Electronic Transitions between Quantized Electronic Energy levels

Zeeman states spin orientations (m) EPR Spectroscopy

Valence electron orbital and spin UVIS Spectroscopy

States (AO or MO) angular momentum (L, S, J) (absorption/luminescence)
Inner-shell principal guantum number, XPS, Auger-Spectroscopy
Electronic states  orbital guantum number (n, L) EXAFS
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107 10° 109 10 100 10" 10" 1o% PINK FLOYD

Wavelength (Metres) ! { { $ } : " !
100 10¢ 10¢ 10¢ ' ' 0% 10% 10" 10%

<

% Long .

L‘) Wave Wave ' X Rays

é - Gamma Rays

W Mecrow aves
Rod»o..oms s PR TR

10° 10¢ 10* 10* 10° 109 10 10

Frequency (H2) Vmblo '

Non-lonising Radiation

10°-10*! Hz (microwaves)

1014-1016 Hz (UVIS)

1017-10%° Hz (X-rays)

DARK SIDE OF THE MOON



Electronic Structure of Matter:
The H atom.

Exact solutions to the Schrodinger-equation: quantized energy levels, characterized by numbers n, |, m,
and m_, and wave functions R Y|, where n is a natural number and 0 < | < n-1.

The Y, are the angular momentum eigenfunctions (spherical harmonics).
The radial parts R are obtained by the variable separation method. Erwin Schrodinger

Spin is introduced via postulate of Goudsmit and Uhlenbeck: S =1/2; m_=,-% 1887-1961
U. Zlirich, Graz, Wien

Nobelprize 1933

n=1:R,,Yy,

n=2:R,,Y;o Ry1Yio RauYi RyuYiy

n=3: Ry,Yqo R31Yi0 RsiYin RsypYyg R32Y20 R3Yar R3pYon RspYy RypY,,

n=4: R,,Yq0 RsYio RaiY1n RaYia Ri2Y20 RaxYar RgYaa RaYar RyYso,
Ri3Yso Ra3Yss RasYsa RysYs; Rys¥s, Ry3¥ss RyYs;

| = 0: s electrons, | = 1: p-electrons, | = 2: d electrons, | = 3: f electrons

Wolfgang Pauli

5 A 1900-1958
Z°me 1 ETH Zirich

E= —> X— Quantized energies depend only on n
8¢,°h n

Pauli principle: no two electrons within an atom can have the same set of quantum numbers.

Nobelprize 1945
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. Henry Norris Russell 1877_1957
Princeton U.

Electronic Structure of Matter:
Many-electron atoms

inter-electronic interactions make exact solutions impossible. Only approximate solutions. The vectorial L
coupling of spin and angular momenta creates multiple electronic states with different strengths of inter- i;ef;rl'g ::“”ders

electronic repulsion -> different energies for different states of L. Syracuse U.

Russel-Saunders coupling: Z=% €,  [where L={l+l, l+l,= 1, [;+l,= 2,.... 1]}
Vector addition where S = {s;+s,, s;+s,—1,, S;+5,— 2,.... $,-S,}

(1925) =28 .
J={L+S, L+ S-1, L+ S-2, .....|L-S|} 2J+1 orientational states
Coupling of the angular momenta belonging to filled (sub-)shells always results in S, L = 0.
Terminology: use of term symbols 25+1£J Hund‘s rules regarding ground states
. . . . . . Friedrich Hund
For the symbol £ we choose S,P, D, F, G, H, | (ml‘mm:l interelectronic repulsion): 1896-1997
characterizing L-valuesof 0,1,2,3,4,5,6 1) Max.lma r _ _ _ U. Rostock, Leipzig,
2) maximal L if various states with maximal S exist  Jena, Frankfurt,
Gottingen

25+1 is the orientational spin multiplicity 3) mlnlmal ] (shell less than half-full);
maximal J (shell more than half full)



Examples of ground state term symbols

e Hatom: 1s! 2S1/2 C atom: 1522s22p? 3P,
* He atom: 1s? 1S, N atom: 1s22s22p3 S3/>
* Liatom:  1s22s!, 28,1/ O atom: 1s?2s?2p* 3P,
* Be atom:  1s522s2 15, F atom: 1s22s%2p> P4,
* B atom: 1s22s522p? ?P1 /2, %P3/, Ne atom: 1s22522p° 1S,
Example: Electronic states of the C-atom c: 111 721 T 2? -

Addition of orbital angular momenta of two electrons: L =1 +l,, |, +l,-1, ...I,-l, ->L=2,1,0
Addition of spin angular momenta of two electrons: S =s,+s,, s,+s,-1, ....5,-s, ->S5=1,0
M, =m,+m,,; M. =my+m,, . Respecting the Pauli Principle we arrive at the following mother states:

Mother states L, total degeneracy (25+1)(2L+1)
M M 1 0 -1 L = 2; 1D, 5-fold degenerate, J=2
2 1'1 L= 1; 3P, 3x3-fold degenerate, J = 2,1,0
1 1'0* 10,01 10 L= 0; 'S, non-degenerate, J =0
0 1+-1* 11, 1*-1, 1-1
-1 -1'0° 0-1,1'0 10 Result: 1D,, 3P,, 3P, 3P, ',
-2 1ol Hund’‘s rules: ground state is 3P,



Spin-orbit coupling
J=Z +'8 vector operators

* Vectorial coupling:

f:(I+‘5)2=IZ+‘52+ZZ‘5

L3S mp> =% (f-T2=3?)|LS, ), ml>

LSILS,), m>=%h?(J(J+1) — L (L+1) — S(S+1))|L,S,J, m>

H.=LLS A > 0 if shell is less than half filled
A < 0 if shell is more than half filled

Spin orbit coupling Hamiltonian:
A: spin-orbit coupling constant

Eigenvalues:
E =A% h2(J(J+1) — L (L+1) — S(S+1))

Example d* (Ti3*, V**): Termsymbols *D;/, *D;/,

Hund‘s rules regarding ground states
(mimimal interelectronic repulsion):

1) Maximal S,
2) maximal L if various states with maximal S exist

3) minimal J (shell less than half-full);
maximal J (shell more than half full)

E?
2
Osi2 E=%2 (2 —6-2) =

’D

I

15 3
2D3/z E=1/27\,(: —6-2) =_ %k




The d? ions: Ti?*, V3*, Cr*, Mn>*: 2 electrons in 5 orbitals

11

M, M, 1 0

4 2+2-

3 2+1¢ 2+1°,1*2"

2 2'0° 2+07,0%27,1*1"

1 2+1%,1*0 2+-1°, 2--1%, 107, 0*1-

0  2+2+1+1* 2427, -2*2°,-1*1, 1*-1, 0*0'
1 -2+1*-1*0* -2*1°, -2°1%, 017 -1*0"

2 -2*0° -2:0* -2+0--1*-1-

3 2t 2417 ,-2°1

-4 2+

Mother States: ‘G, 3F, 'D, 3P, and 1S

-1

21

20
21,10
-2°2°,1-1

-271%-10

-2°0
-2°-1

1

1

etc: 45 permutatio
Consistent with Pa

ns
uli

In total there are 45 distinct states, having degeneracies 9, 3x7 = 21, 5,3x3=9,and 1




Partial removal of degeneracy due to spin-orbit coupling: the case of d? ions

Degen. Degen.
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Electronic Structure of

Transition Metal Complexes:

Principal Effect: in transition metal ions the degeneracy of the open-shell d-electrons is removed by electrostatic
repulsion effects by the electrons of surrounding ligands. The effect depends on how the ligands are oriented relative

to the d-orbitals. The symmetry aspects

of this problem make it an important application field of group theory

d2_2 d,2

1. The situation for the free metal ions

Aside from the electronic ground state there are the various possible excited electronic states,

Examples: (electronic ground states in_res

d)

23 |24 |25 |26 |27 |28 |29

V3+*(d?) states 3F,, 1D, 3P, 1G, 1S L
Cr3* (d3): states “F;,, *P, 2P, 2F, 2G, 2H, 2D
Mn3* (d%): states °D,, 3H, 3G, 3F, 3D, I
Mn2#(d®): states °S ,, 4G, “D, *F, ,
Fe2*(d®): states °D,, 3H, 3G, 3F, 3D, 1I
Co?*(d’): states “F,,, *P, 2P, 2F, %G, ?H, 2D
Ni2* (d®): states 3F,, !G, D, 3P, 1S

Paul Gordan, 18371912 o]

U. Erlangen

- ,Hole formalism*“

. 2
Cu?*(d?): states D5/, and 2D3/2 - Alfred Clebsch, 1833-1672 &

U. GielSen, Gottingen



2. The situation in the metal complexes (Crystal field theory)

Besides the Coulombic attraction between the central metal atom and the negatively charged (or polarized) ligands, there
Is an electrostatic repulsion between the d-electrons situated on the central metal ions and the ligands in their coordination
environment. The strength of the repulsion depends on the mutual orientation of the ligands relative to the d-orbitals. This
produces energy level differences which correspond to the electromagnetic wavelengths in the UVIS region. Responsible
for the colored appearance of many transition metal salts and complexes.

d-Orbitals and Ligand Interaction

(Octahedral Field)

Ligands
approach
metal

-y
X

dy2 - y2

7’
, 7 d-orbitals pointing directly at axis are

e affected most by electrostatic interaction

7’
7’
’
/ 3 : z
’ 3
/
7’
7/
\ ~ -~V
\ " el o’ e
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\ X X X
\
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d-orbitals not pointing directly at axis are least
affected (stabilized) by electrostatic interaction

The symmetry — related aspects of this
Problem can be addressed by the group
theory formalism: Qualitative assesment of
optical absorption spectra in terms of:

1) the number of differentiable energy levels
(extent of degeneracy removal)
2)Coordination preferences of the ions
3)Transition probabilities and selection rules
4) Transition linewidths and intensities

Limitations:

1) Qualitative — no exact calculations

2) No exact information about energy ordering
3) Spin-orbit coupling effects are neglected
(require an extension of the theory, (Double
group, and experimental study by EPR).



The simplest case: electron configuration d*: Ti3*, V4*, Mn®* ) ,
- . Free ion term symbol D

In an octahedral coordination environment

General form of the wave function: Y = R(r)©(0) ®(d) ¢(s)

Parts R(r) and ¢(s) have no orientation dependence

Orientation dependence of part 6(0) can be disregarded by choice of coordinate system

Only orientation dependence of ®(¢$) must be considered. The five wavefunctions differ
with respect to the orientational quantum number m: 2,1, 0, -1,-2
(because | =2 for d-electrons).

Thus, the basis relevant to this problem is 5-dimensional, consisting of the five
orthogonal d-wavefunctions.

d(d) = exp imp

For each group considered, we have 5x5 matrices to describe the symmetry
operations. Again, all that matters are the characters of these symmetry operations



Again, the symmetry operation is described by a matrix multiplying a 5-dimensional vector

Transformation matrix — rotation by a

exp + 2ip exp + 2i(d + a) / exp2ia 0 0 0 0 \ exp + 2ip
exp + id Rotate exp + i(Pp + ) 0 expia 0 0 0 exp + ip
exp 0o by o exp 0(dp+ ) _ 0 0 expOoa 0 | 0 exp Qd)
exp — i} exp — i(d + o) 0 0 0 exp—ia O exp — ip
exp — 2id exp — 2i(d + o) \ 0 0 0 0 exp-— Zia) exp — 2ip

Thus, our representation of the group is the set of 5-dimensional transformation matrices for all the symmetry
operations that occur in the group. This representation is generally reducible, and the characters characterizing
the symmetry operations are again denoted y.

Y= exp(2ia) + exp(ia) + exp(0a) + exp(—ia) + exp(—2ia)

This is the relevant formula for L = 2 (a single d-electron). For other electronic states with different L values our
Representation is 2L+1 — dimensional, and the trace will have 2L+1 summation terms, with m, values ranging from L,
L-1,......to —L. The above formula then turns into

%:=exp(Lia) + exp((L — 1)ia) +..... + exp(—Lia) (there are 2L+1 terms)



This summation can be written as:  y,= exp(—Lia) le(l;o(exp(ioc))k

exp(ia(2L+ 1))—1
exp(ia)—1

For the summation we may write: le(l;o(exp (io())k =

Proof: Substituting x = exp(ia) the summation reads:

YEL (k= x4 X214 ..., +1 We multiply both sides by x-1
(x-1) le{';o(x)k = 2 4 2l 4 ......... +X - x2L-x21- ... -1
2L k — y2L+1
X-1 “o(x)%=x41 -1
( ) Zk_o( x)2L+1 -1

le{l;o(x)k = W
exp(ia(2L+1))-1
exp(ia)—1

Re-substituting x = exp(ia), we see that Y ;- (exp (ia))k =

exp(ia(2L+1))-1
exp(ia)—1

Using this result in A we get {;= exp(—Lia) YL ,(exp(ia))¥ = exp(—Lia)

. i . . 1 . 1
o= exp(ia(L+1))—exp —iLa _ exp(1a(L+1/2))exp% —exp —iLa  exp ia(L+3;) —exp —ia(L+3)
T -_— - -—

exp(io)—1 exp(io)—1 exp(5)-exp(—)



Our result corresponds to:

sin(L+%)a

1=

sin o/2

Irreducible representations of the electronic states in octahedral complexes

Relevant group: O,, but can be simplified to O, because both groups differ only in the existence of a center of inversion,
Which is absent in the group O. In the group O, there exist irreducible representations of both types g and u. However,
d-orbitals always belong to a g-representation. Their wave function is always of the form (x,y,z) = ¥(-x,-y,-2)

z ¢, orbitals y L
3dzz 3dxz_yz
X X
Yy
t,q orbitals

linear

" 4 < z
3d,, 3d,, 3d,,
X A
E 8 C3 3 4

s 4
G 6C 6C,

0
(432)
A 1 1 1 1 1 X4y 4
A, 1 1 1 -1 -1
E 2 -1 2 0 0 (227 —x =y,
NENCESY)
T, 3 0 -1 1 -1 (x.y,2)
(Rxa Ry, R:)
T, 3 0 -1 -1 1 (xy, xz, y2)

J 3C, = . quadratic cubic
Oh E 8C31 GCZ 6C| (C4P 1 55“ 880 3°h 6°d [:‘:::;::ggz' fanctions Asmetions
i —t
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Tlg +310 |[-2 +1 -1 *31+1 |0 -1 -1 (Ry, R»,.Rl)
Ty [+3f0 [+1 |1 |1 «311 o |1 =1 (x2, yz, Xy)
A *1]+1 |[+1 [+1 |21 4§41 |4 |41 |4
Azglf*1]*1 (<1 |1 |+ 1]+ |[-1 |1 "1 Xyz
B [+2]1 o Jo [+2 200 [+1]2 |o
3 ol 3 2oy ulzlexs
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Tw 3]0 [[+1 {1 |4 3|1 {0 f§+1 |1 [x(z2-y2), W22-x2), 20x%y2))




Characters of the reducible representation for Developing the irreducible representation

the five classes E, C;, C,;, C,, C,f using the decomposition formula
sin(L+2)a _1 1Ry =1 1 (¢) =
Yo 2 3= - 2pXr(R) X" R) =2 xy(c)e(c) xMe) =
T sin a/2
(E) 5 where the g(c) are the number of operations belonging to the same class
X1 =
(C )_ sin5T/4 1 an = i(snxl + (-1)x6x1 + (-1)x8x1 + 1x6x1 + 1x3x1) =0
Kr\al= G /4 ap, = i(lexl + (-1)x6x(-1) + (-1)x8x1 + 1x6x(-1) + 1x3x1) = 0
sin51t/3
Y7 (C3) = o n//3 =-1 a = i(lexZ + (-1)x6x0 + (-1)x8x(-1) + 1x6x0 + 1x3x2) = 1
Y (C ) _ sinbm/2 1 ar, = i(5x1x3 + (-1)x6x1 + (-1)x8x0 + 1x6x(-1) + 1x3%x(-1) =0
T2 S_in /2 ar, = i(5><1x3 + (-1)x6x(-1) + (-1)x8%0 + 1x6x1 + 1x3x(-1) =1
n_ Sin5m/2 24
X7 (C)= 1

sin /2 M(d'on) = Eg + Ty,



This corresponds to the known result we can already arrive at by inspection.

Negative charges
distributed uniformly

Negative charges
over surface of a sphere

located at vertices
of an octahedron

4 3
5%
. / ‘ 2
Metal cation, C=A,
Mn+ // tZg v \\ 5
E N dxy dy, dyz \
Q /,/ \\ B eg
/. //T
B — \ Ao
A ¥ t2g
(a)

Electrostatic attractions
(+/—) considered



Octahedral versus Tetrahedral Coordination and d! vs. d?
single electron vs single hole

Coord  Tid*d?
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Tetrah. E
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Jahn-Teller Effect

Degenerate ground states suffer geometric distortions that remove the degeneracy
lowering the overall energy of the complex. Here O, -> D,,, distortion

Cu2+ Ti3+
. e
xe_yz 9] - 22
52 x2-y2

;

Hermann Arthur Jahn Edward Teller
1907-1979 1908-2003
U. Southampton U. Chicago, Los
. Alamos, Florida Inst.
, Correlation table of

Technol, LLNL, UCD,
 Terms generated by symmetry reduction "

‘

—
Xy 0, o T, o, D, C.. C,. 0, D, C..
—~— t29 Xz ¥z A dy, Myl A, A, A, A, A, A,
' . A K B, B, A, A, 5 B
Xz yz — 1 '-:"" xy 1| B B B A By A B A+ E  ALEA E, E A, +B
- ~ ! Be T T Au+B Mm+E A+ A +B 4B, Ay+E  A+B  A+2D
2e T T, B, +E, B,+E B, +E A, +B, + B, A, +E, A, + E 2A,+ B,
I tl z com ression Al. :I :3 gll gl gl Al :l- :l gu
In 2 1 Iw ] 2 ] v 2 v
< €longation P E, E E A +B,, A +B, A, +B, A +A, . 3 A, + B,
2 long 4 short 2shortdlong 7, 7 7, AL+E B, +E A +E A +B,+B, Ay,+E, A, +E A +2B,
T T B, +E, A, + E B, +E A, + B, + B, A, +E, A, + E 24,4+ B,




Systems d? (V3*, Cr**, Mn>*) and d® (Ni%*) in octahedral crystal field

Inspection no longer possible, group theory needed. There are two principal effects
1) Intra-atomic interelectronic repulsion
2) Interelectronic repulsion d-electrons/ ligand electrons.

Different cases to be distinguished:

Weak ligand field case: Mother states still dominate, ligand field makes a perturbation
Extremely strong field case: intra-atomic repulsion is neglected
Strong-field case: Intra-atomic repulsion is a perturbation to the extremely strong field case

Weak field case: Spin multiplicity of the mother state is preserved.

L
1S 0 . EEEee——) 1A1
lG 4 _ sin(L+§)a ) 1F 4 1T1 + 1'|'2 + 1A1
3p 1 1= Tdin o/2 m—) 3T,
1 1E + 17
D 2 —— 2
3T, + 3T, + 3A
3 > 1 2 2
F, 3



The extremely strong-field and the strong field cases for d?

141
elt,

t,?

No inter-electronic
repulsion

E+A +A,

2T, + 2T,

A+E+T, +T,

weak inter-
electronic repulsion

4
O| E 8C3 3C2 6C4 6C2

Aq 1 1 1 1 1

Ay 1 1 1 -1 -1

E 2 —1 2 0 0

Tq 3 0o -l 1 -1

T, 3 o -1 -l 1

Interelectronic repulsion via direct product formation
ExE 4 1 4 0 0
T,xE 6 0 -2 0 0
T,xT, 9 0 1 1 1

3
1 Decomposition formula

Irreducible representations



Assigning spin multiplicities by the method
of descending symmetry

Consider the case of d? in octahedral ligand field. Inter-eletronic repulsion produces the states E + A1 + Az
Forthe eg2 state the distribution possibilities are: But we do not know their spin multiplicities
I ‘ ] ] Solution: lower the symmetry : O, -> D,

The correlation table tells us A, -> A,

AZg -> B1g
triplet singlet singlet Eg > A+ By
In the reduced symmetry, the two e, orbitals have different energies. Now the distribution possibilities are:
1 2 3 4 . : .

Only distribution 1 produces a triplet back-correlation to O,

ay, | 11 1 ay, X b= By, triplet -> Ay
2 a;p X b= By, singlet -> 'E,

by, I I Il 3 by, x b= A, singlet -> 'E,
4 g X a1,= Ay, singlet -> A,

This procedure has told us that the E, state is a singlet and the A, state is a triplet. The cases e,t,, and t,,?
i . -~ 3 3 1 1
can be treated in the same way: egt22g > 1T1g + 1Tzg +3 Ty, +1 Ty
tyy > A+ B+ 5T + 7T,



Orgel diagrams: Plot of Energy versus ligand field strength A

Strength of the ligand repulsion

Assembling the Orgel diagram

1:1 Correspondence of
weak-field and strong-field states.

Connect state by lines

Non-crossing rule for state belonging to ~ Leslie Orgel
the same irreducible representation. 1927-2007

They characterize the same relative U. Cambridge,
' : : Salk Inst. San
symmetry of ligands relative to d-orbitals Diego

and thus respond to a change in A in
the same direction.

Sel e ry:2
2 =
le
Free Weak Interaction Strong Interaction == Strong
Ion \ J Interaction

Real complexes




Tanabe-Sugano diagrams:

Plot of E/B versus A/B, where B = energy of interelectronic repulsion
(Racah parameter) weak field -> strong field
Abscissa is identical with the energy of the electronic ground state

70 -
d 2
60
™ Giulio Racah
50{ 1909-1965
Hebrew. U
Jerusalem
40 -
E
B
30 -
1(,,7
20
':P
l oD‘ Satoru
Sugane,
3 ) 1928-
10 U. Tokyo,
Himei Inst.
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Spectroscopic Aspects: 19021971

Basis for discussion: The Tanabe-Sugano Diagrams.

1. Only the electronic ground state is populated
2. Spin multiplicity is always conserved upon the transition

Otto Laporte

U. Michigan

3. Selection rules: [ Qr®T For octahedral complexes x,y,z belong to the representation T,
These direct I_tng ®I_X®|_¢e While ), and {, always belong to a representation of type g.
products must g y Pe Transitions are forbidden (Laporte rule). True for all ligand fields
be analyzed rq,g ®FZ ®|_¢e with a center of symmetry
Transition Moment Integral : M= <, [u] b >=< U, |p, + K| L. > Wave function contains vibrational

Wave function for the electronic ground state: U, = W(el), W(vib), = b, W(orb), b(vib),
Wave function for the electronic excited state: _ = W(el), W(vib) = b . w(orb), w(vib),

zero due to orthog.
|

orbital and spin parts.
K, acts on vibrational part
M. acts on orbital part

Franck-Colndon factor

M= <, blorb), | b, Wlorb), >< b(vib), [, | bvib), >+ <(vib) | blvib),> < W,, borb), [w| b, blorb), >
M= <W(vib),| Wivib), > <, Wlorb), [uel .. blorb), > = <W(vib),| W(vib),> < b [W..> < W(orb),[u,| W(orb), >

<y, |, >=0if the spin wave functions of ground and excited state are different. -> spin multiplicity is conserved

< Y(orb),|u. | W(orb), subject to orbital selection rule (group theory)
<y(vib),| P(vib),> non-zero because they refer to different electronic states.



Vibronic Coupling

Relaxation of the Laporte rule due to vibrational modes that break the inversion center. (vibronic coupling).
We can see this when we consider the vibrational part of the complete wavefunction

qug S I r-.pe Wave function for the electronic ground state: b, = b(el), Y(vib),

qug ®ry®r¢,e Wave function for the electronic excited state: U_ = W(el), W(vib),

The transition moment Integral is given by:

M= <, |ul b, >=<b(el), dvib), [u]b(el), blvib), >

Thus we must consider the 5-factor direct products of the type:

M wib)e®N e, My 00 Ty win)®) Npel e

Where T i) = A, (vibrational ground state of the ground state electronic wave function)
If the electronic transition results in the population of the first excited vibrational level of the excited electronic
State, I ,in)e IS the same as the irreducible representation of the mode itself.

The Laporte rule is relaxed because the electronic transition ( which normally occurs from the vibrational ground level) is
accompanied by vibrational transitions.



The reason for having the vibrational wave function of the electronic excited state represented by the one representing
the vibrational mode itself lies in the fact that owing to the Franck Condon principle, a substantial fraction of the molecules
end up in a vibrationally excited state with n =1 (or 3, etc)

1. Optical transition is
much faster than
vibrational motion

2. Internuclear
distance

in the optical excited
state is larger than in
the ground state

Edward Condon

>

% James Franck 1902-1974

g 1882"'15_964 US Government,
U. Gottingen, Washington U.,
Johns Hopkins U. U. Colorado, Boulder

U. Chicago,
1.Upon electronic excitation = Nobel Prize 1925
the molecule ends up
In various excited vibrational
states.
2.Due to this fact, vibronic coupling

is possible, relaxing the Laporte
Internuclear distance e

o I'o



To relax the Laporte rule, the vibrations have to be of type u

Electronic transitions are much faster than the vibrational motion. From the viewpoint of electronic spectroscopy
the sample is a collection of molecules in different stages of vibrational motion. If the vibrational analysis produces
normal modes of type u (it always does), the Laporte rule is relaxed, because the sample always contains molecules

whose center of symmetry is broken by the vibrational motion.



Spectroscopic
observables:
1)Frequency -> A (nature of the

ligand/spectrochemical series)
2)Linewidth -> transition

Assignments/unresolved splittings

3)Peak splittings -> J.T. effects

Range of transition
energies = width of
the spectrum

N 2 N i I
15000 20000 25000 30000 35000
Wavenumber |cm'1|

Fig. 1. Polarized absorption spectra of Cs3VCl2(H20)4 at 80K [9].
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A walk through the first transition metal series

dl Ti3+ V4+ Cr5+ Mn6+

*T,; ->%E, octahedral
2E -> 2T, tetrahedral

Jahn-Teller distortions will always occur,
Strongly distorted V4+: ,vanadyl“ VO?%*

A increases with increasing charge of the
central ion:

Intensity (a.u.)

§+
a Ba,( PQQ, Mn  phosphor, b undoped BaS()4 crystal

* 6 S
¢ BaSO4 Mn® " crystal, d BaS()J(.\ln .Mn )crystal

300 400 500 600 700 800 900 1000 1100 1200
Wavelength (nm)



edral LF:
Ty -> 3Ty,
Ty -> 3Ty,
Ty > Ay,
J-T distortions
Range of transition

energies = width of
the spectrum

3 i glJP)

Tae('F)
4k

N N L 1 I
15000 20000 25000 30000 35000
Wavenumber [em™']

Fig. 1. Polarized absorption spectra of Cs3VCl2(H20)4 at 80K [9].
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d3 V2* Cr3* Mn#+

Cr3* absorption in phosphate glasses

! (b)
E *T(F)
_=
3
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7 i B / / /
’3 ’ // \N/ \-\\‘ BaLaAP_~~ /
- / I ! Ko i O
|/ \NaKLa Ap/
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g - |
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* Spectrochemical Series: An order of ligand
field strength based on experiment:

Weak Field 1- < Br< S>< SCN< ClI<

edral LF:
strongly preferred 60 -
No J-T distortion
a4 a4 J
4 4
4 *
E
B
30 -
2
P
H
G
‘p
10 -
‘F

NO;< F < C,0,2< H,0< NCS<
CH;CN< NH;i< en < bipy< phen<
NO, < PPh;< CN< CO ‘Strong Field‘

A e s ipes

Ethylenediamine (en)

2,2'-bipyridine (bipy) 1.10 - penanthroline (phen)



4
d Cr2+ Mn3+

Absorption spectrum of Mn-containing phosphate glass
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80

Fe3+’ M n2+

High-spin ground state °A,
No spin-allowed transitions
Weak forbidden transitions
Mn?* complexes are colorless
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Fig. 11.41 Absorption spectrum for octahedral MnF,. Note the narrow lines. [From Lever,

A. B. P. Inorganic Electronic Spectroscopy; 2nd ed.; Elsevier: New York, 1986; p 451. Used

2
r?l with permission.|
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dsé Fe2*, Co3* High-spin: °T,,->°E,  J-T effect

A, A, A, SE \E O | 1 -
" 20 Ay Ay Ey E, Low-spin: 1A1g -> 1T1g No J-T effect
‘ / Ay, 2 P Alg -> TZg
70 > Spin Transition in hemoglobin upon binding to O,
60 :Tz" °7
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Spectrochim. Acta 188 (2018), 507
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Co?*in glasses: metal in tetrahedral and octahedral
Coordination. Tetrahedral coordination gives rise to
Intense blue color of Co in glasses.

fawicT 1
Optical transitions of Co2 + in tetrahedral (T,) and octahedral (0,) coordination.

Transition Range (nm)
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d8

Ni2+
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Octahedral LF:

No J-T distortions
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Band position very sensitive to ligands.

d® | Cu?* -
0.6
0.5
3
2 2 € 04
Ty ->°E;  tetrahedral g
E -> 2T, octahedral < 02
0.1
0 | 5
Very strong Jahn-Teller effects from 900 800 700 600 500 400
Octahedral coordination: Wavelength (nm)
Figure 1. Spectra (absorbance vs. wavelength) for the species
CuF,: 4 ligands at 193 pm (in plane) [Cu(H,0)6)* ( ), [CU(EDTA)]? (- ——-), and [Cu(en),(H,0),)?*
2 ligands at 227 pm (along C,) fromon.om )

CuBr,: 4 ligands at 240 pm (in plane)
2 ligands at 320 pm (along C,)



Optical Spectra of the transition metal aquo complexes in solution




