of commercial sensors. Technologies providing accu-
rate data can enhance a well-managed farm. Development of methods to
turn the data into actionable solutions is critical.
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INTRODUCTION

Precision livestock farming (PLF) might be defined as “real-time monitoring technologies aimed
at managing the smallest manageable production unit, otherwise known as the ‘sensor-based’ in-
dividual animal approach” (1, p. 1482). The first widely adopted application of PLF, years before
the term PLF was coined, was the individual electronic milk meter for dairy cows in the 1970s
(2) and early 1980s (3), followed by commercialized behavior-based estrus detection (4, 5), ru-
mination tags (6–10), and online real-time milk analyzers (11). However, the dairy cow is not
the only animal species in the PLF arena; it was applied to other species at approximately the
same time. Undoubtedly, these technologies will continue to change the way that animals are
managed. Moving forward, this technological shift provides reasons for optimism regarding im-
provements in both animal and farmer well-being. Producers can examine real-time data orga-
nized in reports to identify abnormal deviations from a baseline. However, the data themselves
are meaningless unless they are transformed into information that can be used in a good decision-
making program. Precision livestock monitoring technologies will never replace producers’ in-
tuition and management, but they may enhance it by enabling them to make better-informed
decisions.

Earlier reviews did not relate PLF to technologies but examined PLF’s use with particular
species (12) or addressed specific questions, such as “daydream or nightmare?” (4), or commer-
cialization issues (13). By contrast, this review analyzes PLF implementation by sensor type and
then discusses its application to species. InTable 1, the main sensors are listed in the columns (A–
K), with the main applications written in rows (1–17). The cells in Table 1 that contain species
are reviewed in this article. Callouts throughout the article refer to Table 1; e.g., A1 stands for
body condition scoring (BCS) using a thermal camera, and B2 refers to body weight monitoring
using a 3D camera.

Dairy Body Condition Scoring: Machine Vision

In modern dairy farms, BCS is applied for nutrition, health, and insemination management (14–
18). However, human-observed BCS is time consuming and might be subject to personal bias
owing to the observer’s physical and mental state, experience, training, and previous knowledge
or observation of cows. Attempts were made to quantify BCS using ultrasound (Table 1, cell
K1) as early as the 1970s (19). However, Mizrach et al. (20) reported that the training and time
required to collect reliable, repeatable ultrasonic BCS were considerably longer than for human-
observed BCS. More importantly, ultrasound equipment and skilled ultrasound technicians are
costly. Therefore, at the dawn of commercial digital photography, researchers (21–24) began ex-
ploring the application of these technologies to BCS (Table 1, cell C1). They argued that auto-
matic digital recording of BCS could save labor and deliver unbiased quantification. Early studies
applied RGB digital cameras (Table 1, cell C1; 21, 24), thermal cameras (Table 1, cell A1; 25),
and high-resolution digital cameras with Fourier descriptors (Table 1, cell C1; 26). However,
full automation of image processing was not reported until 2013 (Table 1, cell B1; 27). Spolian-
sky et al. (28) added a step forward: a low-cost 3D camera, which went beyond full automation
(Table 1, cell C1; 27). Farm technology providers read the papers and developed a commercial
system based on the 3D camera in 2017 (28).This allowed the BCS application to appear as a com-
mercial on-the-shelf product, an accessory in almost every new commercial milking robot. The
ability to collect BCS automatically may help dairy producers manage BCS at the group or herd
level to improve animal health and reproduction. Additionally, examining how BCS curves change
throughout lactation provides a valuable, consistentlymeasured phenotype for genetic evaluations.
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Figure 1

The thermal image reveals inflammation in the leg of a horse. The inflamed area is marked with an arrow.

The introduction of imaging technology for BCS and body weight measurements opens the door
for further morphologically based image analysis, potentially providing novel measurements of
body size traits and udder and leg conformation, which could standardize these traits.

Early Detection of Diseases or Lameness

Diseases often affect an animal’s body temperature, and inflammation caused by infection or injury
may be visible at specific spots in an animal’s body (Figure 1). One of the challenges in measuring
body temperature is the lack of a true gold standard. Each body temperature measurement lo-
cation has either physical, logistical, or physiological limitations. In addition, many physiological
and environmental factors affect body temperature. Thus, the inherent variation in body temper-
ature can make detection of outliers challenging. Thermal imaging has been proven to work as
a diagnostic tool for some animal diseases (Table 1, cell A3; 29). The temperature in the gluteal
region of dairy cattle increases when an animal becomes ill; this can be detected in thermal images
even before the disease is detected clinically (30). Examination for a disease using this method can
be done with no physical contact with the animals.

Yanmaz et al. (31) suggested that using thermal imaging can be beneficial in detecting lame-
ness, inflammation, and other irregularities, especially in the legs and hoofs of horses (31) (see
Figure 1 for an example of inflammation in a horse’s leg). In hot weather, thermal imaging
may also be used to control the climate in poultry houses (Figure 2). This technology could be
potentially efficacious in identifying mastitis in dairy cow mammary glands (32, 33). Biomarkers
within the milk may be used for disease detection. Such biomarkers may be measured using real-
time spectroscopy (34) or biochemical analysis. In disease detection, the basic premise for using
biomarkers centers on detecting diseases earlier than when a human observer might detect them.
Early detection may lead to earlier medical treatment and an increased likelihood of success, thus
reducing the impact and costs of disease. However, literature supporting the magnitude of this
benefit is limited. The end user must also consider the usefulness of alerts provided by the system.
The relationship of false-positive and false-negative alerts almost always challenges the useful-
ness of biomarkers (32). The best systems will minimize both false positives and false negatives.
Missing disease occurrence (false negatives) limits the value of the system, whereas too many false

406 Halachmi et al.
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Figure 2

The face’s thermal image reveals body temperature. Face maximum temperature is correlated (r2 = 0.93) with
body temperature.Other body parts are covered with feathers or are more affected by the environment. Figure
adapted with permission from N. Barchilon, V. Bloch, S. Druyan, and I. Halachmi, manuscript under review.

positives mean the livestock producer may be forced to follow up on alerts that are not related
to disease (33). Managing this balance is not always easy. In general, these challenges reflect the
difference between the theoretical application of technologies and their practical and economical
use in the field. While working on mastitis, Steensels et al. (32, 33, 35) addressed two crucial is-
sues: the quality of sensor data and the ability to develop a model on one farm and validate it on
another. Steensels observed that it is possible to develop a model on one farm and make it valid
elsewhere in another farm—if one develops a local-calibration procedure that allows automatic
adaptation to local conditions. This insight should be taken into consideration when a new PLF
tool is being developed (Table 2).

Detection of Lameness in Dairy Cows: Response Surface and Machine Vision

Lameness is one of the most painful illnesses that dairy cows suffer, and it jeopardizes animal
welfare (36, 37). Lameness is second only to mastitis in terms of its detrimental effects on herd
productivity (38). The annual incidence of lameness ranges between 4 and 55 cases per 100 cows
(38), depending on the farm, location, and year of study. The overall cost noted in the literature

Table 2 Early detection of diseases; developing a model in one farm and validating it in
another farm (1–3)

Farm Correct
1 83%
2 70%
3 91%
4 67%
5 77%

www.annualreviews.org • Sensors and Precision Livestock Farming 407
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θ2

θ3

θ1

L1

Figure 3

A picture taken in Kibutz Yefat, Israel, which intensively farms 1,200 dairy cows. The project, a collaboration
between the Katholieke Universiteit Leuven (Belgium), Wageningen University (The Netherlands),
DeLaval, and Agricultural Research Organization (ARO, Volcani Centre) (Israel), included a comparison of
2D versus 3D cameras and a combination of a 3D camera and animal production and behavior parameters (5).

varies, from approximately US$446 per case in the United Kingdom (39) to an average cost per
case of sole ulcer, digital dermatitis, and foot rot of $216.07, $132.96, and $120.70, respectively,
in the United States (40). Detection of severe lameness is relatively easy; however, by the time
the animal becomes severely lame, successful treatment is often difficult. Dairy producers often
miss subtle signs of lameness. A monitoring system that could detect milder, subclinical cases
of lameness would be beneficial. Therefore, in 2002, at the University of Maryland, Baltimore,
Rajkondawar et al. (41) hypothesized that measuring vertical ground reaction forces as animals
walked over a force-plate system could provide the basis for early detection of lameness. The
concept went through all the PLF development processes until a product was developed (41,
42). Marketed as the StepMetrixTM lameness detection system by BouMatic, it involved a
pressure-sensor mat on which cows walked once or twice a day (43–45). Weight-distribution
systems (46) were also developed for early detection of lameness, but these systems are rather
expensive. In 2006 (47), a machine vision–based system was proposed (47–49) and explored in
Israel (Figure 3). Together with other animal-related data that already exist in the farm manage-
ment software, parameters correlated with lameness were drawn, including milk production and
neck activity (50). A side-view concept was validated in 2013 (51) and was replaced by a 3D camera
placed above the cows (52–54). Currently, the combined system—a 3D camera together with
animal production– and behavior-related parameters (55)—appears to be the “winning setup”
(56). A commercial product is expected to be introduced at the EuroTier exhibition in 2018. As
with BCS, the long-term benefit of an automated lameness detection system includes providing
a new phenotype to be used in genetic selection of animals less susceptible to becoming lame.

Feed Intake and Feeding Behavior: Machine Vision

Individual cow feed intake (Table 1, cells B5, C5, D5, H5) is intensively measured in research
farms (Table 1, cell H5; 57). However, observing eating behavior (Table 1, cell C5; 57) via pho-
togrammetry (Figure 4; Table 1, cell B5) may provide an accurate measurement of feed intake,
providing a measurement of the individual cow’s feed efficiency on commercial farms (Table 1,
cell B5).

408 Halachmi et al.
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Figure 4

Monitoring cow individual feed intake applying photogrammetry. The picture was taken in the Agricultural
Research Organization’s Precision Livestock Farming lab (Israel) and research farm, and results were
R2 = 0.98 and std 0.15 kg when compared with real feed intake. Adapted with permission from V. Bloch, H.
Levit, and I. Halachmi, manuscript submitted.

Accelerometers

An accelerometer measures the change in velocity and the static acceleration component of gravity
(Table 1, column F). The position of the sensor can be determined with high accuracy when the
sensor is not moving. If the sensor is moving, the position can be calculated only if the orientation
of the device with respect to gravity is known. Inertial measurement units (IMUs) consisting of
three-axis accelerometers and gyroscopes can be used to measure the precise movement trajectory
if sufficient sample rates are used.Unlike accelerometers alone, IMUs canmeasure both linear and
angular acceleration. Accelerometers attached to animals have seen a rise in popularity during the
last 10 years, as technology has improved to the level at which reasonable battery life can be
reached with sensors that are small enough to be attached to animals’ legs, necks, ears, or tails; for
example, accelerometers have even been attached to the dorsal fins of fish (58).

The main challenge in many research systems is that quite high sampling rates are required,
which limits the system’s battery life. One solution to the battery life problem is to program the
device to make the calculations without transmitting or storing the data (59).However, embedded
low-power devices have limited computational power, which in turn limits the complexity of
algorithms that can be used. As battery technology evolves and the power consumption of
electronic devices decreases, future sensors will be able to make more sophisticated analyses and
measurements.

Dairy. Leg-mounted accelerometers were the first applications used with cattle; fairly accurate,
they are commonly used to measure dairy cows’ lying time and walking (60–62). Commercial
versions are available from several manufacturers. Commercial pedometers calculate lying time,
steps, and activity on the sensor; only summaries are stored and transmitted from the device (e.g.,
during milking, the summaries are transmitted to the farm’s management software). Accelerom-
eters have been used in the dairy industry primarily to measure activity related to estrus behav-
ior. Activity, measured from many different locations, changes dramatically during estrus. Basic

www.annualreviews.org • Sensors and Precision Livestock Farming 409
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statistical processes to identify changes in activity can be applied to identify cases of estrus. These
technologies have been widely and successfully adopted in the dairy industry. Monitoring lying
behavior may also be useful as a proxy for cow comfort, with longer lying times often associated
with more comfortable resting conditions. Monitoring lying time using an accelerometer affixed
to a leg, combined with an accelerometer affixed to the head or neck, to measure head movement,
may lead to quantification of sleep and rest quality.

In addition to the use of pedometers, several studies have focused on the use of accelerometers
to automatically classify a wide range of behaviors. For adult dairy cows, neck- and ear-mounted
accelerometers have been used to classify walking, standing, lying, panting, feeding, and rumi-
nating (63–65), as well as grazing behavior (66). The classification models generally vary from
temporal and spectral patterns of the sensor data, adapted using human observations as reference
data, to bag of class posteriors (BOGP) classifiers. Use of BOGP and IMU data from 10 cows,
and a simpler threshold-based classifier suitable for real applications for recognizing standing and
feeding behavior, showed promising results for classification of walking, standing, lying, and ru-
minating (67), achieving precision and specificity of over 95% (68). The technology for measuring
feeding and rumination time has progressed to a commercial level; validation papers have shown
that commercial sensors have moderate to strong correlations to matching behavioral observa-
tions (69, 70). Changes in feeding and rumination time have been used to identify metabolic or
digestive disturbances within dairy cattle (32, 33, 35). Such detection is particularly useful dur-
ing the transition period, defined as the three weeks before and after calving. During this period,
the cow is susceptible to ketosis, hypocalcemia, metritis, and displaced abomasum. Early detec-
tion of these conditions can hasten medical intervention, thus potentially reducing illness severity
and recovery time. Additionally, these technologies may be used for tracking group- or herd-level
changes in rumination or eating behavior to identify changes in feedstuffs and provide data for
feeding management. For example, if overmatured (faulty) silage is mistakenly offered to the an-
imals, changes in their eating behavior and consequently rumination times can be observed, and
the farmer can react.

Accelerometers have also been used for direct measurements of gait to detect and analyze lame-
ness. Chapinal et al. (71) and Pastell et al. (72) used accelerometers attached to all four legs to
differentiate between sound and lame cows based on analysis of gait symmetry. Alsaaod et al. (73)
developed a cow pedogram to analyze the temporal patterns related to gait and lameness using
high-frequency measurements. In dairy calves, researchers have used leg-mounted accelerometers
for measuring lying time (74) and locomotor play behavior (75); neck-mounted accelerometers for
measuring total sleep and lying time, with an accuracy of over 90% (76); and halter-mounted sen-
sors for measuring suckling behavior (77).

Pigs. Accelerometers have been used in similar ways in pigs as in cattle: Ear tag sensors can auto-
matically classify sow behavior (78, 79), and sensors attached to the leg or back of the animal indi-
cate posture (80, 81). Several projects have also focused on predicting parturition, owing to distinct
increases in sow activity related to nest-building behavior when farrowing approaches.High accu-
racy has been achieved in detecting the activity related to nest-building behavior.Nonetheless, the
exact moment of farrowing can be detected only in a 6–24-h window (82–84). Accelerometers have
also been used to measure gait (85) and behavioral changes (86) associated with lameness in sows.

Quantifying Pain and Stress

Pain assessment based on physiological parameters was originally thought to be inapplicable to
farms (87) (Table 1, row 4). Traditionally, when aiming for a clinical pain diagnosis in dairy
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cows, the farmer or veterinarian has observed the cow’s behavior, searching for deviations from
normal behavior (e.g., the time it spends lying down, standing, or ruminating or whether it is
shifting its weight between its legs), which could imply that the animal is in pain (88–90). For
example, individual cows with mastitis demonstrate behavioral changes, such as standing longer,
eatingmore slowly, drinking less, and ruminating less, and have higher body temperatures (88) and
decreased dry-matter intake (90). Basing pain diagnosis on behavior has its weaknesses, stemming
from the stoic nature of the animal—cows do not explicitly show pain behavior (91).Moreover, the
diagnosis is subjective, depending on the farmer’s or veterinarian’s experience, training, and famil-
iarity with the individual cows, factors that might bias their judgment. Pain behavior assessment
could greatly benefit from sensors, which could detect changes in activity, feeding, rumination, ly-
ing, and other behaviors early and quantify them (63). Such sensors include ear tag accelerometers
(92, 93), neck collars (94, 95), and noseband pressure sensors to record jaw movements (95) and
core body temperature sensors (96, 97). Notably, in a recent developmental venture, heart rate
variability was associated with analgesia/nociception balance in anaesthetized animals undergoing
surgery (98). Thus, realizing the need for improved dairy cow pain diagnosis, the assumption that
pain assessment based on physiological parameters is inapplicable on farms should be challenged.

Positioning Systems

Positioning systems locate animals outside, grazing, or inside buildings in intensive farming.There
is valuable information hidden in the animal location and its derivatives (velocity and acceleration)
that is not yet fully explored in the PLF fields (Table 1, column G).

Indoor positioning. Several technological solutions have been used to locate animals inside
buildings. One of the first published systems in dairy cows was based on radar technology (99).
The system reached accuracy within 1 m, but the battery life of the system in continuous opera-
tion was only 24 h. Another early system (100) used Bluetooth beacons combined with a Kalman
filter to track the position of cows in a barn.

After the first experiments, several commercial indoor positioning systems targeting cattle
barns were introduced to the market. These systems use tags that transmit a radio signal that can
be used to continuously calculate the location of the cow inside a barn. The systems typically use
sampling rates close to 1 Hz. Ultra-wideband-based systems (101, 102) and low-frequency Nedap
(103) systems can achieve positioning error below 1 m after filtering. The Smartbow positioning
system has lower accuracy, within 3 m, 95% of the time (104).

The first studies analyzing the data from positioning systems have shown that the data can be
used to measure the time that a cow spends in different functional areas (105), the effect of hoof
lesions on walking distance (106), feeding time (105, 107), social networks (108), and the effect
of disease and estrus on cow activity (109, 110). It is still too early to say whether the positioning
data will provide significant improvements in these applications over other, e.g., accelerometer-
based, systems.However, combining positioning data with other sensors to automatically measure
behavior could yield higher prediction accuracy, as different behaviors with similar movement
patterns are more likely to appear in different functional areas, e.g., feeding in the feeding area,
drinking at the water trough, and rumination in other areas. The data from positioning systems
have recently been combined with image analysis to yield improved positioning accuracy (111).
The data from these systems may also be used in conjunction with environmental control systems
within feedback loops to control microenvironments within livestock facilities. For example, cow
panting behavior together with bolus temperature may be used to indicate that fans should be
turned on in one part of a barn but not in another. Additionally, the presence of cows at the feed
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bunk can be used to determine whether sprinkler systems should be turned on only for the feed
sections within the barn, reducing water usage.

Outdoor positioning.Global Satellite Navigation System (GNSS) can be used to track ob-
jects in outdoor environments where satellites have an unobstructed view. The current exist-
ing GNSS are the United States NAVSTAR Global Positioning System (GPS) and the Rus-
sian GLONASS. The European Union’s Galileo system is expected to be completed in 2020.
According to Standard Positioning Service specifications, the maximum range of error of a stan-
dard GPS receiver should not exceed 30 m (112). Higher accuracy can be obtained using various
correction methods, such as Differential GPS (DGPS), which can achieve accuracy within 1–
5 m, and Real-Time Kinematic (RTK) GPS, which can achieve accuracy to a centimeter. Both
DGPS and RTK use an additional correction signal from a known reference point to improve the
positioning accuracy, but this increases the overall cost of the system. Thus far, GPS has been
used primarily to study cattle grazing behavior (113), and the data have been combined with
accelerometer measurements to identify walking, resting, and eating behavior (114); GPS data
have also been used with heart rate data to calculate energy expenditure (115, 116). Another in-
teresting area where GPS could be used in the future is virtual fencing (117). A virtual fence is
a boundary without a definable physical barrier. For instance, by using GPS coordinates, when
an animal approaches the virtual fence line, a warning sound or an electric shock can be trig-
gered (118). Virtual fences could save labor and physical resources and enable efficient grazing
management, and potentially could be used to fetch cows from pastures to milking robots.

Heart Rate

Heart rate and heart rate variability provide information about cardiovascular system function and
cardiac autonomic modulation, respectively (Table 1, row 16).This information can be used to es-
timate physiological and psychological stressors in animals.Heart rate has been used to study pain
in calves (119), stress during milking (120), effect of space allowance (121), and energy expenditure
and energy balance (115, 116). Electrocardiography, the process of recording the electrical activity
of the heart, has been most commonly obtained with surface electrodes (122, 123), wearable belts
(120), or implantable devices (124).

In recent years, optical methods for measuring heart rate have also garnered a lot of interest
and technical development. In human applications, many smart watches use sensors to measure
changes in the skin’s absorption of light (125). The method typically requires good placement of
the sensor. In cattle (126), a photonic sensor measuring movement of the skin surface can be used
to measure the cow’s heart and respiration rates, and its chewing patterns using a contactless setup.

If optical methods could be developed to continuously record the heart rate of cows on working
farms, they could advance research significantly, enabling easier long-term data collection and
ultimately allowing use of heart rate recording and analysis to improve practical farming practices.

Sound analysis: possible applications in broiler farms.One highly important indicator in a
broiler farm is flock growth (Table 1, cell D2), because it represents the efficiency and profitabil-
ity of the farm.The average weight of the flock is generally evaluated either manually (by weighing
samples of birds randomly picked up in a poultry house) or by applying step-on electronic weigh-
ing scales. Manually measuring the weight of a representative number of animals in a building is
time and labor intensive, because buildings may hold up to 50,000 birds. Today, many farms use
step-on scales placed on the floor of the poultry house to automatically collect the average weight
of the birds in the flock. However, even if the weighing system provides an accurate weight value
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each time a bird steps onto it, its reliability might be limited owing to several factors. For in-
stance, heavy birds may be reluctant to visit the weighing scale (which requires the bird to climb
up onto the scale) at the end of the production period (127), and the walking ability of fast-growing
broilers, which decreases with age, reduces their mobility and willingness to move (128). Various
studies have validated models that describe the growth rate of broiler chickens based on the peak
frequency of their vocalizations (129, 130).

Feed intake and feeding behavior. Another possible application of real-time sound-processing
technology in poultry houses is a system to monitor feeding behavior: meal size, meal duration,
meals per day, and feeding rate. Researchers from the Catholic University of Leuven have stud-
ied this technology and its possible uses since 2013 (131, 132). In cattle (133) and free-ranging
goats and sheep (134), acoustic monitoring is a promising method to quantify feeding behavior,
by applying signal-processing algorithms to automatically identify and classify sound-producing
jaw movements. Identification and classification of jaw movements appear to be essential to a
mechanistic understanding of the feed intake process (135) (Table 1, cell D5).

Acoustics, sound analysis: pigs. Since the early 1990s, analysis of animal calls has played an
important role in understanding livestock health, behavior, and welfare. Animal vocalizations can
contain information, signaling threats, choosing mates, or alerting infants to suckle. In the case of
livestock species, information contained in vocalizations or other animals’ sounds could provide
valuable information for the farmer (Table 1, cell D4). A very good example is the rich vocal
repertoire of pigs (136). In 1999, Kanitz et al. (137) started to study the acoustic relationship
between pig vocalizations and stress and stress hormones. Pig screams in production environments
were recorded aiming to generate early-alarm systems while taking into account effects of age and
maternal reactivity on the stress response.

Quantifying animal welfare.Vocal utterances of animals are the result of emotional states in
specific situations. Therefore, the distress calls of pigs can be used as indicators of impaired wel-
fare (Table 1, cell D13). Manteuffel et al. (138) and Schön et al. (139) introduced vocalization in
livestock farms as a measurement of welfare. They began by classifying pig calls as either contact
calls (grunts) or calls reflecting arousal (squeals and screams). Automatic measurement techniques
and software were developed to detect these high-pitched vocalizations (140, 141). STREMODO,
a patented technique that is applicable in housing systems, during transport, and in abattoirs, is
the first system developed to identify stress vocalizations (142).

Early detection of diseases and lameness. Animal health (Table 1, row 3) is also an important
issue; thus, sound analysis (Table 1, cell D3) is useful not only for gathering information about
animal welfare but also to locate the source of a medical problem, e.g., to map the spread of coughs
that can occur in a pig house (143). Some research groups have focused their studies on bioacous-
tics, in particular on the acoustic features of pig coughs. As one of the body’s defense mechanisms
against respiratory infections, a cough can be a sign of respiratory disorder or infection. In small
pig houses, cough sounds are commonly assessed for diagnostic purposes, but the practice is diffi-
cult to apply in large pig houses (144). Therefore, the acoustic features of pigs’ (143, 145, 146) and
calves’ (147) coughs have been studied, to be used as a sort of alarm system that can inform the
farmer about the health of his animals. Sound technology opens possibilities of automatically and
continuously monitoring animal coughs and vocalizations. One example that has recently come
to market is SoundTalks, a spin-off company derived from the studies done at the University of
Leuven and the University of Milan.
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Electronic Nose

An electronic nose (Table 1, column J) is a device that acts as the human olfactory system and, thus,
is able to discriminate between different odors (148). Basically designed to simulate the human
sense of smell (149–154), the technique creates numerical descriptions of all profiles by detect-
ing odor patterns (fingerprints), rather than the concentration of single compounds in a mixture.
Electronic noses are now attracting increased interest from researchers because of their wide range
of potential applications (155), including in drunk driving tests, hazardous gas monitoring (156),
and air-quality monitoring (157–159). Several studies have explored the possibility of diagnos-
ing pathologies in livestock via identification of volatile organic compounds (VOCs) produced
by pathogens, host-pathogen interactions, and biochemical pathways (160). VOCs are present in
blood, breath, stool, sweat, skin, urine, and vaginal fluids of humans and animals; their qualita-
tive and quantitative compositions are influenced by pathophysiological responses to infections,
toxins, or endogenous metabolic pathway disturbances. For instance, VOC analysis has been ex-
plored as a method to diagnose bovine respiratory disease, brucellosis, and bovine tuberculosis
in cattle. In fact, several studies were able to distinguish the VOC profiles of Mycobacterium bovis
from cattle breath samples (161, 162). Another livestock infection, Mycobacterium avium subsp.
paratuberculosis, was studied in ruminants. Tentative identification of a range of breath VOCs, or a
group of VOC features, has been associated with both infected and noninfected ruminants (163).
In poultry, VOCs have been analyzed to evaluate air quality in sheds (164–166) but have not been
used to determine if birds were affected by enteric pathologies.

Barn odors are influenced by poultry health status; in particular, enteric problems are charac-
terized by peculiar odor properties (165, 167).Most recently, studies have shown that it is possible
to discriminate between VOCs emitted by healthy broilers and those affected by enteric diseases
like coccidiosis. In particular, air analyses have revealed that the discrimination is effective even
at a very early stage of infection. This technique perfectly suits the methodologies and goals of
PLF, which consists of noninvasive automated technologies that can support farmers with early
warning systems for the identification of production, health, and welfare problems on farms (168,
169).

CONCLUSIONS

Where Are We Now?

By increasing the amount of information available, technologies providing accurate data can only
enhance a well-managed system. How the data provided by these technologies are turned into
actionable solutions is a crucial point for PLF success. At this point, wearable technologies domi-
nate the market; most of the PLF applications are based onmonitoring tags attached to the animal
(neck, leg, or ear tags) or inside the animal (boluses). Therefore, current PLF applications are used
mainly for larger animals, such as dairy cows, beef cattle, and horses. The economic value of each
single large animal justifies the investment of a monitoring tag per animal, and large animals pro-
vide many places to hang sensors (Figure 5). A single sensor, like a camera (25, 26, 55, 56, 170) or
robot (171, 172), should be sufficient for many smaller, less-valuable animals, such as small rumi-
nants (sheep and goats). Most existing commercial applications for pigs, fish, and poultry monitor
groups using cameras, sound, or data from feeding systems. New sensor systems will be intro-
duced into the market, and will shift from primarily wearable technologies to more image- and
milk-based systems. In less-value-per-animal systems, such as sheep, goat, pig, poultry, and fish,
raised intensively in large herds, flocks, or schools, one sensor per herd (not a sensor per animal),
such as camera or robot, will be even more common.
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Animal position/location

Chewing activity

Feed intake

Respiration

Bolus

Heart rate

Mobility

Hoof health

BCS fatness or thinness

Rumination/pH

Temperature

Methane emissions

Mastitis

Milk content

Lying/standing behavior

Figure 5

Key indicators, places, and sensors used in precision livestock farming. Abbreviation: BCS, body condition
score.

Investment decisions should include a thorough, formal evaluation of profitability. The hu-
man factors related to successful technology adoption cannot be overlooked. Farmers are fre-
quently skeptical of new business models, especially when new technology is involved. Often, it
is difficult to convince farmers to collaborate on a digital innovation. That is one reason why
collaborative business models in the livestock sector are at a relatively early stage. If scientists
are able to transfer their knowledge to farmers in a reliable and transparent way, perhaps with
the help of knowledge-sharing platforms and e-learning tools, there is potential to overcome
such barriers to implementation and generate significant value for all parties along the value
chain. Excitement about technical capabilities must be balanced with consideration of imple-
mentation challenges and economic realities. In some cases, although the technologies may be
scientifically and technically sound, the economic return relative to the cost of the system limits
adoption of the new technology. It is important to remember that livestock systems are, by na-
ture, quite complex, and PLF technologies must be considered within the context of the whole
system. For the most part, many of these technologies are still in the early-adoption phase. As
they progress and become more mainstream, end-user demands for technology performance will
increase.

What Can Be Learned?

The PLF sensors generate huge amounts of data. Many actors benefit from PLF data along the
chain: The animal feed providers can design their inventory based on animal growth; the meat or
milk processing factories can predict incoming quantity and quality and plan production accord-
ingly; some consumers hope to apply objective animal welfare standards based on animal sensors;
and farmers, based on the sensors’ alarms, can treat those individual animals that need special care.
No standards currently exist for sharing sensor-generated data, which limits the use of commercial
sensors for research, animal breeding, and benchmarking purposes, among others. Data sharing
needs to be enabled in a way that benefits all parties, to fully utilize sensor-generated data and the
opportunities arising from combining multiple data sources for new applications.

However, at the end of the day, the farmer pays the bill—the price of installing the PLF appli-
cations on his farm. The PLF applications that are economically justified, reduce labor, are easy
to use, and fit into known farm practices have a better chance to succeed commercially. Perhaps
one of the most important lessons learned with these technologies thus far is that they are not a
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magic fix for poor management. The livestock producers who will benefit the most from the use
of these technologies are the better managers.

Existing applications have focused mainly on dealing with single issues (such as diseases, estrus
detection, or heat stress mitigation) and in many cases use a single data source. Clearly, detecting
multiple conditions with the same sensor would be more useful, and this should be reflected in the
study designs. Higher precision in anomaly detection could also be achieved by combining data
from multiple sources, e.g., production, physiology, and behavior, and by incorporating existing
information about risk factors into the models.

Current studies have focused more on sensor development and modeling data collected from
small- to medium-scale experiments. To turn such studies into actionable solutions and obtain
accurate, robust detection of anomalies in the future, more focus is needed for large-scale data
collection with high-quality gold standards. This can be made possible by increasing the quan-
tity of sensors deployed to commercial farms. More efficient use of expensive research data can
also be facilitated via joint international modeling and data-sharing initiatives and by adopting a
collaboration model between industry, researchers, farmers, and stakeholders. The value of data
increases when (un)structured data are processed, enriched, and analyzed to create actionable in-
sights. Operations can be further improved when farmers also share the information collected
across the supply chain with relevant stakeholders, such as veterinarians, slaughterhouse opera-
tors, meat processors, and animal feed producers.

Where Are We Going?

Sustainable food production is one of today’s key global challenges. According to a UN Food and
Agriculture Organization report (173, 174), although meat consumption in the first world has lev-
eled off, the share of animal products in the diet is increasing in developing countries (Figure 6).
Between 1997–1999 and 2030, annual meat consumption in developing countries is projected
to increase from 25.5 to 37 kg per person, compared with an increase from 88 to 100 kg in
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Figure 6

Meat consumption in China and the United States. The demand in first-world countries has leveled off,
whereas it is rising precipitously in developing countries. Data from Food and Agriculture Organization of
the United Nations (in the public domain).
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industrialized countries. Consumption of milk and dairy products will rise from 45 kg/person
per year to 66 kg in developing countries and from 212 to 221 kg in industrialized countries. For
eggs, consumption will grow from 6.5 to 8.9 kg in developing countries but only from 13.5 to
13.8 kg in industrialized countries. In total, by 2050 an expanded world population will be con-
suming two-thirds more animal protein than it does today. Meat consumption is projected to rise
nearly 73% by 2050; dairy consumption will grow 58% over current levels. The higher demand
for animal products, together with public pressure to raise animals in compassionate ways and
the concomitant decrease in available arable land, along with the desire to create smaller envi-
ronmental footprints, will encourage the industry to adopt more PLF applications. Furthermore,
the world continues to become more affluent, and finding labor for livestock farms is increasingly
challenging. These challenges open the door for increased automation and sustainable intensifi-
cation of livestock farms, consequently increasing development and use of PLF applications.

Digitalization offers the potential to make farming more sustainable. The implementation of
information and communication technology in the livestock industry, and the recent use of smart
networked objects and the Internet of Things, has opened a new era of communication in which
things, humans, and animals are part of a data network exchange, leading to a new concept of
farming. Remote or wearable sensors can be combined with smart algorithms to continuously
monitor a wide range of animal responses linked to stress, health status, and welfare. The idea
of real-time monitoring assumes a simple way to measure variables that can provide clear and
suitable early warnings to farmers, mitigating the severity and length of medical problems and
improving outcomes. The prompt reaction to any change in health, welfare, and productive status
is key for reducing drug use and improving animal well-being. PLF could be considered the right
environment in which to realize these goals.

SUMMARY POINTS

1. Meat consumption in the first world has leveled off, but the share of animal products in
the diets of people in developing countries is increasing.

2. Early warning from sensors can enable farmers to treat those individual animals that
need special care, before medical problems become serious.

3. The increasing demand for animal products, together with the desire to treat individual
animals that need special care but are raised intensively in large herds, flocks, or schools,
increases the development of PLF applications.

4. At this point, wearable technologies dominate the market.

5. In less-value-per-animal systems, such as sheep, goat, pig, poultry, and fish, one sensor,
such as a camera or robot, per herd/flock/school will become even more common.

6. Technologies providing accurate data can only enhance a well-managed farm. How the
data are turned into actionable solutions is critical.
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