
HIV-1, HAART and cancer: A complex relationship

Anna Shmakova 1,2,3, Diego Germini1,2 and Yegor Vassetzky 1,2,4

1UMR 8126, CNRS, Univ. Paris-Sud, Institut Gustave Roussy, Université Paris Saclay, Édouard-Vaillant, Villejuif, France
2LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Édouard-Vaillant, Villejuif, France
3Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
4Koltzov Institute of Developmental Biology, Moscow, Russia

HIV infected people are at higher risk of developing cancer, although it is globally diminished in the era of highly active

antiretroviral treatment (HAART). Recently, antioncogenic properties of some HAART drugs were discovered. We discuss the role

of HAART in the prevention and improvement of treatment outcomes of cancers in HIV-infected people. We describe different

trends in HAART–cancer relationships: cancer-predisposing as well as cancer-preventing. We cover the roles of particular drug

regimens in cancer prevention. We also describe the causes of cancer treatment with HAART drugs in HIV-negative people,

including ongoing clinical studies that may directly point to a possible independent anti-oncogenic activity of HAART drugs. We

conclude that despite potent antioncogenic activities of every class of HAART drugs reported in preclinical models, the

evidence to date indicates that their independent clinical impact in HIV-infected people is limited. Improved cancer prevention

strategies besides HAART are needed to reduce HIV-cancer-related mortality.

Introduction
The introduction of highly active antiretroviral therapy (HAART)
in 1996 has profoundly modified the overall survival rates of peo-
ple with HIV/AIDS. HAART suppresses viral replication, restores
the immunity and reduces mortality,1 but even in the era of
HAART, HIV-infected individuals still have a higher risk of
developing cancer compared to healthy individuals. They also
have a more severe clinical course of cancer and lower survival
rate compared to the noninfected population.2,3 In HIV+ patients,
10–20% of all deaths are attributable to cancer.4,5

Given the higher risks for HIV-positive population, develop-
ing cancer control strategies for this group is a rising challenge
to public health. To provide the context for further research, we
will discuss clinical aspects related to the cancer burden in
patients with HIV-infection and highlight details on the role of
antiretroviral drugs in the development of cancer, which is not
limited to viral suppression. Preclinical studies have shown that
many antiretroviral drugs could exert antitumor effects indepen-
dently of their capacity to suppress viral replication and recon-
stitute the immune system. Understanding the role of HAART
in HIV-cancer relationship is important to optimize cancer pre-
vention strategies, screening and clinical management of people
with HIV infection. The present review also discusses the clini-
cal impact of antiretroviral treatment in terms of cancer.

Search Strategy and Selection Criteria
The review is based on the works referenced in MEDLINE,
EBSCO OpenDissertations, Cochrane Library, Web of Science,
Scopus, Embase, ScienceDirect and Google scholar from January
1, 1996 to December 1, 2018. We also analyzed registers of clinical
trials (Cochrane Central Register of Controlled Trials [CEN-
TRAL]; ClinicalTrials.gov), abstracts of scientific meetings related
to cancer and reference lists of included studies relevant to the sub-
ject of the review. The search terms were “highly active antiretrovi-
ral therapy”, “HIV protease inhibitors”, “HIV reverse transcriptase
inhibitors”, “CCR5 receptor antagonists”, “HIV integrase inhibi-
tors” and “cancer/neoplasms”. The language of records was limited
to English. The final reference list was generated on the basis of
originality and relevance to the broad scope of this Review.

HIV and Cancer Risks in the HAART Era
HAART contributed to a slight reduction in overall cancer
rates in HIV-infected people.6–8 Nevertheless, nowadays people
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living with HIV still have a 1.6–1.7-fold greater overall risk of
cancer development relative to the general population,8,9 and
the risk is rising with age.10 This fact can be explained by
predisposing factors such as immunosuppression combined
with chronic inflammation due to virus persistence.11,12 HIV-
infected population is also more susceptible to cancer risk
behavior (men who have sex with men, intravenous drug use,
heavy alcohol consumption and smoking) than general popula-
tion and is prone to frequent coinfection with other oncogenic
viruses (Epstein Barr Virus [EBV], Human Herpesvirus Virus
8 [HHV-8], Human Papilloma Virus [HPV], Hepatitis B and
C Viruses [HBV, HCV]) exacerbated by loss of immune con-
trol.11,12 This results in a cumulative greater probability of can-
cer development. Some of these risk factors are modifiable.
Highly active antiretroviral therapy (HAART) restores the
immunity and suppresses viral replication,1 it was also shown
to possess preclinical antioncogenic activity, which will be dis-
cussed below (Fig. 1).

Prevalence of these risk factors among people with HIV
infection indicates a vital need for risk factor reduction efforts,13

including a possible pharmacological intervention. Indeed, a
combination of HIV and cancer produces a synergistic effect on
mortality rates, which become significantly higher than mortal-
ity rates for each disease taken separately.3

AIDS-defining cancers (ADCs: Kaposi’s sarcoma, non-
Hodgkin’s lymphoma [NHL], invasive cervical cancer) are tradi-
tionally distinguished in HIV-infected patients; other cancers
are referred to as non-AIDS defining cancers (NADCs).14

NADCs, in turn, are usually classified into virus-related cancers
(HPV-, EBV- and HCV-related cancers) and virus-unrelated
cancers.

AIDS-defining cancers
HAART contributed to a significant decline in the incidence of
ADCs, the outcome of such cancers has improved and mortal-
ity has decreased.8,15–18 However, the risks for developing all
ADCs are still largely elevated in HIV-infected people; this risk
is proportional to the HIV load and inversely proportional to
the CD4 cell count (Fig. 1).19,20 Immunosuppression is a strong
predictor for ADCs. For Burkitt’s lymphoma, albeit, immune
reconstitution is supposed to be, at certain CD4 cell counts, a
risk factor for the development of lymphoma, indicating a
more complex relationship with the immune status.21–23 Con-
sistently, it was shown that the incidence of Burkitt’s lym-
phoma is either rising in the HAART era,24,25 or remains
stable over time9,23 as opposed to other NHLs; the proportion
of Burkitt’s lymphoma among NHLs is growing.26

Non-AIDS defining cancers
The number of all non-AIDS defining cancers (NADCs) is
increasing since 1996 compared to the pre-HAART era and is
expected to continue to rise.27,28 Both virus-related and virus-
unrelated cancers contribute to this trend.29 NADCs represent
approximately 2/3 of all cancers in HIV-patients; they are two
times more frequent than ADCs.9,11 The rise of NADCs in the
HAART era is in part linked to the overall aging of people with
HIV, this provides more time for cancer to evolve.11,29 Con-
trary to ADCs, the association of risk of NADCs and CD4
counts or HIV load remains a matter of discussion, as some
researchers suppose they are not related,30 while others have
shown that immunodeficiency was a risk factor associated with
NADCs incidence.31–34 It appears that low CD4 cell count is a
specific risk factor exclusively for virus-related NADCs, but

Figure 1. Factors influencing the risk of cancer in HIV-infected people. Cancer risk factors are represented on the left. Immunosuppression
and chronic inflammation, caused by HIV infection, predispose to tumorigenesis. Besides, HIV-infected population is more susceptible to
cancer risk behavior (smoking, men who have sex with men, intravenous drug use, alcohol consumption) and coinfection with other
oncogenic viruses. Some of these risk factors are modifiable. Factors that reduce cancer risk are represented on the right. Highly active
antiretroviral therapy (HAART) restores the immunity and suppresses viral replication, it was also shown to possess preclinical antioncogenic
activity; however, the clinical relevance of this activity remains to be elucidated. [Color figure can be viewed at wileyonlinelibrary.com]
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not for virus-unrelated ones,34 for example, CD4 counts are
significantly higher in HIV+ patients that develop prostate
cancer compared to HIV+ patients without cancer, indicating
that lower CD4 counts are possibly associated with less pros-
tate cancer risk.35

The overall incidence of NADCs in HIV-positive individuals
was shown to be up to two times higher compared to the general
population and it remains basically unchanged during the
HAART era.2,8,9 This elevated incidence is mainly due to
virus-related NADCs, which are five times more frequent in
HIV-infected people: Hepatitis B Virus (HBV)/HCV-related
hepatocellular carcinoma, HPV-related oropharyngeal cancers,
HPV-related anal cancer, EBV-related classical Hodgkin lym-
phoma and others.9 Some virus-unrelated NADCs: lung, larynx,
nasal cavity cancers also occur more frequently in HIV-infected
people9; this effect can be partially explained by the prevalence
of smokers.36,37 Smoking cessation should be discussed with
patients to reduce cancer risk (Fig. 1).38

Interestingly, for some reasons, some cancers are signifi-
cantly more rare in HIV-infected patients compared to the
general population.9 They include stomach, colorectal, kidney,
uterus, prostate, breast, brain and thyroid cancers.9,39–41 This
cannot be solely explained by targeted cancer screening for
these types of cancer (mammography, colon/sigmoidoscopy,
PSA test)39 or hormone levels alteration due to HIV infec-
tion.42 Overweight/obesity is less prevalent in people living
with HIV than in general population, and that is a proposed
risk factor for gastrointestinal tract tumors, breast, endome-
trial and renal cancers.13,43 This requires further investigation
with a direct comparison of HIV-infected people with body
mass index-matched uninfected people. These trends may also
be due to viral-host interaction. It is a common knowledge
that HIV induces T-cell apoptosis.44–46 Several studies have
shown that HIV-1 and its molecules (gp120, Nef) can also
mediate neuroblastoma,47 breast,48 colorectal,49,50 prostate51

cancer cell growth inhibition and apoptosis. An interesting
possibility, explaining lower frequency of several cancers in
HIV-infected persons, is that the HAART drugs can possess
cancer-prevention or antineoplastic activity. Below we shall
consider recent data on this subject.

HIV and Cancer Treatment in the HAART Era
During the HAART era, cancer-contributable mortality is
higher in patients with HIV compared to noninfected popula-
tion even when clinical features are similar, and HIV-infected
people diagnosed with cancer experience excess mortality that
exceeds the expected mortality from a simple combination of
HIV and cancer.3,52–54 Cancer treatment in people living with
HIV/AIDS is challenging due to the absence of clinical recom-
mendations or established protocols and lack of clinical expe-
rience.55 A significantly higher proportion of HIV-infected
individuals does not receive treatment for diffuse large B-cell
lymphoma, lung cancer, Hodgkin’s lymphoma, prostate can-
cer and colorectal cancer. HIV infection is associated with a

lack of standard treatment modality for local-stage diffuse
large B-cell lymphoma, nonsmall-cell lung cancer and colon
cancer.55

AIDS-defining cancers
The introduction of HAART has significantly improved sur-
vival rates for ADCs,56 nevertheless, HIV infection seems to
remain a factor increasing the risk of death in patients with
ADCs. The overall survival of HIV-infected patients with NHLs
and cervical cancer is significantly lower than in HIV-negative
population.57,58

ADCs give better responses to treatment with the HAART +
chemotherapy/radiotherapy combination rather than HAART
alone or chemotherapy/radiotherapy alone,59–63 therefore,
HAART use is recommended for patients with ADCs.14 No dif-
ference was found between PI-based HAART vs. other regimens
in treatment outcomes of Kaposi’s sarcoma64 and NHL65,66 in a
combination with chemotherapy. Even HAART treatment alone
without chemotherapy can lead to positive outcomes of Kaposi’s
sarcoma,67–70 NHLs,71–74 oncogenic cervical squamous intra-
epithelial lesions.75,76 Nonetheless, a further clinical study
proved that HAART + chemotherapy combination gave a better
response than HAART alone, albeit no difference in the survival
rate was revealed.77 At the same time, a PI-based regimen was
revealed to be associated with higher toxicity during chemother-
apy of lymphomas.66 Patients with lymphomas receiving PI-based
HAART had a significantly lower 1-year survival compared to
NNRTI-based HAART probably due to toxicity.78 Burkitt’s
lymphoma is again a puzzling exception among NHLs, since its
outcome remains rather poor in the HAART era.79,80

Non-AIDS defining cancers
In the HAART era, survival rates for HLs and anal cancer
improved considerably.56 The overall 3-year survival of
HIV-infected patients with HLs is significantly lower than in
HIV-negative population,57 which might be due to treatment dis-
parities.81 For solid tumors, such as lung, liver, anal cancer 5-year
survival is comparable to that in general population.56,82

Promising results were obtained in several reports of
NADCs treatment in HIV-infected people with HAART-drugs
alone or in combination with chemotherapy, which resulted
in a good clinical response.83–87

Combination of HAART and chemotherapy
HIV-infected people are generally excluded from clinical tri-
als; therefore, data on toxicity, outcomes and possible drug
interactions during cancer treatment are limited. Despite the
increased toxicity and drug–drug interactions, HAART with-
drawal during chemotherapy is unfavorable in HIV-patients
with cancer and can lead to a poorer outcome88; therefore, in
general, any HAART interruption is not advisable during can-
cer treatment.38 Possible drug–drug interactions should be
therefore carefully assessed when treating cancer in HIV-
infected patients. Drug–drug interactions rely on many
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factors, such as the route of elimination, the effect on enzymes
and transporters involved in drug metabolism. Both HAART
and antioneoplastic drugs can be metabolized by CYP450
enzyme family and serve as CYP450 inhibitors, which can lead
to drug accumulation and potential toxicity, or as CYP450
inducers, which leads to drug elimination and decreased effi-
cacy, except for active metabolites of several drugs.38,89 As an
example, ritonavir*, a PI and a potent CYP3A4 inhibitor, was
reported to be associated with more severe toxicity in combina-
tion with chemotherapy compared to nonritonavir-based
HAART.88 On the contrary, NNRTIs are mainly CYP3A
inducers.89 HAART regimen should be modified when facing
undesirable drug–drug interactions or elevated toxicity.38 In this
case, preference can be given to the INSTI-based regimen, which
is supposed to be relatively safe.38,90 Both NNRTIs and INSTIs
are superior to PIs in terms of viral suppression in HIV-infected
patients with malignancies.90 Regarding the complexity of
multidrug interaction, if a patient is HAART-naive, it is rec-
ommended to start HAART more than a week before or after
the cancer treatment in order to differentiate between adverse
effects.38 It is also recommended that clinicians consult major
reviews dedicated to the topic of potential drug–drug interac-
tions between HAART and chemotherapeutic drugs,89,91,92

treatment guidelines38 and refer to available resources such as
http://www.hiv-druginteractions.org to optimize clinical man-
agement of HIV-infected patients with cancer and increase ther-
apeutic benefit.

An individual pharmacogenetic profile is another factor that
influences patients’ response to drug combinations. A promising
strategy is to evaluate personalized pharmacogenomic profile to
predict efficacy and undesirable adverse effects of the therapeutic
agents when planning HAART and chemotherapy regimens.93

Thus, cancer treatment in people with HIV requires both
an adequate control of HIV infection by HAART and an indi-
vidual drug–drug interaction assessment.

HAART and cancer prevention
HAART is defined as the use of several (at least three, rarely
two) antiretroviral drugs and has different regimens: two
nucleoside reverse transcriptase inhibitors (NRTIs) in combi-
nation with a third drug from one of three drug classes: HIV-
integrase strand transfer inhibitors (INSTIs), non-nucleoside
reverse transcriptase inhibitors (NNRTI) or HIV-protease
inhibitors (PIs) are currently recommended.94

In HIV-infected people, HAART use is definitely associ-
ated with lower cancer incidence over no treatment for most
cancers and particularly for ADCs.7,95,96 Whether this effect is
based on immune reconstitution and virus suppression, or it

is an independent protective factor, remains unclear. HAART
use is considered to be a strong factor responsible for the
decreased ADCs occurrence in HIV-infected people and the
greater cumulative exposure to HAART, the lower the risk of
ADCs is.97 The protective effect of HAART is mainly
explained by virus inhibition and immune restoration.
Although at first it was thought that HAART had an addi-
tional protective effect independent of CD4 cell count and
viral load,19,98–100 the latter studies did not detect any inde-
pendent effect of HAART on Kaposi sarcoma incidence after
adjusting for more variables and in a larger cohort.20,101

HAART was first reported to be protective for NADCs,102

or to have no effect6; nowadays, the use of HAART is associ-
ated with a higher rate of NADCs over no treatment and long
cumulative exposure to HAART is a predictor of NADCs
risk.33,96,97,100 This effect is mainly driven by virus-related can-
cers, as their incidence was significantly higher in people
treated with antiretrovirals compared to no antiretroviral treat-
ment, while there was no change in virus-unrelated cancer rates
between HIV-infected people with or without antiretroviral
therapy.100 Improved survival of HIV-positive individuals dur-
ing the HAART era may allow for sufficient time for virus-
associated lesions to develop into malignancies. For Hodgkin’s
lymphoma, though, HAART use was not associated with higher
cancer risk in large European cohort studies.103–105 The absence
of HAART was not proven to be an independent risk factor for
NADCs.19 HAART exposure did not play any role in lung can-
cer staging.106 No association was shown between HAART use
and the risk of lung cancer.107,108 The opposite trend is
observed in prostate cancer, where the cumulative antiretroviral
exposure decreases cancer risk, though no difference was
observed between people with or without antiretroviral ther-
apy.100 The role of HAART in anal cancer prevention is ambig-
uous. HAART is associated with a lower prevalence of anal
intraepithelial neoplasia,109 and it takes more time for anal can-
cer development in HAART era than before,110 but treatment
duration does not reduce anal cancer risk,111 and HAART is
considered to be a risk factor for relapse of anal cancer.112

A lack of specific and independent protective effect of
HAART on cancer incidence, regardless of their potent anti-
tumor effect observed in preclinical studies (see below), may
be explained by low doses, sufficient for viral suppression, but
insufficient for cancer prevention. These relationships are fur-
ther complicated by various factors. For example, the hepato-
toxicity of HAART may amplify the carcinogenic effect of
HBV and HCV.113 NRTIs, a mandatory component of main
HAART regimens, were also considered to be genotoxic and
carcinogenic.114 However, large prospective cohort studies of
HIV-negative children, perinatally exposed to any drug of
NRTI class, revealed no change in cancer incidence compared
to nonexposed ones and to the general population.115–118 They
found, albeit, that the risk of cancer development was signifi-
cantly higher in those exposed to didanosine-lamivudine com-
bination than to zidovudine monotherapy.115 Later, it was

*Ritonavir is currently recommended to improve the

pharmacokinetic profiles of other antiretroviral drugs

(pharmacokinetic booster), not as an independent HAART

component.94,198
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found that didanosine exposure in HIV-negative children was
oncogenic and accounted for higher cancer risk.117,118 Didan-
osine use is not currently recommended.94

Comparison between HAART Regimens in Terms of
Cancer Prevention
As HAART drugs have various mechanisms of action addi-
tionally to their main antiretroviral activity, their efficiency in
cancer prevention can vary. Below we shall consider the asso-
ciation between HAART regimens and cancer risk.

AIDS-defining cancers
PI and NNRTI-based HAART were reported to have a similar
protective effect on ADC incidence (Table 1).97,100,119 Ritonavir-
based, indinavir†-based or nelfinavir*-based therapy confers no
advantages compared to other PI- or NNRTI-based regimens in
the prevention of ADCs.95,96,120 This is in line with the fact that
the HAART impact on the decrease of ADCs is mainly con-
nected with improvement in immune function and viral load.20

At the same time, some studies showed potential advantages of
PI-based HAART in ADCs prevention over other regimens.
Only PI-containing HAART significantly reduces the frequency
of HHV-8 detection compared to HAART-naïve patients.121 In
patients with low immune activity, PI-based therapy is more
efficient at inducing complete response than NNRTI–
HAART.122 NNRTI-based HAART was shown to be associated
with Kaposi’s sarcoma relapse in a case series study (n = 5)123

and in a small prospective cohort study (n = 45),124 though the
opposite was shown in another case series study (n = 24).125

NNRTIs were shown to be more potent in reducing the risk of
NHL.97 The regimens other than PI- or NNRTI-based are less
studied, however, there were two case report of human herpesvi-
rus 8 (HHV8) viremia and Kaposi’s sarcoma relapse after
switching from a PI- to an INSTI-based HAART and rapid
remission of Kaposi’s sarcoma after returning back to PI-based
therapy.126,127 A recent large cohort study found no evidence
that INSTIs were associated with increased cancer risk.128 Treat-
ment with the CCR5 antagonist (vicriviroc‡) can be associated
with the increased risk of developing cancers, including
lymphomas,129 but later studies showed that the cancer inci-
dence was similar between vicriviroc and placebo130; maraviroc
from the same class was also confirmed to be relatively safe.131

Non-AIDS defining cancers
Several large cohort studies reported no difference between PI-
and NNRTI-based regimens in cancer prevention in all cancers
except anal cancer (Table 1).95,96,100,132 One study showed
NNRTI association with an increased risk of NADCs and

precisely Hodgkin’s lymphoma,2 and controversially, another
study showed that overall NADCs incidence was higher in peo-
ple receiving PI-based HAART.97 Moreover, the latter study
reported that PI-based regimen did not decrease the risk of
Hodgkin lymphoma, while NNRTI-based HAART did.97

PI-based HAART may be associated with an increased risk
of anal cancer, whereas NNRTI use has no association with
anal cancer or is associated with a decreased risk.96,97,100,133,134

Interestingly, nelfinavir-based HAART was not associated
with a higher risk of anal cancer as opposed to other PI-based
regimens.96 It was recently reported that adjustment for both
CD4 cell count and cumulative NRTI exposure abolished the
association of PI-based regimen with anal cancer risk in a
case–control study.135 On the other hand, PI use was associ-
ated with a lower risk of prostate cancer,100 which is consis-
tent with the overall lower incidence of prostate cancer in
HIV-infected people compared to the general population.
These trends remain difficult to explain.

In conclusion, currently, there is no evidence for any par-
ticular HAART regimen being more or less associated with
cancer risk for ADCs and virus-unrelated NADCs, except for
a lower risk of prostate cancer with a PI-based HAART.
Regarding virus-unrelated NADCs, PI-based HAART is esti-
mated to be associated with an increased risk of anal cancer
and probably of Hodgkin lymphoma.

Preclinical Antineoplastic Activity of HAART Drugs
Recent preclinical studies showed that HAART drugs from dif-
ferent classes possessed potent antioncogenic activity. The pro-
posed mechanisms of their action are summarized in Figure 2.

HIV-PIs have pleiotropic pharmacological properties besides
their antiretroviral activity. They have been reported to inhibit
the growth of various cancer cell lines in vitro as well as tumors
in in vivo xenografts models.136–139 PIs induce cell growth arrest,
endoplasmic reticulum stress, caspase-dependent apoptosis,
autophagy (for review see140–142). Moreover, PIs are known for
their antiangiogenic and radiosensitizing effects.141,143 PIs action
is associated with inhibition of phosphatidylinositol 3-kinase
(PI3K)/Akt pathway; one of the possible mechanisms is binding
to Hsp90 and inhibiting its chaperone function followed by
decreased PI3K/Akt signaling.137,138 Together and independently
of each other, PI3K and its downstream kinase Akt regulate
various cell processes such as growth, proliferation, survival,
migration, apoptosis and their hyperactivation is a cancer hall-
mark.144,145 PI3K/Akt signaling in cancer inhibits apoptotic
enzymes; promotes activation of mTOR and NF-κB axes that
regulate transcription, increase cell growth, survival, proliferation,
increase matrix metalloproteinases (MMPs) and vascular endo-
thelial growth factor (VEGF) expression, associated with migra-
tion and angiogenesis, respectively; causes chemo/radiotherapy
resistance by misregulation of DNA damage response.143,146–149

Akt, VEGF, MMPs and other important cancer-phenotype pro-
teins are partners of Hsp90, the latter works as a molecular chap-
erone and guarantees correct folding of its substrates.150 Hsp90

†Both indinavir and nelfinavir are no longer recommended

accordingly to the latest guidelines of HIV treatement.94

‡Phase III clinical trials were discontinued and vicriviroc was not

approved for HIV treatment.94,198
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Table 1. A comparison of regimens based on non-nucleoside reverse transcriptase inhibitors, protease inhibitors or integrase strand transfer
inhibitors in preventing cancers in HIV-infected persons

Type of cancer Study design Cohort size Conclusion References

ADCs

ADCs, Kaposi’s sarcoma
alone, NHL alone

Prospective cohort study 42,006 Nelfinavir = non-Nelfinavir-PI = NNRTI in
cancer prevention

96

ADCs, Kaposi’s sarcoma
alone

Prospective cohort study 41,762 PI = NNRTI in cancer prevention 97

NHL alone NNRTI, but not PI, is associated with a
lower risk

Kaposi’s sarcoma Prospective cohort study 4,480 Ritonavir = non-Ritonavir-PI = NNRTI in
cancer prevention

120

Kaposi’s sarcoma Prospective cohort study 1,204 PI = NNRTI in cancer prevention 119

Kaposi’s sarcoma Prospective cohort study 45 Kaposi’s sarcoma relapse after switch
from PI to NNRTI

124

ADCs, Kaposi’s sarcoma
alone, NHL alone

Retrospective cohort study 12,872 PI = NNRTI in cancer prevention 100

ADCs Retrospective cohort study 2,499 Nelfinavir = Indinavir = other regimens in
cancer prevention

95

Kaposi’s sarcoma Retrospective cohort study 91 PI = NNRTI in cancer incidence and
clinical course

194

Kaposi’s sarcoma Case series 24 No Kaposi’s sarcoma relapse after
switching from PI to NNRTI

125

Kaposi’s sarcoma Case series 5 Kaposi’s sarcoma relapse after switch
from PI to NNRTI

123

Kaposi’s sarcoma Case report 1 PI switch to INSTI leaded to HHV8 viremia
and sarcoma relapse

127

Kaposi’s sarcoma Case report 1 PI switch to INSTI led to HHV8 viremia,
while INSTI switch back to PI resulted
in a remission

126

NADCs

Anal cancer Prospective cohort study 72,355 PI monotherapy, opposite to other
antiretroviral therapy, is associated
with increased cancer risk

134

NADCs, anal cancer alone Prospective cohort study 42,006 PI = NNRTI in cancer prevention, except
for higher risk of anal cancer with
longer non-Nelfinavir PI, but not
Nelfinavir or NNRTI

96

NADCs, anal cancer
alone, HL alone

Prospective cohort study 41,762 PI but not NNRTI, use is associated with
increased cancer risk

97

Lung cancer, head and
neck cancers

PI = NNRTI in cancer prevention

NADCs, HL alone Prospective cohort study 5,076 NNRTI but not PI or NRTI therapy was
associated with an increased risk of
NADCs

2

NADCs Prospective cohort study 3,158 Initial PI = NNRTI = NRTI in cancer
prevention

132

Virus-related,
virus-unrelated NADCs

Retrospective cohort study 12,872 PI = NNRTI in cancer prevention, except
for higher risk of anal cancer with
longer PI, but not NNRTI

100

NADCs Retrospective cohort study 2,499 Nelfinavir = Indinavir = other regimens in
cancer prevention

95

All cancers

All cancers Prospective cohort study 7,971 Raltegravir (INSTI) is not associated with
an increased risk of cancer compared
to other treatment strategies

128

Abbreviations: INSTI, HIV-integrase strand transfer inhibitor-based antiretroviral therapy; NNRTI, non-nucleoside reverse transcriptase inhibitor-based
antiretroviral therapy; PI, HIV-protease inhibitor-based antiretroviral therapy.
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inhibition leads not only to targeted destabilization of key onco-
genic proteins but also to misfolded protein aggregation, endo-
plasmic reticulum stress and apoptotic death or autophagy.151,152

Detailed docking analysis has shown that PIs can be potent
Hsp90 inhibitors; their binding capacity to Hsp90 decreases in
the following order: Nelfinavir, Indinavir, Saquinavir, Ritona-
vir, Lopinavir, Tipranavir, Darunavir and Amprenavir§.153

Indeed, among all PIs, nelfinavir seems to have the highest
anticancer activity.141 It is noteworthy that a longitudinal
study of antitumor effects of PIs and especially, nelfinavir, is
nuanced by the fact that in 2007 Roche’s Viracept (nelfinavir
mesylate) was discovered to be contaminated by a mutagenic
compound.154 Importantly, PIs can also directly inhibit the
replication of human herpesvirus 8 (HHV8), the etiological
agent of Kaposi’s sarcoma.121,155

Though at first nucleoside reverse transcriptase inhibitors
(NRTIs) were supposed to be genotoxic, mutagenic and onco-
genic due to their ability to incorporate into nuclear DNA and
directly inhibit cellular DNA polymerases,114,117,156,157 the

subsequent clinical studies have shown no clear correlation
between NRTIs and cancer (see above). In fact, in vitro studies
have shown, that NRTIs might also possess anticancer
activity,158–160 which is probably associated with their capacity
to inhibit DNA repair,161 induce mitochondrial toxicity,162 apo-
ptosis, modulate activity and expression of endogenous reverse
transcriptase encoded by the long interspersed nuclear element-
1 (LINE-1).158 LINE-1 propagation throughout the DNA may
play a role in genome instability, mutagenesis and contribute to
carcinogenesis.163

Another HAART class, non-nucleoside reverse transcriptase
inhibitors (NNRTIs) were also demonstrated to inhibit the
growth of cancer cell lines and xenografts in rodents,157,164–166

among them, efavirenz is supposed to have the highest anticancer
potential.167 NNRTIs can act on cancer cells through the induc-
tion of DNA damage,157 apoptosis,168 oxidative stress165 and
downregulation of LINE-1 expression.169 Similarly to PIs, expo-
sure to NNRTIs was associated with the radiosensitizing
effect.165,170

HIV-integrase strand transfer inhibitors (INSTIs) may cause
aberrant HIV-integration and rearrangements in the host DNA
when used in low doses.171,172 Low-dose INSTI may create the

Figure 2. Legend on next column.

Figure 2. Potential mechanisms of the antineoplastic effects of
different classes of HAART drugs. (a) PI3K/Akt pathway regulates
growth, proliferation, survival, migration and apoptosis. In cancer,
PI3K/Akt activation inhibits apoptotic enzymes; promotes transcription
regulation that increases growth, survival, proliferation, increases
MMPs (migration, invasion and metastasis) and VEGF (angiogenesis)
expression via mTOR and NF-κB axes; causes chemo/radiotherapy
resistance by deregulation of DNA damage response. PIs inhibit the
PI3K/Akt pathway, possibly through binding to Hsp90 and inhibiting
its chaperone function. MMPs and VEGF are also Hsp90 clients
destabilized by chaperone inhibition; overall, Hsp90 inhibition leads
to misfolded protein aggregation, ER stress, apoptosis and autophagy.
CCR5 receptor promotes pro-oncogenic cascades as it also activates
the PI3K/Akt pathway, thus CCR5 antagonists are also antioncogenic
effectors. Other pathways implicated in CCR5 downstream signaling
include phospholipase C-γ, Rac/CDC42/RhoA, JAK–STAT pathways
(data not shown).197 (b) NRTIs and NNRTIs interfere with nuclear DNA
integrity, mitochondrial DNA maintenance and oxidative stress,
retrotransposon LINE-1 expansion, which makes them potential
anticancer agents. LINE-1 promotes genome instability and contributes
to carcinogenesis. INSTIs also inhibit the DNA-repair enzyme menace
involved in chemotherapy resistance. Abbreviations: CCR5, C-C
chemokine receptor type 5; ER, endoplasmic reticulum; INSTI, HIV-
integrase strand transfer inhibitor; LINE-1, long interspersed nuclear
element-1; MMPs, matrix metalloproteinases; NNRTI, non-nucleoside
reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase
inhibitor; PI, HIV-protease inhibitor; PI3K, phosphatidylinositol
3-kinase; ROS, reactive oxygen species; RT, reverse transcriptase;
VEGF, vascular endothelial growth factor. —promoting downstream
effect; —inhibiting downstream effect; —active pathway
under the action of drugs; —suppressed pathway under the

action of drugs, —gene transcription; —resulting effects of

drugs on critical cellular cancer-related processes (activation and
suppression, respectively). [Color figure can be viewed at
wileyonlinelibrary.com]

§Amprenavir production was discontinued, a prodrug fosamprenavir

is available and approved.94,198
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Table 2. Clinical trials of antiretroviral drugs in non-HIV related cancer treatment

NCT number Drug Condition Phase
Actual
enrollment Start date

HIV-protease inhibitors

NCT00233948 Nelfinavir Liposarcoma I/II 29 March 2006

NCT01445106 Nelfinavir Solid Tumors I 28 December 2006

NCT00589056 Nelfinavir Stage III Nonsmall Cell Lung Cancer I/II 55 June 2007

NCT01068327 Nelfinavir Locally Advanced Pancreatic Cancer I 46 November 2007

NCT00704600 Nelfinavir Rectal Cancer I/II 15 September 2008

NCT00694837 Nelfinavir Glioblastoma I/II 6 March 2009

NCT00915694 Nelfinavir Glioblastoma Multiforme I 23 April 2009

NCT01020292 Nelfinavir Grade IV Glioma I 31 April 2009

NCT01086332 Nelfinavir Pancreatic Cancer I 7 May 2009

NCT01079286 Nelfinavir Advanced Cancers I 18 June 2009

NCT01065844 Nelfinavir Adenoid Cystic Cancer of the Head and Neck II 15 October 2009

NCT01108666 Nelfinavir Inoperable Stage III Nonsmall Cell Lung
Cancer

I 72 March 2010

NCT01164709 Nelfinavir Relapsed or Progressive Advanced
Hematologic Cancer

I 18 July 2010

NCT01485731 Nelfinavir Cervical Cancer I 8 January 2012

NCT01555281 Nelfinavir Progressive Multiple Myeloma I/II 33 February 2012

NCT01925378 Nelfinavir Cervical Intraepithelial Neoplasia II 10 July 2012

NCT01728779 Nelfinavir Oligometastases II 40 June 2013

NCT01959672 Nelfinavir Locally Advanced Pancreatic Cancer II 12 September 2013

NCT02207439 Nelfinavir Squamous Cell Carcinoma of the Oral Cavity,
Oropharynx, Larynx, or Hypopharynx

II 28 July 2014

NCT02188537 Nelfinavir Proteasome Inhibitor-nonresponsive
Myeloma

II 34 December 2014

NCT02363829 Nelfinavir Locally Advanced Cervical Cancer I 6 February 2015

NCT02024009 Nelfinavir Advanced Localized Pancreatic Cancer I/II 289 March 2016

NCT03050060 Nelfinavir Advanced Melanoma, Lung or Kidney Cancer II 120 June 2017

NCT03256916 Nelfinavir Locally Advanced Carcinoma of Cervix III 0 September 2017

NCT00637637 Ritonavir/Indinavir Brain Metastases II 60 September 2007

NCT01095094 Ritonavir/Lopinavir Progressive or Recurrent High-Grade Glioma II 19 January 2009

NCT01009437 Ritonavir Breast Cancer I/II 28 May 2010

NCT03066154 ModraDoc006/r (oral
docetaxel with
ritonavir)

High-risk Prostate Cancer I 24 September 2016

NCT02770378 Ritonavir Recurrent Glioblastoma I 10 November 2016

NCT03136640 ModraDoc006/r (oral
docetaxel with
ritonavir)

Castration-resistant Prostate Cancer I 20 April 2017

NCT03150368 ModraDoc006/r (oral
docetaxel with
ritonavir)

Advanced Solid Tumors I 22 May 2017

NCT03383692 Ritonavir Advanced Solid Malignant Tumors I 40 January 2018

Nucleoside reverse transcriptase inhibitors

NCT03144804 Lamivudine p53 Mutant Metastatic Colorectal Cancer II 32 October 2017

Non-nucleoside reverse transcriptase inhibitors

NCT00964002 Efavirenz Metastatic Prostate Cancer II 60 May 2008

NCT00964171 Efavirenz Metastatic Pancreatic Cancer II 72 August 2008

NCT01878890 Efavirenz Solid Tumors or NHL I 30 June 2011

Integrase strand transfer inhibitors

(Continues)
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situation when strand transfer reaction is blocked at only one
of two ends of viral DNA, which subsequently leads to
mutation-prone integration of a blocked end via the host
enzymes.171 Thus, these drugs are potentially mutagenic and
carcinogenic; however, there is no evidence for increased cancer
risk in patients exposed to INSTIs. INSTIs were also shown to
inhibit a metnase enzyme associated with chemotherapy resis-
tance173; thus, they can be potentially applied together with
antineoplastic drugs to increase their efficacy.

Finally, recent studies have shown that CCR5 antagonists
are also potent antioncogenic and antimetastatic effectors for
various cancer cell lines and xenografts.174–178 CCR5 blockade
results in a decreased invasion, migration, metastatic potential
cell proliferation and leads to proapoptotic signaling.174,176,179

Thus, the preclinical data on HAART components point to
its protective effect against cancer for virtually every class of
drug, which is very promising in terms of drug repositioning.
Still, it is important to reveal the causal impact of these drugs
on humans who undergo HIV and/or cancer treatment.

Antiretroviral Drugs and Cancer Treatment in HIV-
Negative Patients
As many in vitro studies have shown the anticancer activity of
HAART drugs, they were proposed for use in cancer treatment.
In addition, the use of antiretroviral drugs in HIV-negative peo-
ple with cancer can help us evaluate a possible protective effect
of HAART, independent of its antiretroviral activity per se. The
favorable treatment outcome of HIV-negative patients with

Kaposi’s sarcoma treated with indinavir (PI) points to its direct
antioncogenic properties in ADCs.180 At present, several clinical
trials of antiretroviral drugs in cancer are underway. They are
summarized in Table 2. However, the data addressing this ques-
tion are still limited, and the results obtained from clinical trials
are often inconclusive.

Promising results were obtained for nelfinavir (PI) as mon-
otherapy or combined with chemoradiotherapy in phase I clinical
trials: in locally advanced pancreatic cancer,181 in locally advanced
nonsmall cell lung cancer,182 in locally advanced rectal cancer,183

in multiple myeloma,184 in neuroendocrine tumors of the midgut
or pancreatic origin185 and in glioblastoma multiforme,186 where
the level of response was higher than reported before and the tox-
icity was acceptable. A phase II clinical trial of nelfinavir added to
bortezomib and dexamethasone in the proteasome inhibitor-
refractory multiple myeloma showed exceptional response rates
(~65%).184 A phase II clinical trial of nelfinavir combined with
chemoradiation in locally advanced inoperable pancreatic cancer
showed improved tumor oxygenation and perfusion, which might
lead to better treatment response, however, the study was discon-
tinued because of the unavailability of nelfinavir in Europe.187

Data from a phase I clinical trial of maraviroc (CCR5 antagonist)
in advanced colorectal cancer with hepatic metastases showed a
partial response in patients with previously refractory disease.179

Lopinavir/Ritonavir combination (PIs) was successfully used for
the treatment of HPV-positive high grade squamous intra-
epithelial lesions in HIV-negative women.188 There was also a
case report of successful thyroid papillary carcinoma treatment

Table 2. Clinical trials of antiretroviral drugs in non-HIV related cancer treatment (Continued)

NCT number Drug Condition Phase
Actual
enrollment Start date

NCT01275183 Raltegravir Squamous Cell Carcinoma
of Head and Neck

I 5 December 2010

CCR5 antagonist

NCT01736813 Maraviroc Metastatic Colorectal Cancer I 12 November 2012

NCT03274804 Maraviroc Metastatic Colorectal Cancer I 20 April 2018

The studies on AIDS-, EBV-, HBV-, HCV- and HTLV-related cancers are excluded.

Table 3. Summary of the role of HAART in HIV–cancer relationship

Parameter All cancers ADCs

NADCs

Virus-related Virus-unrelated

Cancer incidence compared to the general
population in the pre-HAART era

"" """ " =1

Cancer incidence compared to the general
population in the HAART era

" "" " #

Cancer incidence in the HAART era compared
to the pre-HAART era

# ###2 " "

The risk of cancer with HAART use compared
to no treatment

# ### " =

Sources195,196: and other articles cited in the text.
1Due to a small cohort size and a large 95% confidence interval.
2Except Burkitt’s lymphoma.
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with a combination of Nevirapine (NNRTI) and radioiodine,
resulting in re-induction of cell differentiation, better drug uptake
and sensitivity to treatment, slower progression of the dis-
ease.189,190 However, definite conclusions cannot be drawn at this
stage due to a small number of patients, possible patient selection
bias and lack of control groups.

Some studies point to the absence of the antitumor activity
of antiretroviral drugs. No meaningful improvement in clinical
outcomes was reported among patients with recurrent adenoid
cystic carcinomas and nelfinavir (PI) monotherapy in a phase
II clinical trial.191 The use of efavirenz (NNRTI) also did not
improve the nonprogression rate of castration-resistant prostate
cancer in a phase II clinical trial.192 A phase II clinical trial of
ritonavir/lopinavir (PIs) combination in patients with progres-
sive or recurrent high-grade gliomas did not reveal a potent
clinical activity either.193 These results can be explained by low
effectivity of these drugs as monotherapy, by low plasma con-
centrations of drugs, or their low tissue concentrations due to
poor access to the tumor. Therefore, even though some results
concerning the use of antiretroviral drugs in cancer treatment
are promising, further studies, investigating higher dosage of
the drugs and combinations with chemoradiotherapy, are nec-
essary to assess their effectiveness in the treatment of different
types of cancer and will provide insight into optimal oncologi-
cal doses of HAART drugs.

Conclusions
HIV-associated cancers are a serious health problem leading to
rising mortality in an HIV-infected population, therefore cancer
prevention and cancer control strategies are required. The main
trends in cancer incidence relative to HAART treatment are
summarized in Table 3. The main protective effect of HAART
in HIV-infected people is related to ADCs and may be explained
by immune reconstitution and viral suppression. The effect of
HAART in NADCs is more complex and nuanced. Interest-
ingly, the difference between HAART regimens in cancer pre-
vention is observed only for virus-related cancers, where PI-
based HAART is less favorable than other regimens. The role of
HAART during cancer treatment is positive, though it may be
complicated by drug–drug interactions. The later should be
carefully assessed by clinicians when planning the cancer treat-
ment in HIV-infected people. Doctors should also take measures

to reduce risk behavior in people with HIV (smoking and alco-
hol consumption cessation), as a cancer prevention strategy and
during cancer treatment. PI-based HAART is not preferred dur-
ing cancer treatment as well, because of suboptimal viral sup-
pression in patients with HIV and cancer.

Antiretroviral drugs that are in use for many years were
recently shown to be potentially antineoplastic and therefore
may present an elegant solution for cancer control in this
population. The plethora of published articles studied their
effects in primary cells, tumor cell lines and tumor xenografts
models; however, their effect on cancer prevention, treatment
and outcome in humans remains poorly understood. Here, we
summarized and discussed all potential clinical aspects related
to the impact of antiretroviral treatment on cancer.

Finally, several reports of HAART use in cancer treatment
in the HIV-negative population may help answer the question
about an antioncogenic activity of HAART, but to date, the
data from clinical studies are still limited. It is possible that
some modifications or optimizations of HAART regimens are
required in order to observe antioncogenic and cancer-
protective properties of these drugs in clinical practice.

Many epidemiological studies exploring HIV-cancer rela-
tionships have a common limitation: they lack the information
on antiretroviral therapy, thus a potentially promising question
about the relationships between HAART and cancer risks and
outcomes remains unanswered. The absence of clinical recom-
mendations, together with a lack of experience regarding cancer
prevention or simultaneous treatment of HIV and cancer and
substandard cancer care, indicates an urgent need for large-scale
epidemiological studies addressing the question about the effect
of particular HAART drugs and their dosage on cancer preven-
tion. Furthermore, the inclusion of people with HIV in clinical
trials of antineoplastic treatments should be encouraged.
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