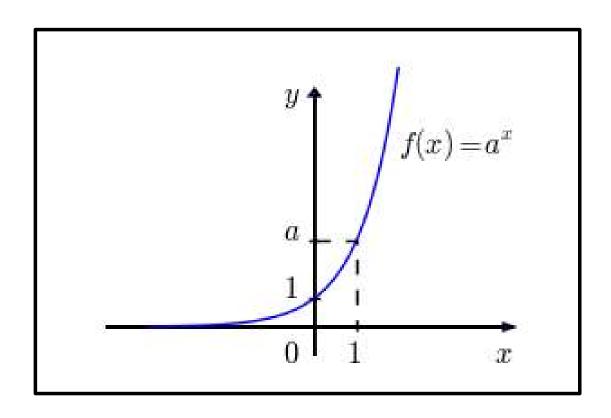


Tópicos Especiais de Matemática Aplicada a Projetos Educacionais

Mestrado Profissional – PPGPE Profa. Roberta Veloso Garcia

ınções 1

Aula 3: Função Exponencial



Sequência Didática da aula

- ☐ Conteúdos: Função Exponencial
- □ Objetivos:
- Associar a função exponencial a situações do cotidiano;
- Identificar os parâmetros da função exponencial;
- Utilizar diferentes recursos para facilitar a compreensão

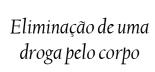
- ☐ Recursos Utilizados: Internet
 - Tablet
- ☐ Aplicativos Utilizados: -Geogebra
 - MAFA
 - Excel
- ☐ Etapas para a Realização:
- Teoria apresentada com GeoGebra,
- Teste Avaliativo

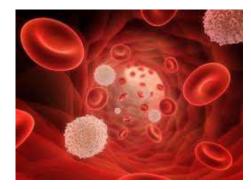
Motivação:

• Funções exponenciais da forma $f(x) = a^x$, onde a é uma constante positiva, são usadas para representar muitos fenômenos nas ciências naturais e sociais.

Crescimento Populacional

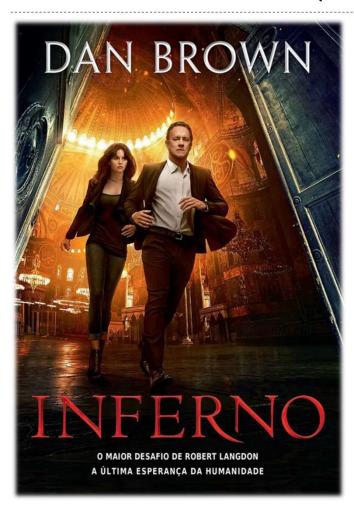
Altura de Notas Musicais





Crescimento de uma colônia de bactérias

Livro/Filme: Inferno (Dan Brown)



- ✓ Inferno se passa quase todo na Itália, em Florença, cidade de Dante Alighieri. Brown estabelece uma interessante analogia entre a obra que consagrou o poeta italiano e o futuro do planeta Terra ante o aumento exponencial da população humana. Para um dos personagens da trama, a população humana age como um vírus, se multiplicando e consumindo recursos até a inviabilidade da vida.
- O inglês Thomas Malthus já apontava, no fim do século XVIII, que o descompasso entre o crescimento exponencial da população e o crescimento aritmético da produção de alimentos levaria a um cenário de catástrofe, em que a população forçosamente cairia por conta de guerras, epidemias ou fome em massa. Desde então, diversos outros economistas e cientistas políticos beberam da fonte de Malthus para explicar situações de escassez de alimentos/recursos naturais vis-a-vis uma situação de aumento do seu uso/consumo.

Filme: Breve Relato do Fim

Link: https://www.youtube.com/watch?v=PR3qYQb2FdM

- ✓ A raça humana está em perigo e a maior arma do Éder para salvá-la é a função exponencial.
- ✓ O vídeo apresenta a função exponencial e a sua utilização em diversos contextos, inclusive, para tomar a decisão que salvará a humanidade.
- ✓ O vídeo tem como objetivos apresentar a função exponencial, dar exemplos da função exponencial crescente e explicar as diferenças entre vírus e bactérias.

2. A Função Exponencial:

$$f(x) = a^{x}$$
 expoente

- Exemplo: $f(x) = 2^x$ é chamada função exponencial, pois a variável, x, é o expoente. Ela não deve ser confundida com a função potência $g(x) = x^2$, na qual a variável é a base.
- Vamos recordar o que $f(x) = a^x$ significa. Se x = n, um inteiro positivo

$$a^n = a \cdot a \cdot \cdots \cdot a.$$
n fatores

Se x = 0, então $a^0 = 1$, e se x = -n, onde n é um inteiro positivo, então

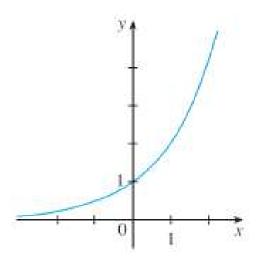
$$a^{-n} = \frac{1}{a^n}$$

Se x for um número racional, x = p/q, onde p e q são inteiros e q > 0, então

$$a^x = a^{p/q} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p$$

Mas qual o significado de a^x se x for um número irracional? Por exemplo, qual o significado de $2^{\sqrt{3}}$ ou 5^{π} ?

$$f(x) = 2^x$$



$$1,73 < \sqrt{3} < 1,74 \qquad \Rightarrow \qquad 2^{1,73} < 2^{\sqrt{3}} < 2^{1,74}$$

$$1,732 < \sqrt{3} < 1,733 \qquad \Rightarrow \qquad 2^{1,732} < 2^{\sqrt{3}} < 2^{1,733}$$

$$1,7320 < \sqrt{3} < 1,7321 \qquad \Rightarrow \qquad 2^{1,7320} < 2^{\sqrt{3}} < 2^{1,7321}$$

$$1,73205 < \sqrt{3} < 1,73206 \qquad \Rightarrow \qquad 2^{1,73205} < 2^{\sqrt{3}} < 2^{1,73206}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

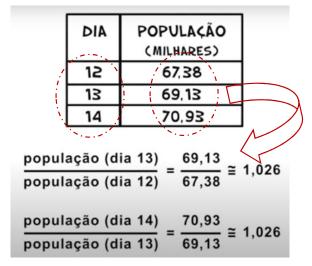
$$2^{\sqrt{3}} \approx 3 \ 321997$$

2.1 Principais propriedades da Função Exponencial:

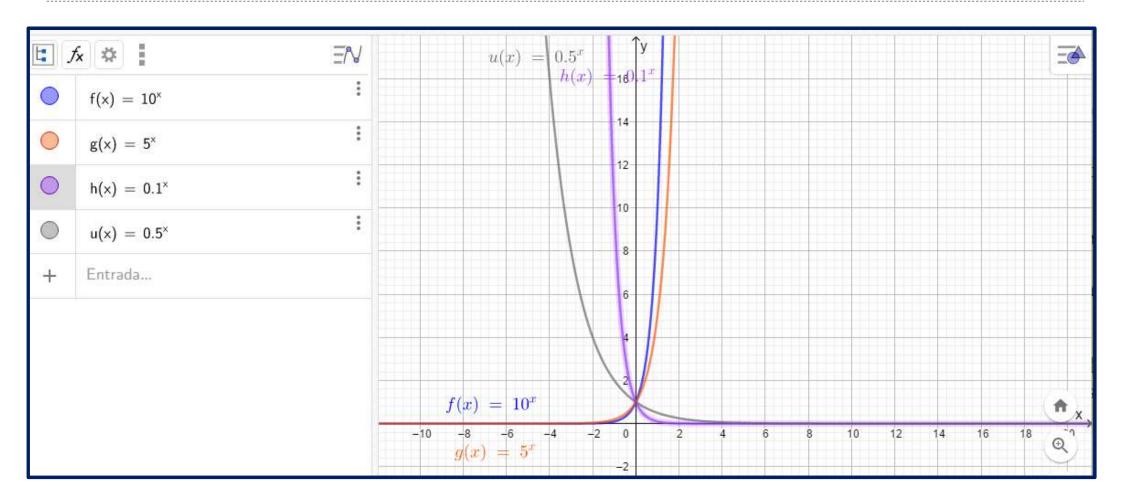
- Dizemos que f é uma função exponencial de x com base a > 0 se $f(x) = f_o.a^x$ onde f_o é o valor inicial (quando x = 0) e a é o fator pelo qual f varia quando x aumenta de 1.
- Se a > 1 temos crescimento exponencial (valores grandes de a significam crescimento rápido)

Se 0 < a < 1 temos um decaimento exponencial (valores de a próximos de 0 significam decrescimento rápido)

■ Para reconhecer que uma tabela de valores de x e f provém de uma função exponencial $f(x) = f_o.a^x$, procure razões constantes de valores de f para valores igualmente espaçados de f.



GeoGebra



Plotador Matemático MAFA

- ✓ OMAFA Plotter é um programa que faz gráficos de funções matemáticas online
- ✓ Interface simples e versátil, é capaz de trabalhar simultaneamente com vários parâmetros.
- ✓ Site: https://www.mathe-fa.de/pt

Tabela de Dados

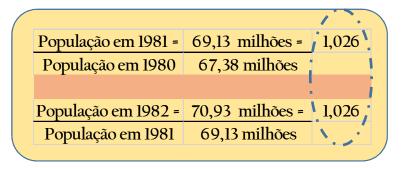
ж	f(x)	g(x)
-10	0,003	-0,003
-9	0,006	-0,006
-8	0,012	-0,012
-7	0,023	-0,023
-6	0,047	-0,047
-5	0,094	-0,094
-4	0,188	-0,188
-3	0,375	-0,375
-2	0,750	-0,750
-1	1,500	-1,500
0	3,000	-3,000
1	6,000	-6,000
2	12,000	-12,000
3	24,000	-24,000
4	48,000	-48,000
5	96,000	-96,000
6	192,000	-192,000
7	384,000	-384,000
8	768,000	-768,000
9	1.536,000	-1.536,000
10	3.072,000	-3.072,000

2.2 Aplicação:

Crescimento Populacional: $P(t)=P_0 \cdot a^x$

Considere os dados para a população do México no começo da década de 80.

Ano	População (milhões)	Variação da População (milhões)
1980	67,38	
1981	69,13	1,75
1982	70,93	1,80
1983	72,77	1,84
1984	74,66	1,89
1985	76,60	1,94
1986	78,59	1,99

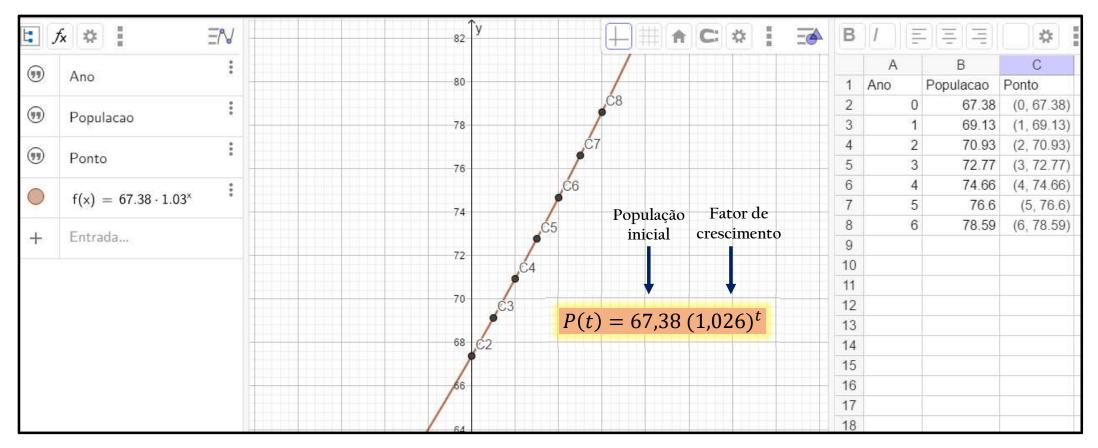


- ✓ Para ver como cresce a população, poderíamos olhar o crescimento da população de um ano para outro (3ª coluna).
- ✓ Se a população estivesse crescendo linearmente o que deveria ocorrer com os números da 3º coluna?
- ✓ A população usualmente cresce mais depressa quando ficam maiores, porque há mais pessoas para terem filhos. Assim, o aumento dos valores na 3ª coluna não é de se estranhar.
- ✓ Nota-se que a população cresceu por um fator de cerca de 1,026 ou 2,6% a cada ano.
- ✓ Sempre que temos um fator constante de crescimento, temos um crescimento exponencial.

Breve demonstração dos cálculos...

Em 1980 (6=0): P(0) = 67,38	
Em 4981 (t =1): P(1) = 1,026 => P(0)	P(a) = P(0). a1026
Em 1982 ($t=2$): $P(2) = 1.026 \Rightarrow P(4)$	$P(2) = 1.026.P(a)$ $1.026.P(0)$ $P(2) = P(0).(1.026)^{2}$
Em 1993 (t=3): P(3) = 1,026 => 7	F
	P(3) = P(0). (1,026)
Portambo, podemos repres	entar a funcou) como:
P(t) = 67,38.	(1,026)

GeoGebra



Eliminação de uma droga pelo corpo

Ao se ministrar um medicamento a um paciente, a droga entra na corrente sanguínea. Ao passar pelo fígado e rins, é metabolizada e eliminada a uma taxa que depende da particular droga. Para o antibiótico ampicilina, aproximadamente 40% da droga é eliminado a cada hora. Uma dose típica de ampicilina é de 250 mg.

- ✓ Seja Q = f(t), onde Q é a quantidade de ampicilina, em mg, na corrente sanguínea, ao tempo t horas desde que a droga foi dada.
- \checkmark Em t=0 temos Q=250mg.
- ✓ A cada hora a quantidade que resta é de 60% da quantidade anterior. Então:

t (horas)	Q (mg)
0	250
1	150
2	90
3	54
4	32,4
5	19,4

$$\frac{f(1)}{f(0)} = \frac{150}{250}$$
= 0,6

$$f(0) = 250$$

$$f(1) = 250 (0,6) = 250 (0,6)^{1}$$

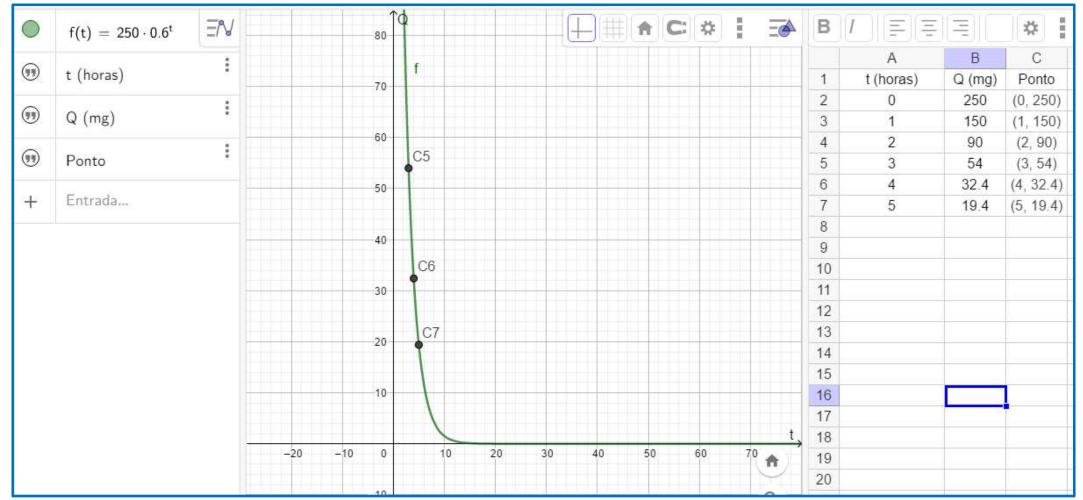
$$f(2) = (250 (0,6)) 0,6 = 250 (0,6)^{2}$$

$$f(3) = (250 (0,6)^{2}) 0,6 = 250 (0,6)^{3}$$

$$f(4) = (250 (0,6)^{3}) 0,6 = 250 (0,6)^{4}$$

$$f(5) = (250 (0,6)^{4}) 0,6 = 250 (0,6)^{5}$$

GeoGebra



Funções

16

2.3 Teste Conceitual A3

- A Organização Mundial da Saúde (OMS) declarou, em 30 de janeiro de 2020, que o surto da doença causada pelo novo coronavírus (COVID-19) constitui uma Emergência de Saúde Pública de Importância Internacional o mais alto nível de alerta da Organização, conforme previsto no Regulamento Sanitário Internacional. Em 11 de março de 2020, a COVID-19 foi caracterizada pela OMS como uma pandemia.
- A questão da gravidade da COVID-19 não se deu somente pela disseminação da doença pelo mundo, mas também pela rapidez com que o vírus foi propagado.
- ☐ A tabela a seguir apresenta dados informados pela OMS de infectados e mortos no período de 20/04 à 31/05.
- ☐ Escolha uma ferramenta computacional (GeoGebra, Excel, etc) para responder as seguintes perguntas:
- 1. Qual o fator de crescimento e/ou decrescimento da doença de infectados e mortos? Assuma que a variação é pequena e considere a média dos valores obtidos como fator de crescimento e/ou decrescimento.
- 2. Construa a função exponencial que melhor represente o número de infectados em cada mês I(t), e a função que represente o número de mortos em cada mês M(t).
- 3. Construa os gráficos que representem os valores reais e a função obtida no item 2 para o número de infectados e mortos.