Electronic Spectroscopy

Electronic Transitions between Quantized Electronic Energy levels

Zeeman states	spin orientations $\left(m_{s}\right)$	EPR Spectroscopy	$10^{9}-10^{11} \mathrm{~Hz}$ (microwaves)
Valence electron orbital and spin States (AO or MO) angular momentum (L, S, J)	UVIS Spectroscopy (absorption/luminescence)	$10^{14}-10^{16} \mathrm{~Hz}$ (UVIS)	
Inner-shell	principal quantum number,	XPS, Auger-Spectroscopy	$10^{17}-10^{19} \mathrm{~Hz}$ (X-rays)
Electronic states	orbital quantum number (n, L)	EXAFS	

Electronic Structure of Matter:
 The H atom.

- Exact solutions to the Schrödinger-equation: quantized energy levels, characterized by numbers n, I, m_{1} and m_{s}, and wave functions $R_{n 1} Y_{I m}$ where n is a natural number and $0 \leq I \leq n-1$.
- The $Y_{I m}$ are the angular momentum eigenfunctions (spherical harmonics).
- The radial parts $R_{n \mid}$ are obtained by the variable separation method.
- Spin is introduced via postulate of Goudsmit and Uhlenbeck: $S=1 / 2 ; m_{s}=1 / 2,-1 / 2$
- $n=1: R_{10} Y_{00}$
- $n=2: R_{20} Y_{20}$
- $n=3: R_{30} Y_{00}$

$$
\begin{array}{rllllllll}
\text { - } n=2: R_{20} Y_{20} & R_{21} Y_{10} & R_{21} Y_{11} & R_{21} Y_{1-1} & & & & \\
\text { - } n=3: & R_{30} Y_{00} & R_{31} Y_{10} & R_{31} Y_{11} & R_{31} Y_{1-1} & R_{32} Y_{20} & R_{32} Y_{21} & R_{32} Y_{2-1} & R_{32} Y_{22}
\end{array} R_{32} Y_{2-2} .
$$

$$
\begin{aligned}
& \text { I = 0: s electrons, I = 1: p-electrons, I = 2: d electrons, I = 3: f electrons } \\
& E=\frac{Z^{2} \boldsymbol{m} \boldsymbol{e}^{4}}{8 \varepsilon_{0}{ }^{2} h^{2}} \times \frac{1}{n^{2}} \quad \text { Quantized energies depend only on } n
\end{aligned}
$$

Erwin Schrödinger 1887-1961
U. Zürich, Graz, Wien Nobelprize 1933

Wolfgang Pauli 1900-1958
ETH Zürich
Nobelprize 1945

Pauli principle: no two electrons within an atom can have the same set of quantum numbers.

Radial parts of the electronic wave function

$$
\begin{aligned}
R_{10} & =2\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} e^{-Z r / a_{0}} \\
R_{21} & =\frac{1}{\sqrt{3}}\left(\frac{Z}{2 a_{0}}\right)^{\frac{3}{2}}\left(\frac{Z r}{a_{0}}\right) e^{-Z r / 2 a_{0}} \\
R_{20} & =2\left(\frac{Z}{2 a_{0}}\right)^{\frac{3}{2}}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
R_{32} & =\frac{2 \sqrt{2}}{27 \sqrt{5}}\left(\frac{Z}{3 a_{0}}\right)^{\frac{3}{2}}\left(\frac{Z r}{a_{0}}\right)^{2} e^{-Z r / 3 a_{0}} \\
R_{31} & =\frac{4 \sqrt{2}}{3}\left(\frac{Z}{3 a_{0}}\right)^{\frac{3}{2}}\left(\frac{Z r}{a_{0}}\right)\left(1-\frac{Z r}{6 a_{0}}\right) e^{-Z r / 3 a_{0}} \\
R_{30} & =2\left(\frac{Z}{3 a_{0}}\right)^{\frac{3}{2}}\left(1-\frac{2 Z r}{3 a_{0}}+\frac{2(Z r)^{2}}{27 a_{0}^{2}}\right) e^{-Z r / 3 a_{C}}
\end{aligned}
$$

Electronic Structure of Matter: Many-electron atoms

Frederik Saunders 1877-1963
Syracuse U.

Friedrich Hund 1896-1997
U. Rostock, Leipzig, Jena, Frankfurt, Göttingen

Examples of ground state term symbols

Addition of orbital angular momenta of two electrons: $L=I_{1}+I_{2}, I_{1}+I_{2}-1, \ldots I_{1}-I_{2} \quad->L=2,1,0$ Addition of spin angular momenta of two electrons: $\quad S=s_{1}+S_{2}, s_{1}+s_{2}-1, \ldots . S_{1}-s_{2} \quad->S=1,0$ $M_{L}=m_{11}+m_{12} ; \quad M_{S}=m_{S 1}+m_{S 2}$. Respecting the Pauli Principle we arrive at the following mother states:

$\mathrm{M}_{\mathrm{L}} \mathrm{M}_{\mathrm{S}}$	1	0	-1
2		$1+1$	
1	$1^{+0}{ }^{+}$	$1+{ }^{1+}, 0^{+}$	10^{-}
0	$1^{+}-1^{+}$	$-1^{+} 1^{-1}, \underline{1}^{+}-1,0^{+} 0^{-}$	1-1
-1	$-1^{+} 0^{+}$	$\underline{0}^{+}-1^{-1},-1^{+} 0^{-}$	-10
-2		$\underline{-1}{ }^{+1}$	

Mother states L, total degeneracy ($2 S+1$)(2L+1)
$\mathrm{L}=2$; $\underline{\mathrm{D}}_{\mathrm{D}}$, 5 -fold degenerate, $\mathrm{J}=2$
$\mathrm{L}=1 ;{ }^{3} \mathrm{P}, 3 \times 3$-fold degenerate, $\mathrm{J}=2,1,0$
$\mathrm{L}=0 ;{ }^{1} \mathrm{~S}$, non-degenerate, $\mathrm{J}=0$
Result: $\underline{1}_{\underline{2}} \underline{L}^{3}{ }^{3} \mathbf{P}_{2},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{0}{ }^{1} \mathrm{~S}_{0}$
Hund's rules: ground state is ${ }^{3} P_{0}$

Spin-orbit coupling

- Vectorial coupling:
$\mathscr{L}=\mathcal{L}+\mathscr{S}$ vector operators

$$
\begin{aligned}
& \mathscr{L}^{2}=(\mathcal{L}+\mathscr{S})^{2}=\mathcal{L}^{2}+\mathscr{S}^{2}+2 \mathscr{L} \mathscr{S} \\
& \mathcal{L}^{c g}\left|L, S, J, m_{J}>=1 / 2\left(\mathscr{L}^{2}-\mathcal{L}^{2}-\mathscr{S}^{2}\right)\right| L, S, J, m J> \\
& \mathcal{L} \mathscr{S}\left|L, S, J, m_{j}>=1 / 2 \hbar^{2}(J(J+1)-L(L+1)-S(S+1))\right| L, S, J, m_{j}>
\end{aligned}
$$

Spin orbit coupling Hamiltonian:
λ : spin-orbit coupling constant
$\lambda>0$ if shell is less than half filled
$\lambda<0$ if shell is more than half filled

Eigenvalues:

$\mathrm{E}_{\mathrm{LS}}=\lambda 1 / 2 \hbar^{2}(\mathrm{~J}(\mathrm{~J}+1)-\mathrm{L}(\mathrm{L}+1)-\mathrm{S}(\mathrm{S}+1))$

Example $\mathrm{d}^{1}\left(\mathrm{Ti}^{3+}, \mathrm{V}^{4+}\right)$: Termsymbols ${ }^{2} \mathrm{D}_{3 / 2},{ }^{2} \mathrm{D}_{5 / 2}$ E
${ }^{2}$ D

$$
{ }^{2} D_{5 / 2} \quad E=1 / 2 \lambda\left(\frac{35}{4}-6-\frac{3}{4}\right)=\lambda
$$

$$
{ }^{2} D_{3 / 2} \quad E=1 / 2 \lambda\left(\frac{15}{4}-6-\frac{3}{4}\right)=-\frac{3}{2} \lambda
$$

Hund's rules regarding ground states (mimimal interelectronic repulsion):

1) Maximal S,
2) maximal L if various states with maximal S exist
3) minimal J (shell less than half-full); maximal J (shell more than half full)

The d^{2} ions: $\mathrm{Ti}^{2+}, \mathrm{V}^{3+}, \mathrm{Cr}^{4+}, \mathrm{Mn}^{5+}: \mathbf{2}$ electrons in 5 orbitals \square

$M_{\mathrm{L}} M_{\mathrm{S}}$	
4	
4	
3	$2^{+1^{+}}$
2	$2^{+} 0^{+}$
1	$2^{+}-1^{+}, 1^{+} 0^{+}$
0	$2^{+}-2^{+} 1^{+}-1^{+}$
-1	$-2^{+} 1^{+}-1^{+} 0^{+}$
-2	$-2^{+} 0^{+}$
-3	$-2^{+}-1^{+}$

$$
-1
$$

$$
1
$$

$$
2-1^{-}
$$

etc: 45 permutations Consistent with Pauli

$$
2-1^{-1}, 0^{-}
$$

$$
2^{+}-2^{-},-2^{+} 2^{-},-1^{+} 1^{-}, 1^{+}-1^{-}, 0^{+} 0^{-} \quad-2^{-}-2^{-}, 1^{-}
$$

$$
-2^{+} 1^{+}-1-0^{-}
$$

$$
-20^{-}
$$

-4

$$
\begin{aligned}
& 0 \\
& 2^{+} 2^{-} \\
& 2^{+1} 1^{-1+2} \\
& -2^{+} 1^{-},-2^{-1+}, 0^{+}-1^{-},-1^{+} 0^{-} \\
& -2^{-} 0^{+},-2^{+} 0^{-}-1^{+}-1^{-} \\
& -2^{+-2}
\end{aligned}
$$

Partial removal of degeneracy due to spin-orbit coupling: the case of d^{2} ions

	${ }^{1} \mathrm{~S}$	Degen. $1 \text { - }$		${ }^{1} S_{0}$	Degen. 1
E	${ }^{1} \mathbf{G}$	9		${ }^{1} \mathbf{G}_{4}$	9
			λ	${ }^{3} \mathrm{P}$	5
	${ }^{3} \mathbf{P}$		$\frac{-\lambda}{-2 \lambda}$	$\begin{aligned} & 3 p_{1}^{2} \\ & { }^{3} p_{0}^{1} \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
	${ }^{1} \mathrm{D}$	5		${ }^{1} D_{2}$	5
				${ }^{3} F_{4}$	9
	${ }^{3} F$	21 -	$-\lambda$	${ }^{3} \mathrm{~F}_{3}$	
			-4λ	${ }^{3} F_{2}$	5

Electronic Structure of Transition Metal Complexes:

Principal Effect: in transition metal ions the degeneracy of the open-shell d-electrons is removed by electrostatic repulsion effects by the electrons of surrounding ligands. The effect depends on how the ligands are oriented relative to the d-orbitals. The symmetry aspects of this problem make it an important application field of group theory

1. The situation for the free metal ions

Aside from the electronic ground state there are the various possible excited electronic states, whose term symbols can be worked out obeying the Clebsch-Gordan rules, (not discussed here): Examples: (electronic ground states in red)
$\mathrm{Ti}^{3+}\left(\mathrm{d}^{1}\right)$: states ${ }^{2} \mathrm{D}_{3 / 2}$ and ${ }^{2} \mathrm{D}_{5 / 2}$

22	23	24	25	26	27	28	29
Ti	Y	Cr	Mn	Fe	Co	Ni	Cu

$\mathrm{V}^{3+}\left(\mathrm{d}^{2}\right)$ states ${ }^{3} \mathrm{~F}_{2},{ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{G},{ }^{1} \mathrm{~S}$

U. Erlangen
$\mathrm{Ni}^{2+}\left(\mathrm{d}^{8}\right)$: states ${ }^{3} \mathrm{~F}_{4},{ }^{1} \mathrm{G},{ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{~S}$
$\mathrm{Cu}^{2+}\left(\mathrm{d}^{9}\right)$: states ${ }^{2} \mathrm{D}_{5 / 2}$ and ${ }^{2} \mathrm{D}_{3 / 2}$
$\mathrm{Co}^{2+}\left(\mathrm{d}^{7}\right)$: states ${ }^{4} \mathrm{~F}_{9 / 2},{ }^{4} \mathrm{P},{ }^{2} \mathrm{P},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{G},{ }^{2} \mathrm{H},{ }^{2} \mathrm{D} \quad$,Hole formalism"
$\mathrm{Cr}^{3+}\left(\mathrm{d}^{3}\right)$: states ${ }^{4} \mathrm{~F}_{3 / 2},{ }^{4} \mathrm{P},{ }^{2} \mathrm{P},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{G},{ }^{2} \mathrm{H},{ }^{2} \mathrm{D}$
$\mathrm{Mn}^{3+}\left(\mathrm{d}^{4}\right)$: states ${ }^{5} \mathrm{D}_{0},{ }^{3} \mathrm{H},{ }^{3} \mathrm{G},{ }^{3} \mathrm{~F},{ }^{3} \mathrm{D},{ }^{1}$
$\mathrm{Mn}^{2+}\left(\mathrm{d}^{5}\right)$: states ${ }^{6} \mathrm{~S}_{5 / 2},{ }^{4} \mathrm{G},{ }^{4} \mathrm{D},{ }^{4} \mathrm{~F}, \mathrm{I}^{2}$,
$\mathrm{Fe}^{2+}\left(\mathrm{d}^{6}\right)$: states ${ }^{5} \mathrm{D}_{4},{ }^{3} \mathrm{H},{ }^{3} \mathrm{G},{ }^{3} \mathrm{~F},{ }^{3} \mathrm{D},{ }^{1}$

2. The situation in the metal complexes (Crystal field theory)

Besides the Coulombic attraction between the central metal atom and the negatively charged (or polarized) ligands, there Is an electrostatic repulsion between the d-electrons situated on the central metal ions and the ligands in their coordination environment. The strength of the repulsion depends on the mutual orientation of the ligands relative to the d-orbitals. This produces energy level differences which correspond to the electromagnetic wavelengths in the UVIS region. Responsible for the colored appearance of many transition metal salts and complexes.
d-Orbitals and Ligand Interaction (Octahedral Field)

d-orbitals not pointing directly at axis are least affected (stabilized) by electrostatic interaction

The symmetry - related aspects of this Problem can be addressed by the group theory formalism: Qualitative assesment of optical absorption spectra in terms of:

1) the number of differentiable energy levels (extent of degeneracy removal)
2)Coordination preferences of the ions
3)Transition probabilities and selection rules
2) Transition linewidths and intensities

Limitations:

1) Qualitative - no exact calculations
2) No exact information about energy ordering
3) Spin-orbit coupling effects are neglected (require an extension of the theory, (Double group, and experimental study by EPR).

The simplest case: electron configuration $\mathrm{d}^{1}: \mathrm{Ti}^{\mathbf{3 +}}, \mathrm{V}^{4+}, \mathrm{Mn}^{6+}$ In an octahedral coordination environment

General form of the wave function: $\psi=\mathrm{R}(\mathrm{r}) \Theta(\theta) \Phi(\phi) \varphi(\mathrm{s})$ Parts $R(r)$ and $\varphi(s)$ have no orientation dependence Orientation dependence of part $\Theta(\theta)$ can be disregarded by choice of coordinate system

Only orientation dependence of $\Phi(\phi)$ must be considered. The five wavefunctions differ with respect to the orientational quantum number $m_{1}: 2,1,0,-1,-2$ (because I =2 for d-electrons).

Thus, the basis relevant to this problem is 5-dimensional, consisting of the five orthogonal d-wavefunctions.

$$
\Phi(\phi)=\exp \operatorname{im}_{\mid} \phi
$$

For each group considered, we have 5×5 matrices to describe the symmetry operations. Again, all that matters are the characters of these symmetry operations

Again, the symmetry operation is described by a matrix multiplying a 5-dimensional vector

Transformation matrix - rotation by α

$\left(\begin{array}{c}\exp +2 \mathrm{i} \phi \\ \exp +\mathrm{i} \phi \\ \exp \\ \exp -\mathrm{i} \phi \\ \exp -2 \mathrm{i} \phi\end{array}\right) \xrightarrow[\text { by } \alpha]{\text { Rotate }}\left(\begin{array}{c}\exp +2 \mathrm{i}(\phi+\alpha) \\ \exp +\mathrm{i}(\phi+\alpha) \\ \exp \\ \exp -\mathrm{i}(\phi+\alpha) \\ \exp -2 \mathrm{i}(\phi+\alpha)\end{array}\right)=\left(\begin{array}{ccccc}\exp 2 i \alpha & 0 & 0 & 0 & 0 \\ 0 & \operatorname{expi\alpha } & 0 & 0 & 0 \\ 0 & 0 & \exp 0 \alpha & 0 & 0 \\ 0 & 0 & 0 & \exp -i \alpha & 0 \\ 0 & 0 & 0 & 0 & \exp -2 i \alpha\end{array}\right)\left(\begin{array}{c}\exp +2 \mathrm{i} \phi \\ \exp +\mathrm{i} \phi \\ \exp \\ \exp -\mathrm{i} \phi \\ \exp -2 \mathrm{i} \phi\end{array}\right)$

Thus, our representation of the group is the set of 5 -dimensional transformation matrices for all the symmetry operations that occur in the group. This representation is generally reducible, and the characters characterizing the symmetry operations are again denoted χ_{T}.

$$
\chi_{\mathrm{T}}=\exp (2 \mathrm{i} \alpha)+\exp (\mathrm{i} \alpha)+\exp (0 \alpha)+\exp (-i \alpha)+\exp (-2 i \alpha)
$$

This is the relevant formula for $L=2$ (a single d-electron). For other electronic states with different L values our Representation is $2 L+1$ - dimensional, and the trace will have $2 L+1$ summation terms, with m_{L} values ranging from L, L-1,......to -L. The above formula then turns into

$$
\chi_{\mathrm{T}}=\exp (\mathrm{Li} \alpha)+\exp ((\mathrm{L}-1) \mathrm{i} \alpha)+\ldots . .+\exp (-\mathrm{Li} \alpha) \text { (there are } 2 \mathrm{~L}+1 \text { terms) }
$$

This summation can be written as: $\quad \chi_{\mathrm{T}}=\exp (-\operatorname{Li\alpha }) \sum_{\mathrm{k}=0}^{2 \mathrm{~L}}(\exp (\mathrm{i} \alpha))^{\mathrm{k}}$
For the summation we may write: $\sum_{k=0}^{2 L}(\exp (i \alpha))^{k}=\frac{\exp (i \alpha(2 L+1))-1}{\exp (i \alpha)-1}$
Proof: Substituting $x=\exp (i \alpha)$ the summation reads:

$$
\sum_{k=0}^{2 L}(x)^{k}=x^{2 L}+x^{2 L-1}+\ldots \ldots \ldots+1 \quad \text { We multiply both sides by } x-1
$$

$$
(x-1) \sum_{k=0}^{2 L}(x)^{k}=x^{2 L+1}+x^{2 L}+\ldots \ldots \ldots+x-x^{2 L}-x^{2 L-1}-\ldots \ldots \ldots-1
$$

$$
(x-1) \sum_{\mathrm{k}=0}^{2 \mathrm{~L}}(x)^{\mathrm{k}}=\mathrm{x}^{2 \mathrm{~L}+1}-1
$$

$$
\sum_{\mathrm{k}=0}^{2 \mathrm{~L}}(x)^{\mathrm{k}}=\frac{x^{2 L+1-1}}{(x-1)}
$$

Re-substituting $x=\exp (i \alpha)$, we see that $\sum_{k=0}^{2 L}(\exp (i \alpha))^{k}=\frac{\exp (i \alpha(2 L+1))-1}{\exp (i \alpha)-1}$
Using this result in A we get $\chi_{\mathrm{T}}=\exp (-\operatorname{Li} \alpha) \sum_{\mathrm{k}=0}^{2 \mathrm{~L}}(\exp (\mathrm{i} \alpha))^{\mathbf{k}}=\exp (-\mathrm{Li} \alpha) \frac{\exp (\mathrm{i} \alpha(\mathbf{2 L + 1}))-\mathbf{1}}{\exp (\mathbf{i \alpha})-1}$

$$
\chi_{T}=\frac{\exp (i \alpha(L+1))-\exp -i L \alpha}{\exp (i \alpha)-1}=\frac{\exp (i \alpha(L+1 / 2)) \exp \frac{i \alpha}{2}-\exp -i L \alpha}{\exp (i \alpha)-1}==\frac{\exp i \alpha\left(L+\frac{1}{2}\right)-\exp -i \alpha\left(L+\frac{1}{2}\right)}{\exp \left(\frac{i \alpha}{2}\right)-\exp \left(-\frac{i \alpha}{2}\right)}
$$

Our result corresponds to:

$$
\chi_{\mathrm{T}}=\frac{\sin \left(\mathrm{L}+\frac{1}{2}\right) \alpha}{\sin \alpha / 2}
$$

Irreducible representations of the electronic states in octahedral complexes

Relevant group: O_{h}, but can be simplified to O , because both groups differ only in the existence of a center of inversion, Which is absent in the group O. In the group O_{h} there exist irreducible representations of both types g and u. However, d-orbitals always belong to a g-representation. Their wave function is always of the form $\psi(x, y, z)=\Psi(-x,-y,-z)$
\star

(
(

O	E	$8 C_{3}$	$3 C_{2}$	$6 C_{4}$	$6 C_{2}^{\prime}$		
(432)		1	1	1	1		$x^{2}+y^{2}+z^{2}$
$\mathrm{~A}_{1}$	1	1	1	-1	-1		$\left(2 z^{2}-x^{2}-y^{2}\right.$,
A_{2}	1	1	1				
E	2	-1	2	0	0		$\left.\sqrt{3}\left(x^{2}-y^{2}\right)\right)$
T_{1}	3	0	-1	1	-1	(x, y, z)	$\left(R_{x}, R_{y}, R_{z}\right)$

Character table for point group $\mathbf{O}_{\mathbf{h}}$

Irreducible Representations of the d^{1} electronic states (L=2) for the group 0

Characters of the reducible representation for the five classes $E, C_{3}, C_{4}, C_{2}, C_{2}{ }^{\prime}$

$$
\chi_{T}=\frac{\sin \left(L+\frac{1}{2}\right) \alpha}{\sin \alpha / 2}
$$

$\chi_{\mathrm{T}}(\mathrm{E})=5$
$\chi_{\mathrm{T}}\left(\mathrm{C}_{4}\right)=\frac{\sin 5 \pi / 4}{\sin \pi / 4}=-1$
$\chi_{\mathrm{T}}\left(\mathrm{C}_{3}\right)=\frac{\sin 5 \pi / 3}{\sin \pi / 3}=-1$
$\chi_{\mathrm{T}}\left(\mathrm{C}_{2}\right)=\frac{\sin 5 \pi / 2}{\sin \pi / 2}=1$
$\chi_{\mathrm{T}}\left(\mathrm{C}_{2}{ }^{\prime}\right)=\frac{\sin 5 \pi / 2}{\sin \pi / 2}=1$

Developing the irreducible representation using the decomposition formula

$$
a_{1}=\frac{1}{h} \sum_{R} \chi_{T}(R) \chi^{\left(l^{\prime}\right)(R)}=\frac{1}{h} \sum_{c} \chi_{T}(c) g(c) \chi^{\left(I^{\prime}\right)(}(c)=
$$

where the $\mathrm{g}(\mathrm{c})$ are the number of operations belonging to the same class

$$
\begin{aligned}
& a_{A 1}=\frac{1}{24}(5 \times 1 \times 1+(-1) \times 6 \times 1+(-1) \times 8 \times 1+1 \times 6 \times 1+1 \times 3 \times 1)=0 \\
& a_{A 2}=\frac{1}{24}(5 \times 1 \times 1+(-1) \times 6 \times(-1)+(-1) \times 8 \times 1+1 \times 6 \times(-1)+1 \times 3 \times 1)=0 \\
& a_{E}=\frac{1}{24}(5 \times 1 \times 2+(-1) \times 6 \times 0+(-1) \times 8 \times(-1)+1 \times 6 \times 0+1 \times 3 \times 2)=1 \\
& a_{T 1}=\frac{1}{24}(5 \times 1 \times 3+(-1) \times 6 \times 1+(-1) \times 8 \times 0+1 \times 6 \times(-1)+1 \times 3 \times(-1)=0 \\
& a_{T 2}=\frac{1}{24}(5 \times 1 \times 3+(-1) \times 6 \times(-1)+(-1) \times 8 \times 0+1 \times 6 \times 1+1 \times 3 \times(-1)=1 \\
& \Gamma\left(d_{O h}^{1}\right)=E_{g}+T_{2 g}
\end{aligned}
$$

This corresponds to the known result we can already arrive at by inspection.

Octahedral versus Tetrahedral Coordination and d^{1} vs. d^{9}

Degenerate ground states suffer geometric distortions that remove the degeneracy lowering the overall energy of the complex. Here $\mathbf{O}_{h}->D_{4 h}$ distortion

Hermann Arthur Jahn 1907-1979
U. Southampton

Correlation table of
Terms generated by symmetry reduction

Edward Teller 1908-2003
U. Chicago, Los

Alamos, Florida Inst. Technol, LLNL, UCD, UCB

0	0	$\boldsymbol{T}_{\boldsymbol{t}}$	$D_{\text {u }}$	D_{24}	C_{4}	$C_{2 r}$	D_{M}	D,	c_{20}
A_{19}	A_{1}	A_{1}	A_{18}	A_{1}	A_{1}	A_{1}	A_{1}	A_{1}	
A_{20}	A_{2}	A_{2}	$B_{1 g}$	B_{1}	B_{1}	A_{2}	$A_{2 g}$	A_{2}	B_{g}
E_{g}	E	E	$A_{1 g}+B_{1 g}$	$A_{1}+B_{1}$	$A_{1}+B_{1}$	$A_{1}+A_{2}$		E	$A_{s}+B_{0}$
T_{1}	T_{1}	T_{1}	$A_{2 g}+E_{g}$	$A_{2}+E$	$A_{2}+E$	$A_{2}+B_{1}+B_{2}$	$A_{2 g}+E_{g}$	$A_{2}+E$	$A_{s}+2 B_{g}$
$T_{2 q}$	T_{2}	T_{2}	$B_{2 g}+E_{g}$	$B_{2}+E$	$B_{2}+E$	$A_{1}+B_{1}+B_{2}$	$A_{1 g}+E_{g}$	$A_{1}+E$	$2 A_{g}+B_{g}$
A_{10}	A_{1}	A_{2}	A_{14}	B_{1}	A_{2}	A_{2}	A_{10}	A_{1}	A_{u}
$A_{2 m}$	A_{2}	A_{1}	B_{10}	A_{1}	B_{2}	A_{1}	$A_{2 m}$	A_{2}	
E_{u}	E	E	$A_{1 u}+B_{1 s}$	$A_{1}+B_{2}$	$A_{2}+B_{2}$	$A_{1}+A_{2}$	E_{w}	E	$A_{s}+B_{s}$
$T_{\text {iv }}$	T_{1}	T_{2}	$A_{2 u}+E_{u}$	$B_{2}+E$	$A_{1}+E$	$A_{1}+B_{1}+B_{2}$	$A_{2 v}+E_{w}$	$A_{2}+E$	$A_{u}+2 B_{u}$
$T_{2 x}$	T_{2}	T_{1}	$B_{2 s}+E_{v}$	$A_{2}+E$	$B_{1}+E$	$A_{2}+B_{1}+B_{2}$	$A_{1 \sim}+E_{v}$	$A_{1}+E$	$2 A_{s}+B_{u}$

Systems d ${ }^{2}\left(\mathrm{~V}^{3+}, \mathrm{Cr}^{4+}, \mathrm{Mn}^{5+}\right)$ and $\mathrm{d}^{8}\left(\mathrm{Ni}^{2+}\right)$ in octahedral crystal field
Inspection no longer possible, group theory needed. There are two principal effects

1) Intra-atomic interelectronic repulsion
2) Interelectronic repulsion d-electrons/ ligand electrons.

Different cases to be distinguished:
Weak ligand field case: Mother states still dominate, ligand field makes a perturbation
Extremely strong field case: intra-atomic repulsion is neglected
Strong-field case: Intra-atomic repulsion is a perturbation to the extremely strong field case

Weak field case: Spin multiplicity of the mother state is preserved.

The extremely strong-field and the strong field cases for d^{2}

ய

$$
\begin{array}{ll}
e^{2} & E+A_{1}+A_{2} \\
e^{1} t_{2}{ }^{1} & 2 T_{1}+2 T_{2}
\end{array}
$$

$$
t_{2}{ }^{2}
$$

$$
A_{1}+E+T_{1}+T_{2}
$$

No inter-electronic repulsion
weak interelectronic repulsion

\mathbf{O}	\mathbf{E}	$\mathbf{8} \mathbf{C}_{\mathbf{3}}$	$\mathbf{3} \mathbf{C}_{\mathbf{2}}$	$\mathbf{6} \mathbf{C}_{\mathbf{4}}$	$\mathbf{6}_{\mathbf{2}}^{\mathbf{\prime}}$
$\boldsymbol{h = 2 4}$		1	1	1	1
$\mathbf{A}_{\mathbf{1}}$	1	1			
$\mathbf{A}_{\mathbf{2}}$	1	1	1	-1	-1
\mathbf{E}	2	-1	2	0	0
$\mathbf{T}_{\mathbf{1}}$	3	0	-1	1	-1
$\mathbf{T}_{\mathbf{2}}$	3	0	-1	-1	1

Interelectronic repulsion via direct product formation

ExE	4	1	4	0	0
$\mathrm{~T}_{2} \times \mathrm{E}$	6	0	-2	0	0
$\mathrm{~T}_{2} \times \mathrm{T}_{2}$	9	0	1	1	1
			4		
				Decomposition formula	

Irreducible representations

Assigning spin multiplicities by the method of descending symmetry

Consider the case of d^{2} in octahedral ligand field. Forthe $\mathrm{e}_{\mathrm{g}}{ }^{2}$ state the distribution possibilities are:

singlet

singlet

Inter-eletronic repulsion produces the states $\mathbf{E}+\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}$ But we do not know their spin multiplicities Solution: lower the symmetry: $\mathrm{O}_{\mathrm{h}} \rightarrow \mathrm{D}_{4 \mathrm{~h}}$

The correlation table tells us $\mathrm{A}_{1 \mathrm{~g}} \rightarrow \mathrm{~A}_{1 \mathrm{~g}}$ $\mathrm{A}_{2 \mathrm{~g}} \rightarrow \mathrm{~B}_{1 \mathrm{~g}}$
$\mathrm{E}_{\mathrm{g}}->\mathrm{A}_{1 \mathrm{~g}}+\mathrm{B}_{1 \mathrm{~g}}$

In the reduced symmetry, the two e_{g} orbitals have different energies. Now the distribution possibilities are:

This procedure has told us that the E_{g} state is a singlet and the $A_{2 g}$ state is a triplet. The cases $e_{g} t_{2 g}$ and $t_{2 g}{ }^{2}$ can be treated in the same way: $\mathrm{eg}_{\mathrm{g}} \mathrm{t}_{\mathrm{g}}-{ }^{3} \mathbf{T}_{1 \mathrm{~g}}+{ }^{3} \mathbf{T}_{2 \mathrm{~g}}+{ }^{1} \mathbf{T}_{1 \mathrm{~g}}+{ }^{1} \mathbf{T}_{2 \mathrm{~g}}$

$$
\mathrm{t}_{2 \mathrm{~g}}{ }^{2}>{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}+{ }^{1} \mathrm{E}_{\mathrm{g}}+{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}+{ }^{1} \mathrm{~T}_{2 \mathrm{~g}}
$$

Orgel diagrams: Plot of Energy versus ligand field strength Δ

Strength of the ligand repulsion

Assembling the Orgel diagram
1:1 Correspondence of weak-field and strong-field states.

Connect state by lines

Non-crossing rule for state belonging to the same irreducible representation. They characterize the same relative symmetry of ligands relative to d-orbitals and thus respond to a change in Δ in the same direction.

Leslie Orgel 1927-2007 U. Cambridge, Salk Inst. San Diego

Tanabe-Sugano diagrams:

Plot of E / B versus Δ / B, where $B=$ energy of interelectronic repulsion
(Racah parameter) weak field -> strong field
Abscissa is identical with the energy of the electronic ground state

Giulio Racah 1909-1965
Hebrew. U Jerusalem

Satoru Sugane, 1928-
U. Tokyo,

Himei Inst.

Basis for discussion: The Tanabe-Sugano Diagrams.

1. Only the electronic ground state is populated
2. Spin multiplicity is always conserved upon the transition
3. Selection rules:

These direct products must be analyzed

For octahedral complexes x, y, z belong to the representation $T_{1 u}$ While ψ_{g} and ψ_{e} always belong to a representation of type g . Transitions are forbidden (Laporte rule). True for all ligand fields with a center of symmetry

Transition Moment Integral : $\mathbf{M}=\left\langle\psi_{\mathrm{g}}\right| \boldsymbol{\mu}\left|\psi_{\mathrm{e}}\right\rangle=\left\langle\psi_{\mathrm{g}}\right| \mu_{\mathrm{n}}+\mu_{\mathrm{e}}\left|\psi_{\mathrm{e}}\right\rangle$
Wave function for the electronic ground state: $\psi_{\mathrm{g}}=\psi(\mathrm{el})_{\mathrm{g}} \psi(\text { vib })_{\mathrm{g}}=\psi_{\mathrm{sg}} \psi(\text { orb })_{\mathrm{g}} \psi(\text { vib })_{\mathrm{g}}$ Wave function for the electronic excited state: $\psi_{\mathrm{e}}=\psi(\mathrm{el})_{\mathrm{e}} \psi(\text { vib })_{\mathrm{e}}=\psi_{\text {se }} \psi(\mathrm{orb})_{\mathrm{e}} \psi(\text { vib })_{\mathrm{e}}$

Wave function contains vibrational orbital and spin parts.
μ_{n} acts on vibrational part $\boldsymbol{\mu}_{\mathrm{e}}$ acts on orbital part
zero due to orthog.
Franck-Condon factor

$<\psi_{\mathrm{sg}}\left|\Psi_{\mathrm{se}}\right\rangle=0$ if the spin wave functions of ground and excited state are different. -> spin multiplicity is conserved $<\psi(o r b)_{\mathrm{g}}\left|\mu_{\mathrm{e}}\right| \psi$ (orb) ${ }_{\mathrm{e}}$ subject to orbital selection rule (group theory)
$<\psi(\text { vib })_{\mathrm{g}} \mid \psi(v i b)_{\mathrm{e}}>$ non-zero because they refer to different electronic states.

Vibronic Coupling

Relaxation of the Laporte rule due to vibrational modes that break the inversion center. (vibronic coupling). We can see this when we consider the vibrational part of the complete wavefunction
$\Gamma_{\psi \mathrm{g}} \otimes \Gamma_{x} \otimes \Gamma_{\psi e}$
$\Gamma_{\psi \mathrm{g}} \otimes \Gamma_{\mathrm{y}} \otimes \Gamma_{\psi \mathrm{e}}$
$\Gamma_{\psi \mathrm{g}} \otimes \Gamma_{\mathrm{z}} \otimes \Gamma_{\psi \mathrm{e}}$

Wave function for the electronic ground state: $\psi_{\mathrm{g}}=\psi(\mathrm{el})_{\mathrm{g}} \psi(\text { vib })_{\mathrm{g}}$
Wave function for the electronic excited state: $\psi_{\mathrm{e}}=\psi(\mathrm{el})_{\mathrm{e}} \psi(\text { vib })_{\mathrm{e}}$
The transition moment Integral is given by:

$$
\left.\mathbf{M}=\left\langle\psi_{\mathrm{g}}\right| \mu\left|\psi_{\mathrm{e}}\right\rangle=\left\langle\psi(\mathrm{el})_{\mathrm{g}} \psi(\mathrm{vib})_{\mathrm{g}}\right| \mu \mid \psi(\mathrm{el})_{\mathrm{e}} \psi(\text { vib })_{\mathrm{e}}\right\rangle
$$

Thus we must consider the 5 -factor direct products of the type: $\Gamma_{\psi(\text { vib }) \mathrm{g}} \otimes \Gamma_{\psi \mathrm{el}, \mathrm{g}} \otimes \Gamma_{\mathrm{x}, \mathrm{y}, \mathrm{Z}} \otimes \Gamma_{\psi(\mathrm{vib}) \in \Theta} \otimes \Gamma_{\psi \mathrm{el}, \mathrm{e}}$

Where $\Gamma_{\psi(v i b) g}=A_{1}$ (vibrational ground state of the ground state electronic wave function)
If the electronic transition results in the population of the first excited vibrational level of the excited electronic State, $\Gamma_{\psi(\text { vib)e }}$ is the same as the irreducible representation of the mode itself.

The Laporte rule is relaxed because the electronic transition (which normally occurs from the vibrational ground level) is accompanied by vibrational transitions.

The reason for having the vibrational wave function of the electronic excited state represented by the one representing the vibrational mode itself lies in the fact that owing to the Franck Condon principle, a substantial fraction of the molecules end up in a vibrationally excited state with $\mathrm{n}=1$ (or 3 , etc)

1. Optical transition is much faster than vibrational motion 2. Internuclear distance in the optical excited state is larger than in the ground state

James Franck 1882-1964
U. Göttingen, Johns Hopkins U. U. Chicago, Nobel Prize 1925
1.Upon electronic excitation the molecule ends up In various excited vibrational states.
2.Due to this fact, vibronic coupling is possible, relaxing the Laporte

To relax the Laporte rule, the vibrations have to be of type u

Electronic transitions are much faster than the vibrational motion. From the viewpoint of electronic spectroscopy the sample is a collection of molecules in different stages of vibrational motion. If the vibrational analysis produces normal modes of type u (it always does), the Laporte rule is relaxed, because the sample always contains molecules whose center of symmetry is broken by the vibrational motion.

Spectroscopic observables:

1) Frequency -> Δ (nature of the ligand/spectrochemical series) 2)Linewidth -> transition Assignments/unresolved splittings 3)Peak splittings -> J.T. effects

Range of transition energies $=$ width of the spectrum

[^0]

Spectrum for d^{2} ions in an octahedral ligand field

Distribution of ligand fields due to molecules in different stages of vibration

A walk through the first transition metal series

$\mathrm{d}^{1} \quad \mathrm{Ti}^{3+} \mathrm{V}^{4+} \mathrm{Cr}^{5+} \mathrm{Mn}^{6+}$
${ }^{2} T_{2 g}->^{2} E_{g}$ octahedral ${ }^{2} \mathrm{E} \rightarrow{ }^{2} \mathrm{~T}_{2}$ tetrahedral

Jahn-Teller distortions will always occur, Strongly distorted V4+: „vanadyl" VO²+ Δ increases with increasing charge of the central ion:

Cr^{3+} absorption in phosphate glasses

- Spectrochemical Series: An order of ligand field strength based on experiment:
Weak Field $\mathrm{I}^{-}<\mathrm{Br}<\mathrm{S}^{2}<\mathrm{SCN}^{-}<\mathrm{Cl}^{-}<$
$\mathrm{NO}_{3}<\mathrm{F}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NCS}^{-}<$
$\mathbf{C H}_{3} \mathbf{C N}<\mathrm{NH}_{3}<$ en < bipy < phen<
$\mathbf{N O}_{\mathbf{2}}<\mathbf{P P h}_{3}<\mathbf{C N}<\mathbf{C O}$ Strong Field

Ethylenediamine (en)

2,2'-bipyridine (bipy) 1.10 - penanthroline (phen)

High-spin ground state ${ }^{6} \mathrm{~A}_{1 g}$: No spin-allowed transitions Weak forbidden transitions Mn^{2+} complexes are colorless

Fig. 11.41 Absorption spectrum for octahedral MnF_{2}. Note the narrow lines. [From Lever, A. B. P. Inorganic Electronic Spectroscopy; 2nd ed.; Elsevier: New York, 1986; p 451. Used with permission.]

High-spin: ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}}$ - $^{5} \mathrm{E}_{\mathrm{g}}$
Low-spin: ${ }^{1} A_{1 g}->{ }^{1} T_{1 g}$

$$
{ }^{1} \mathbf{A}_{1 \mathrm{~g}}->^{1} \mathrm{~T}_{2 \mathrm{~g}}
$$

Spin Transition in hemoglobin upon binding to $\mathrm{O}_{\mathbf{2}}$

https://www.hoddereducation.co.uk/media/Documents/magazineextras/Chemistry\ Revie w/ChemRev\%2025_4/ChemistryReview25_4_Haemoglobin_extension.pdf?ext=.pdf

Spectrochim. Acta 188 (2018), 507
Co^{2+} in glasses: metal in tetrahedral and octahedral Coordination. Tetrahedral coordination gives rise to Intense blue color of Co in glasses.
ravic :
Optical transitions of $\mathrm{Co} 2+$ in tetrahedral $\left(T_{d}\right)$ and octahedral $\left(O_{h}\right)$ coordination.

	Transition			Range (nm)
T_{d}	v_{1}	${ }^{4} A_{2}(F)$	${ }^{4} T_{2}(F)$	1700-4000
	v_{2}	${ }^{4} A_{2}(F)$	${ }^{4} T_{1}\left({ }^{4} \mathrm{~F}\right)$	1200-1800
	v_{3}	${ }^{4} A_{2}(F)$	${ }^{4} T_{1}\left({ }^{4} P\right)$	540-640
O_{η}	v_{1}	${ }^{4} T_{1 g}(F)$	${ }^{4} T_{2 g}(F)$	1333
	v_{2}	${ }^{4} T_{1 g}(F)$	${ }^{4} A_{2 g}(F)$	606
	v_{3}	${ }^{4} T_{1 g}(F)$	${ }^{4} T_{1 g}(P)$	555, 476-500

Octahedral LF:

$$
{ }^{3} A_{2 g} \rightarrow{ }^{3} T_{2 g} \quad{ }^{3} A_{2 g} \rightarrow{ }^{3} T_{1 g} \quad{ }^{3} A_{2 g} \rightarrow{ }^{3} T_{1 g}
$$

No J-T distortions

L	n	Donor Set	$\Delta_{\mathrm{o}}\left(\mathrm{cm}^{-1}\right)$
2,2'-Bipyridine	3	$\mathrm{~N}_{6}$	12650
Ethylenediamine	3	$\mathrm{~N}_{6}$	11700
Pyridine	6	$\mathrm{~N}_{6}$	10150
Imidazole	6	$\mathrm{~N}_{6}$	10150
NH_{3}	6	$\mathrm{~N}_{6}$	10750
$\mathrm{H}_{2} \mathrm{O}$	6	O_{6}	8500
Methanol	6	O_{6}	8430
Pyridine N-oxide	6	O_{6}	8400
Dimethylsulfoxide	6	O_{6}	7730

$\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{NO}_{3}^{-}<\mathrm{F}^{-}<$diethyldithiocarbamate ${ }^{-}(\mathbf{S})<\mathbf{O H}^{-}<\mathrm{C}_{2} \mathbf{O}_{4}{ }^{2-}<\mathrm{H}_{2} \mathbf{O}<\mathrm{SCN}^{-}$ $<\mathbf{N H}_{3} \approx$ pyridine (N) < ethylenediamine (N) $<\mathbf{N O}_{2}^{-} \approx 2,2^{\prime}$-bipyridine (N) $\ll \mathbf{C N}^{-}$
J.Chem. Ed. 75 (1998), 98

Band position very sensitive to ligands.

${ }^{2} T_{2 g}->{ }^{2} E_{g}$ tetrahedral
 ${ }^{2} E->{ }^{2} T_{2}$ octahedral

Very strong Jahn-Teller effects from Octahedral coordination:
CuF_{2} : 4 ligands at 193 pm (in plane)
2 ligands at 227 pm (along C_{4})
CuBr_{2} : 4 ligands at 240 pm (in plane)
2 ligands at 320 pm (along C_{4})

Figure 1. Spectra (absorbance vs. wavelength) for the species $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(-),[\mathrm{Cu}(\text { EDTA })]^{2-}(----)$, and $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ (-----).

Optical Spectra of the transition metal aquo complexes in solution

[^0]: Fig. 1. Polarized absorption spectra of $\mathrm{C}_{3} \mathrm{VCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ at $80 \mathrm{~K}[9]$.

