Método dos Mínimos Quadrados

Uma situação que nos é apresentada com frequência em observações quantitativas de uma variável dependente y, cujos valores são função de um conjunto de variáveis independentes (x_1, \ldots, x_{ℓ}) , consiste na consideração de dois ingredientes para análise:

1. **Modelo** - Uma formulação explicita da dependência de y em função das variáveis $\mathbf{x} = (x_1, \dots, x_\ell)$, expressa em termos de um conjunto de parâmetros $\{a_0, a_1, \dots, a_m\}$; $a_k \in \mathbb{R}$ e uma família de funções $\{g_0(\mathbf{x}), g_1(\mathbf{x}), \dots, g_m(\mathbf{x})\}$; $g_k()$: $\mathbb{R}^\ell \to \mathbb{R}$. No contexto da nossa apresentação vamos considerar apenas casos em que os modelos são lineares nos parâmetros $\{a_0, a_1, \dots, a_m\}$, ou seja:

$$y = f(x) = a_0g_0(x) + a_1g_1(x) + \ldots + a_mg_m(x)$$

Em diversas situações a definição das funções que compreendem a família $\{g_0(\mathbf{x}),g_1(\mathbf{x}),\ldots,g_m(\mathbf{x})\}$ é resultado de uma análise teórica que resulta em um modelo geral que pode ser considerado para descrever um fenômeno em diferentes contextos. O conjunto de parâmetros $\{a_0,a_1,\ldots,a_m\}$; $a_k\in\mathbb{R}$ devem ser escolhidos de forma a *ajustar* o modelo

$$y = f(x) = a_0g_0(x) + a_1g_1(x) + \ldots + a_mg_m(x)$$

a um contexto específico. Assim devemos considerar a família $\{g_0(\mathbf{x}),g_1(\mathbf{x}),\ldots,g_m(\mathbf{x})\}$ como dada e os valores dos parâmetros $\{a_0,a_1,\ldots,a_m\}$; $a_k\in\mathbb{R}$ devem ser obtidos levando em consideração uma situação específica.

Exemplo

Um movimento de *queda livre* consiste em um movimento com aceleração constante (aceleração da gravidade) e portanto a dependência da velocidade v(t) em função do tempo t é dada por uma expressão da forma:

$$v(t) = v_0 + gt$$

onde os valores de v_0 e g caracterizam um particular contexto, por exemplo um movimento de queda livre de um objeto com velocidade vertical inicial v_0 lançado em uma localidade específica do planeta Terra onde a aceleração da gravidade g tem um valor específico. Neste exemplo:

- A variável dependente é a velocidade v(t)
- ▶ a variável independente é o tempo t
- ▶ O conjunto de parâmetros $\{a_0, a_1\}$ são os valores de v_0 e g. $(v_0 = a_0; g = a_1)$
- ▶ A familia de funções $\{g_0(t), g_1(t)\}$ está definida por: $g_0(t) = 1$ e $g_1(t) = t$.
- O modelo é $v(t) = a_0 g_0(t) + a_1 g_1(t)$.

2. Resultados Empíricos (caso discreto)

Consiste em um conjunto de dados obtidos pela observação de valores da variável dependente y para diferentes valores das variáveis independentes \mathbf{x} ,

i	\mathbf{x}^{i}	Уi
1	x^1	<i>y</i> ₁
:		:
n	x ⁿ	Уn

$$\{(\mathbf{x}^i, y_i)\}_{i=1,\ldots,n}; \mathbf{x}^i \in \mathbb{R}^\ell; y_i \in \mathbb{R}.$$

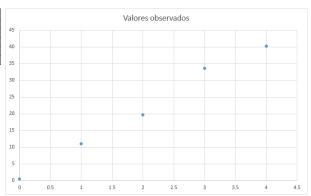
Exemplo

Na observação de um experimento de queda livre foram observados os seguintes valores para $v(t_i)$ em função de valores fixados $\{t_i\}_{i=1,\dots,5}$ da variável independente t.

i	t ⁱ	Vi
1	0	0.51562
2	1	10.97913
3	2	19.70396
4	3	33.66647
5	4	40.2618

∟Introdução

tį	\mathbf{v}_{i}
0	0.51562
1	10.97913
2	19.70396
3	33.66547
4	40.2618



O modelo considerado,

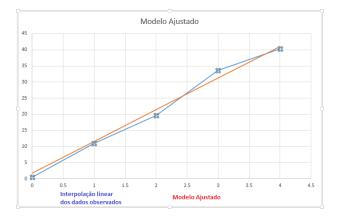
$$v(t)=v_0+gt$$

explicita uma dependência linear de v(t) como função de t e portanto um gráfico com pontos $\left\{\left(t^{i},v(t^{i})\right)\right\}_{i=1,\dots,5}$ deve consitir de uma reta. Porém é claro que não existe uma reta que contenha o conjunto dos valores observados e portanto dos dados não definem diretamente os valores de v_0 e g.

Desta forma, a definição dos valores dos parâmetros v_0 e g requer a introdução de um critério para a *escolha* da reta que resulta no *melhor ajuste* do modelo aos dados observados (escolher uma reta equivale a definir os valores de v_0 e g).

Método dos Mínimos Quadrados

└─Introdução



Para definir um possível critério de melhor ajuste, para cada valor x^i ; i=1,...,n da variável independente, consideramos a magnitude da diferença entre os valores obtidos y_i para cada um dos valores x^i e os valores previstos pelos modelo

$$y(x^i) = a_0 g_0(x^i) + \ldots + a_m g_m(x^i)$$

(dependentes da escolha dos parâmetros $a_0, ..., a_m$)

$$|y_i - y(x^i)| =$$
 $|y_i - [a_0g_0(x^i) + ... + a_mg_m(x^i)]|; \quad i = 1, ..., n$

Um critério para a escolha dos valores dos parâmetros $a_0, ..., a_m$ poderia ser, considerar a função:

$$E_{ABS}(a_0,...,a_m) = \sum_{i=1}^n | y_i - [a_0g_0(x^i) + ... + a_mg_m(x^i)] |$$

e escolher os valores de $a_0, ..., a_m$ correspondentes ao *melhor ajuste*, como sendo os valores para os quais $E_{ABS}(a_0, ..., a_m)$ assume seu valor mínimo.

Esta estratégia incorre em uma dificuldade técnica uma vez que a função $E_{ABS}(a_0,...,a_m)$ é não diferenciável e por isso, o problema de determinar os valores de $a_0,...,a_m$ para os quais ela assume seu mínimo não tem uma solução imediata.

Introdução

Para contornar esta dificuldade consideramos em lugar de $E_{ABS}(a_0,...,a_m)$ a função:

$$EQ(a_0,...,a_m) = \sum_{i=1}^n (y_i - [a_0g_0(x^i) + ... + a_mg_m(x^i)])^2$$

e os valores de $a_0, ..., a_m$ para os quais $EQ(a_0, ..., a_m)$ é mínimo são obtidos resolvendo:

$$\begin{cases} \frac{\partial EQ}{\partial a_0}(a_0,...,a_m) = 0\\ \vdots\\ \frac{\partial EQ}{\partial a_m}(a_0,...,a_m) = 0 \end{cases}$$

Como a função $EQ(a_0,...,a_m)$ é uma função quadradica nas variáveis $a_0,...,a_m$, as derivadas parciais $\frac{\partial EQ}{\partial a_j}(a_0,...,a_m)$; j=0,...m são funções lineares e portanto o sistema de equações acima consiste em um sistema linear com m+1 equações e m+1 incógnitas $a_0,...,a_m$.