

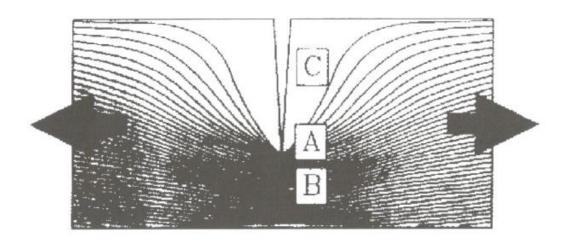
DEGRADAÇÃO E PROTEÇÃO MATERIAIS

Corrosão associada a fatores mecânicos

Profa. Maria Ismenia Sodero maria.ismenia@usp.br

Corrosão associada a fatores mecânicos

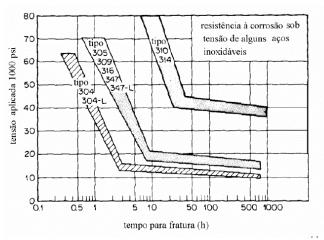
- Os principais tipos de corrosão associadas a fatores mecânicos são:
 - ✓ Corrosão por colisão
 - ✓ Corrosão por cavitação
 - ✓ Corrosão por atrito
 - ✓ Corrosão por fadiga
 - ✓ Corrosão sob tensão

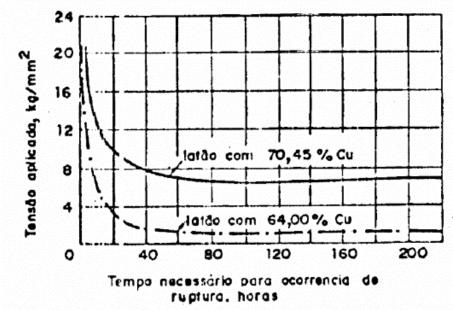

Fratura em estojo de munição feito com latão

Corrosão sob tensão - Stress Corrosion Cracking Fatores de influência

Tensões

- ✓ As tensões internas surgem por meio das operações de conformação mecânica, dos tratamentos térmicos, dos tratamentos de superfície, dos gradientes térmicos;
- ✓ Baixas tensões, a partir de 50% do limite de elasticidade do material, podem provocar corrosão sob tensão;
- ✓ Alta tensão é observada na ponta da fissura
- ✓ Do ponto de vista da distribuição de tensões, o meio corrosivo está em contato com um material altamente heterogêneo.




Figura 2.28.: Influência da tensão aplicada sobre o tempo necessário para a ocorrência da ruptura por corrosão sob tensão de alguns aços inoxidáveis em soluções de 42% MgCl₂ em ebulição

Corrosão sob tensão Fatores de influencia

Composição química, Temperatura, Tempo e Meio

Fatores Metalurgicos

Influência da tensão aplicada sobre o tempo necessário para a ocorrência da ruptura por corrosão sob tensão de dois latões em vapores de NH₄OH

Tabela 2.9.: Influência da composição do meio sobre a ocorrência da corrosão sob tensão.

Material	Meio	Ocorrência da corrosão sob tensão		
Aço carbono	NaC1	NÃO, mas há corrosão generalizada		
	Ca(NO ₂) ₂	SIM, mas não há corrosão generalizada		
	NO ₃	SIM, fratura intergranular		
	HCN	SIM, fratura transgranular		
Aço Inox. Austenítico	Cl	SIM + corrosão por pites		
Aço doce (aço carbono 0,15 -	NaOH 33% +	SIM, fratura intergranular		
0,25%C)	PbO ₂ 0,1%			
	Ebulição			
	NaOH 33% +	SIM, fratura intergranular		
	Na ₄ SiO ₄ 0,3%			
	150°C			
Aço (0,4 C, 1,5 Mn, 0,16 Mo	Contendo H ₂ S	SIM, aumenta com o teor de H ₂ S		
	Contendo H ₂ S	SIM, CH ₃ CO ₂ H acelera a corrosão sob tensão.		
	+ adição			
	CH ₃ CO ₂ H			
Ligas de Mg (65%A1 - 1%Zn	K ₂ CrO ₄	NÃO		
0,2% Mn)				
	NaC1	NÃO		
	NaCl + K2CrO4	SIM		

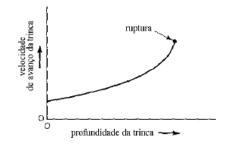


Figura 2.33.: Velocidade de propagação de trinca versus profundidade de trinca durante ensaio de corrosão sob tensão a carga constante

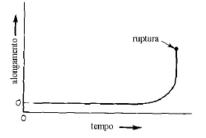
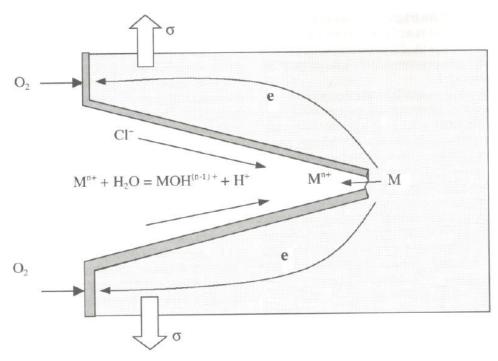


Figura 2.34.: Alongamento versus tempo durante ensaio de corrosão sob tensão a carga constante

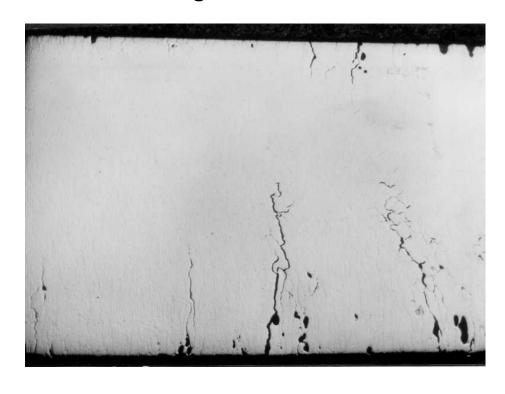

Corrosão sob tensão Mecanismo

- Nucleação da trinca
- Propagação da trinca
- Fratura intergranular ou transgranular.

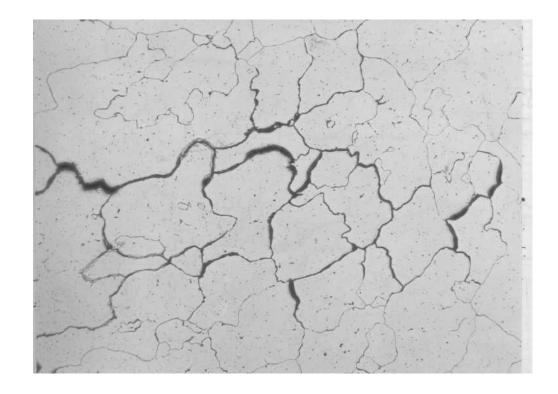
Quando ocorre a redução do oxigênio na superfície externa e dissolução ativa na ponta da fissura, a acidez do eletrólito aumenta na fissura devido às reações de hidrólise dos íons metálicos.

A eletroneutralidade provoca a migração de ânions, tais como íons Cl- em direção à ponta da fissura.

A migração e o gradiente de concentração mantêm estável o estado ativo da ponta da fissura.



Reações eletroquímicas em uma fissura de um material metálico



Corrosão sob tensão – Morfologia das trincas

Trinca transgranular devido a SCC

Trinca intergranular devido a SCC

Corrosão sob tensão - Prevenção

- Alterações de projeto redução de concentração de tensão e tensões residuais;
- Utilização de tratamento térmico para alívio de tensões;
- Alteração no ambiente corrosivo: alteração no pH, eliminação de cloretos;
- Utilização de inibidores ou proteção catódica
- Substituição do metal empregado por outro não sujeito à corrosão sob tensão na condições de uso previstas

Corrosão sob fadiga

Limite de fadiga Limite de fadiga N.º DE CICLOS PARA RUPTURA

Ensaio de fadiga ao ar

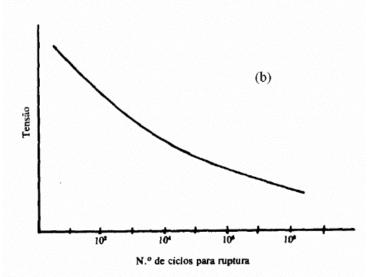
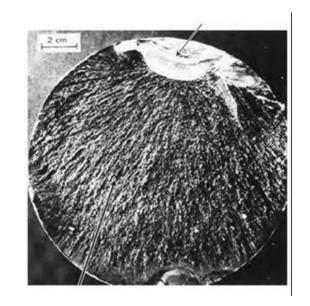



Figura 2.42.: Tensão versus número de ciclos para a ocorrência da ruptura em ensaios de fadiga ao ar e num meio corrosivo

Ensaio de fadiga num meio corrosivo

FRATURA EM FADIGA

Corrosão sob fadiga Mecanismos

- NUCLEAÇÃO DA TRINCA
- PROPAGAÇÃO DA TRINCA
- FRATURA

Quando um metal é submetido a tensão cíclica em um ambiente corrosivo, o número de ciclos necessários para causar falha em uma dada tensão pode ser reduzida bem abaixo da linha pontilhada obtida para o mesmo metal no ar, como mostrado na Fig. 6.48. Esta aceleração da fadiga chamada de "fadiga de corrosão", é revelada pela comparação da linha sólida em Fig. 6.48 com a referência da linha pontilhada.

A curva S-N com corrosão tende a se manter caindo, mesmo com baixas tensões, e, portanto, não se estabiliza, assim como a curva de fadiga comum.

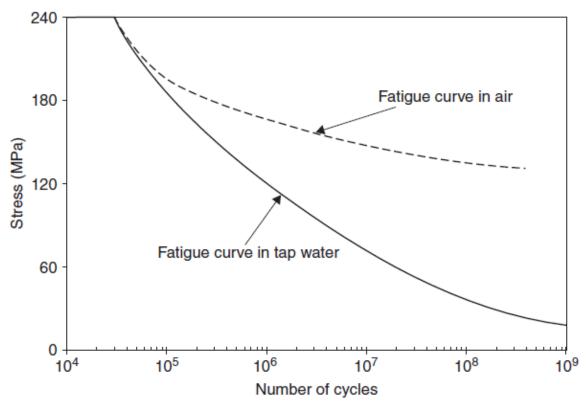


FIGURE 6.48 Fatigue and corrosion fatigue curves for an aluminum alloy [21].

Corrosão sob fadiga Fatores de Influência

DEPENDENCIA MECANISMO CORROSÃO SOB FADIGA

VALOR DA FREQUENCIA

CONDIÇÕES CORROSIVA DO MEIO

CONCENTRAÇÃO DE O₂

TEMPO

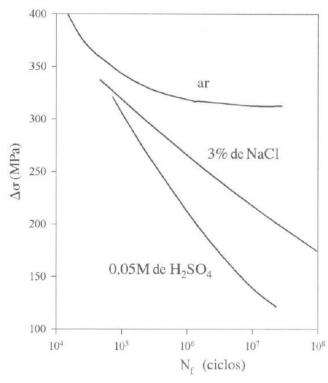


Fig. I.6.26 Influência do meio corrosivo sobre o tempo de ruptura em fadiga de um aço inoxidável austenítico Fe-17Cr-12Ni [211]

Corrosão sob fadiga Fatores de Influência

MATERIAL	LIMITE DE RE- SISTÊNCIA MNm ⁻²	LIMITE DE RESISTÊNCIA À FADIGA (aproximadamente 5 x 10 ⁷ ciclos) MNm ⁻²		
		Ar	Água doce	Água do mar
Aço Carbono (0,16%C)	461,5	252,0	140,2	63,0
Aço Carbono (1,09%C) Aço Ni-Cr (1,5Ni, 0,73 Cr,	727,7	281,1	148,1	
0,28 C) Aço inoxidável (14,5 Cr,	976,5	477,2	113,4	97,7
0,23 Ni, 0,38 C)	661,5	365,4	252,0	252,0
Monel recozido	574,9	252,0	182,7	196,0
Níquel	535,5	233,1	163,8	_
Duralumínio	488,3	122,9	70,9	56,7
Bronze aluminoso	633,2	228,4	176,4	154,4
Cobre recozido	214,2	66,2	70,9	

FIGURA 4.13. Curvas típicas de corrosão sob fadiga, ilustrando a influência do número de ciclos necessários para produzir fratura em aço inoxidável com 13% Cr(10).

Corrosão sob fadiga Prevenção

- Projeto adequado de componentes, evitar entalhes e estagnação de fluidos, acessibilidade do ar e de outros meios corrosivos;
- Uso de <u>materiais mais resistentes à corrosão</u> como Monel e aço inoxidável. Para o caso de vibração aplicar um material com capacidade de amortecimento mais alta.
- Redução de tensão sobre os componentes. Tratamento térmico aliviadores de tensão ou introdução de tensões de compressão, como cementação ou nitretação, ou por meio de laminação a quente ou por condicionamento superficial por meio de bombardeio de partículas duríssimas;
- <u>Técnicas de revestimento</u> que não induzam tensões de tração e nem carreguem o metal base com hidrogênio.
- Revestimentos orgânicos como pintura e resinas para aço doce;
- Proteção catódica e anódica aumentam o limite de corrosão à fadiga;
- <u>Inibidores químicos</u> da corrosão.