## INSTITUTO DE GEOCIÊNCIAS – USP DEPARTAMENTO DE MINERALOGIA E GEOTECTÔNICA

GMG5852 - Petrologia das Rochas Metamórficas

## Exercício: paragêneses metamórficas e reações em rochas carbonáticas magnésio-silicosas

Neste exercício, são abordadas as paragêneses metamórficas que se desenvolvem em rochas carbonáticas magnésio-silicosas, sua representação em diagrama CMS (+HC =  $H_2O$  + $CO_2$ ) e a evolução da fase fluida durante o metamorfismo progressivo.

Em uma unidade de rochas carbonáticas há três camadas contíguas:

- A dolomita em dobro da proporção modal de calcita e com pouco quartzo (análise A)
- B silicosa, com calcita e quartzo em proporções modais iguais e pouca dolomita (análise B)
- C dolomita com o dobro da proporção modal de quartzo e pouca calcita (análise C)

As três camadas sofreram metamorfismo progressivo, com a composição da fase fluída tamponada externamente, i.e. era constante durante todo o evento metamórfico. Nas proximidades do contato de um granito intrusivo na sequência carbonática, a fase fluída era mais aquosa, com  $X_{CO2} \sim 0,30$ , enquanto mais para o interior do corpo a fase fluída era mais rica em  $CO_2$ , com  $X_{CO2} \sim 0,80$ . A pressão litostática e pressão da fase fluída ( $P_{lit}$ = $P_{fl}$ ) situavam-se em torno de 5 kb.

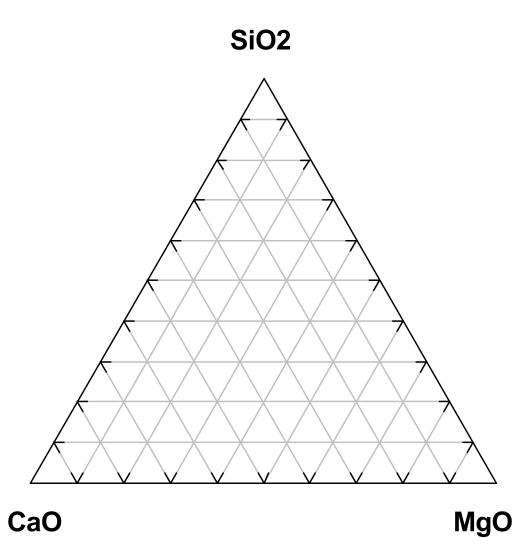
- 1. Projete, em diagramas CMS (Figura 1) os minerais característicos de paragêneses metamórficas em rochas metacarbonáticas magnésio-silicosas (Tabela 1);
- 2. Projete, no mesmo diagrama, as composições das rochas A, B e C (em proporções moleculares!), apresentadas, de maneira simplificada, na Tabela 2;
- 3. A partir das curvas de equilíbrio univariantes do diagrama isobárico T x X<sub>CO2</sub> para o sistema CMS-HC, determine, com a ajuda de construções quimiográficas no diagrama CMS, as paragêneses que se formarão em cada rocha, para as duas composições de fase fluída (X<sub>CO2</sub> ~ 0,3 e 0,8), a:
  - a) 550°C; b) 600°C; c) 650°C d) 700°C
- 4. Se a fase fluída não tiver composição fixa, mas for tamponada pelas sucessivas reações metamórficas: como seria a sua evolução durante o metamorfismo progressivo em cada caso? Procure avaliar, de maneira qualitativa, analisando as reações interceptadas na grade petrogenética T x X<sub>CO2</sub>!

**Tabela 1**: Minerais característicos de paragêneses metamórficas em rochas carbonáticas magnésio-silicosas:

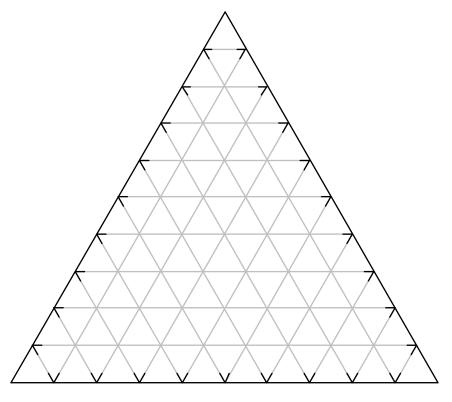
| Tremolita (Tr)  | $Ca_2Mg_5Si_8O_{22}(OH)_2$         |  |
|-----------------|------------------------------------|--|
| Dolomita (Do    | $CaMg(CO_3)_2$                     |  |
| Calcita (Cal)   | CaCO <sub>3</sub>                  |  |
| Diopsídio (Di)  | CaMgSi <sub>2</sub> O <sub>6</sub> |  |
| Talco (Tlc)     | $Mg_3Si_4O_{10}(OH)_2$             |  |
| Forsterita (Fo) | $Mg_2SiO_4$                        |  |
| Quartzo (Qtz)   | SiO <sub>2</sub>                   |  |

Tabela 2: Composições químicas simplificadas das rochas carbonáticas magnésio-silicosas (% em peso):

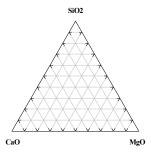
|                  | Análise A | Análise B | Análise C |
|------------------|-----------|-----------|-----------|
| SiO <sub>2</sub> | 6,58      | 29,13     | 21,62     |
| CaO              | 36,83     | 33,98     | 26,91     |
| MgO              | 13,23     | 4,88      | 14,50     |
| CO <sub>2</sub>  | 43,36     | 32,00     | 36,96     |

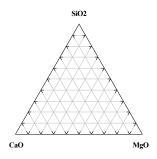

Tabela 3: Pesos moleculares:

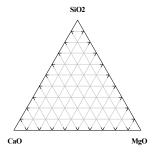
 $SiO_2 = 60,08$ ; CaO = 56,08; MgO = 40,30;  $CO_2 = 44,01$ ;

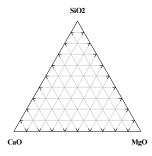

Tabela 4: Reações para rochas carbonáticas magnésio-silicosas no sistema CMS (+HC):

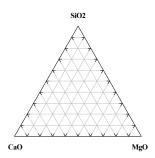
- 1)  $3 \text{ dol} + 4 \text{ qtz} + H_2O = \text{tlc} + 3 \text{ cal} + 3 \text{ CO}_2$
- 2)  $5 \text{ tlc} + 6 \text{ cal} + 4 \text{ qtz} = 3 \text{ tr} + 6 \text{ CO}_2 + 2 \text{ H}_2\text{O}$
- 3)  $2 \text{ tlc} + 3 \text{ cal} = \text{tr} + \text{dol} + \text{CO}_2 + \text{H}_2\text{O}$
- 4)  $5 \text{ dol} + \text{qtz} + \text{H}_2\text{O} = \text{tr} + 3 \text{ cal} + 7 \text{ CO}_2$
- 5)  $2 \text{ tlc} + 4 \text{ dol} + \text{qtz} = 2 \text{ tr} + 8 \text{ CO}_2$
- 6)  $dol + 2 qtz = di + 2 CO_2$
- 7)  $tr + 3 cal + 2 qtz = 5 di + 3 CO_2 + H_2O$
- 8)  $tr + 3 cal = 4 di + dol + CO_2 + H_2O$
- 9) tr + 11 dol = 8 fo + 13 cal + 9 CO<sub>2</sub> + H<sub>2</sub>O
- 10)  $3 \text{ tr} + 5 \text{ cal} = 11 \text{ di} + 2 \text{ fo} + 5 \text{ CO}_2 + 3 \text{ H}_2\text{O}$
- 11)  $di + 3 dol = 2 fo + 4 cal + 2 CO_2$
- 12)  $15 \text{ dol} + 12 \text{ tr} = 39 \text{ di} + 18 \text{ fo} + 30 \text{ CO}_2 + 12 \text{ H}_2\text{O}$

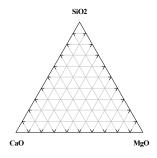

Figura 1: Diagrama CMS

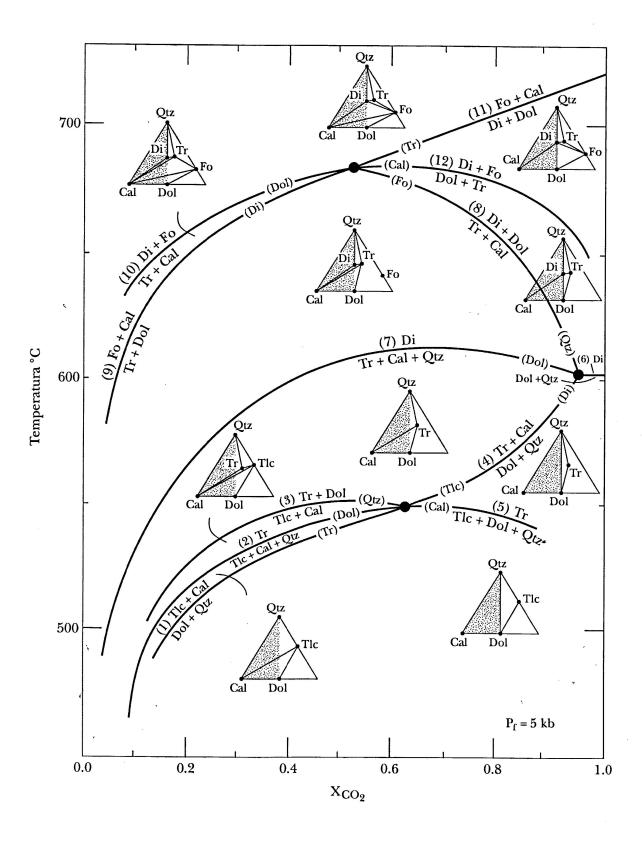




## SiO2





CaO MgO














Grade petrogenética isobárica  $T - X_{CO2}$  ( $P_f = 5$  kb) para o sistema CMS-CH com fase fluida em excesso. Candia et al (2003), adaptado de Winkler (1979).