
Electronic Spectroscopy

Electronic Transitions between Quantized Electronic Energy levels

Zeeman states spin orientations (mS) EPR Spectroscopy 109-1011 Hz (microwaves)

Valence electron orbital and spin UVIS Spectroscopy
States (AO or MO) angular momentum (L, S, J) (absorption/luminescence) 1014-1016 Hz (UVIS)

Inner-shell principal quantum number, XPS, Auger-Spectroscopy 1017-1019 Hz (X-rays)
Electronic states orbital quantum number (n, L) EXAFS



Electronic Structure of Matter:
The H atom.

• Exact solutions to the Schrödinger-equation: quantized energy levels, characterized by numbers n, l, ml
and ms, and wave functions RnlYlm where n is a natural number and 0 ≤ l ≤ n-1. 

• The Ylm are the angular momentum eigenfunctions (spherical harmonics). 

• The radial parts Rnl are obtained by the variable separation method. 

• Spin is introduced via postulate of Goudsmit and Uhlenbeck: S =1/2; ms = ½,-½  

• n=1: R10Y00

• n=2: R20Y20 R21Y10 R21Y11    R21Y1-1

• n=3: R30Y00 R31Y10     R31Y11 R31Y1-1 R32Y20 R32Y21 R32Y2-1 R32Y22 R32Y2-2

• n=4: R40Y00 R41Y10     R41Y11 R41Y1-1 R42Y20 R42Y21 R42Y2-1 R42Y22 R42Y2-2

R43Y30 R43Y31 R43Y3-1 R43Y32 R43Y3-2 R43 Y33   R43Y3-3

l = 0: s electrons, l = 1: p-electrons, l = 2: d electrons, l = 3: f electrons

E =  
𝒁𝟐𝒎𝒆𝟒

𝟖 𝛆𝟎
𝟐𝒉𝟐

×
𝟏

𝒏𝟐
Quantized energies depend only on n

Pauli principle: no two electrons within an atom can have the same set of quantum numbers. 

Erwin Schrödinger
1887-1961
U. Zürich, Graz, Wien
Nobelprize 1933

Wolfgang Pauli
1900-1958
ETH Zürich
Nobelprize 1945



Radial parts of the electronic wave function



Electronic Structure of Matter:
Many-electron atoms

inter-electronic interactions make exact solutions impossible. Only approximate solutions. The vectorial
coupling of spin and angular momenta creates multiple electronic states with different strengths of inter-
electronic repulsion -> different energies for different states of L.

Russel-Saunders coupling:  L = σ𝓵𝑖 where L = { l1+l2, l1+l2 – 1, l1+l2 – 2,…. l1-l2}
where S =  {s1+s2, s1+s2 – 1, , s1+s2 – 2,…. s1-s2}

J = {L+ S, L+ S -1, L+ S-2, …..|L-S|}   2J+1  orientational states
S = σ𝓼𝑖

Coupling of the angular momenta belonging to filled (sub-)shells always results in S, L  = 0.
Terminology: use of term symbols 2S+1 LJ

For the symbol L we choose S, P, D, F, G, H, I
characterizing L-values of 0, 1, 2, 3, 4, 5, 6

2S+1 is the orientational spin multiplicity

Hund‘s rules regarding ground states
(mimimal interelectronic repulsion):

1) Maximal S,
2) maximal L if various states with maximal S exist
3) minimal J (shell less than half-full); 

maximal J (shell more than half full)

1877-1957
Princeton U.

Frederik Saunders
1877-1963
Syracuse U.

Vector addition
(1925)

Friedrich Hund
1896-1997
U. Rostock, Leipzig,
Jena, Frankfurt,
Göttingen



Examples of ground state term symbols
• H atom: 1s1 2S1/2 C atom:    1s22s22p2 3P0

• He atom: 1s2 1S0 N atom: 1s22s22p3 4S3/2

• Li atom: 1s22s1 , 2S1/2 O atom: 1s22s22p4 3P2

• Be atom: 1s22s2 1S0 F atom: 1s22s22p5 2P3/2

• B atom: 1s22s22p1 2P1/2, 2P3/2 Ne atom: 1s22s22p6 1S0

ML MS 1 0       -1
2 1+1-

1 1+0+ 1+0-, 0+1- 1-0-

0 1+-1+ -1+1-, 1+-1-, 0+0- 1--1-

-1 -1+0+ 0+-1- ,-1+0- -1-0-

-2 -1+-1-

Example:  Electronic states of the C-atom

Addition of orbital angular momenta of two electrons: L = l1+l2, l1+l2-1, …l1-l2 -> L = 2, 1, 0
Addition of spin angular momenta of two electrons: S = s1+s2, s1+s2-1, ….s1-s2 -> S = 1,0
ML = ml1+ml2;    MS = mS1+mS2 . Respecting the Pauli Principle we arrive at the following mother states: 

Mother states L, total degeneracy (2S+1)(2L+1)
L = 2; 1D, 5-fold degenerate, J=2
L= 1; 3P, 3×3-fold degenerate, J = 2,1,0
L= 0; 1S, non-degenerate, J = 0

Result: 1D2, 3P2, 3P1, 
3P0

1S0

Hund‘s rules: ground state is 3P0



Spin-orbit coupling
• Vectorial coupling: J = L + S  vector operators

J2 = (L + S)2 = L2 + S2 + 2LS
LS|L,S,J,mJ> = ½ (J 2- L 2 –S2)|L,S, J, mJ>

LS|L,S,J, mJ> = ½ ћ2(J(J+1) – L (L+1) – S(S+1))|L,S,J, mJ> 

Spin orbit coupling Hamiltonian: HLS = l L S l > 0 if shell is less than half filled
l < 0 if shell is more than half filled

Eigenvalues:
ELS = l ½ ћ2(J(J+1) – L (L+1) – S(S+1)) 

Hund‘s rules regarding ground states
(mimimal interelectronic repulsion):

1) Maximal S,
2) maximal L if various states with maximal S exist
3) minimal J (shell less than half-full); 

maximal J (shell more than half full)

Example d1 (Ti3+ , V4+ ): Termsymbols 2D3/2,
2D5/2

2D

E

2D3/2

2D5/2

E = ½ l(
15

4
– 6 -

3

4

l: spin-orbit coupling constant

)  = -
3

2
l

E = ½ l(
35

4
– 6 -

3

4
)  = l



ML MS 1 0       -1
4 2+2-

3 2+1+ 2+1-,1+2- 2-1-

2 2+0+ 2+0-,0+2-,1+1- 2-0-

1 2+-1+,1+0+ 2+-1-, 2--1+, 1+0-, 0+1- 2-1-,1-0-

0 2+-2+ 1+-1+ 2+-2-, -2+2-,-1+1-, 1+-1-, 0+0- -2-2-,1--1-

-1 -2+1+ -1+0+ -2+1-, -2-1+, 0+-1- ,-1+0- -2+1+-1-0-

-2 -2+0+ -2-0+ ,-2+0- -1+-1- -2-0-

-3 -2+-1+ -2+-1- ,-2-1+ -2--1-

-4 -2+-2-

Mother States: 1G, 3F, 1D, 3P, and 1S

The d2 ions: Ti2+,  V3+, Cr4+ , Mn5+: 2 electrons in 5 orbitals

In total there are 45 distinct states, having degeneracies 9, 3x7 = 21, 5, 3x3 =9, and 1

etc: 45 permutations
Consistent with Pauli



Partial removal of degeneracy due to spin-orbit coupling: the case of d2 ions

1D

E

3F

3P

1G

1S 1S0

1G4

3P2
3P1
3P0

1D2

3F4
3F3
3F2

l

-l
-2l
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- l

3l
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Aside from the electronic ground state there are the various possible excited electronic states, 
whose term symbols can be worked out obeying the Clebsch-Gordan rules, (not discussed here):
Examples: (electronic ground states in red)
Ti3+ (d1): states 2D3/2 and 2D5/2

V3+ (d2) states 3F2, 1D, 3P, 1G, 1S
Cr3+ (d3): states 4F3/2, 4P, 2P, 2F, 2G, 2H, 2D 
Mn3+ (d4): states 5D0, 3H, 3G, 3F, 3D, 1I
Mn2+(d5): states 6S5/2, 4G, 4D, 4F, 2I, 
Fe2+(d6): states 5D4, 3H, 3G, 3F, 3D, 1I
Co2+(d7): states 4F9/2, 4P, 2P, 2F, 2G, 2H, 2D 
Ni2+ (d8): states 3F4, 1G, 1D, 3P, 1S
Cu2+(d9): states 2D5/2 and 2D3/2

„Hole formalism“

U. Gießen, Göttingen

U. Erlangen

Electronic Structure of Transition Metal Complexes: 
Principal Effect: in transition metal ions the degeneracy of the open-shell d-electrons is removed by electrostatic
repulsion effects by the electrons of surrounding ligands. The effect depends on how the ligands are oriented relative 
to the d-orbitals. The symmetry aspects of this problem make it an important application field of group theory

1. The situation for the free metal ions



2. The situation in the metal complexes (Crystal field theory) 
Besides the Coulombic attraction between the central metal atom and the negatively charged (or polarized) ligands, there
Is an electrostatic repulsion between the d-electrons situated on the central metal ions and the ligands in their coordination
environment. The strength of the repulsion depends on the mutual orientation of the ligands relative to the d-orbitals. This
produces energy level differences which correspond to the electromagnetic wavelengths in the UVIS region. Responsible
for the colored appearance of many transition metal salts and complexes.

The symmetry – related aspects of this
Problem can be addressed by the group
theory formalism: Qualitative assesment of
optical absorption spectra in terms of:

1) the number of differentiable energy levels
(extent of degeneracy removal)
2)Coordination preferences of the ions
3)Transition probabilities and selection rules
4) Transition linewidths and intensities

Limitations:
1) Qualitative – no exact calculations
2) No exact information about energy ordering
3) Spin-orbit coupling effects are neglected
(require an extension of the theory, (Double 
group, and experimental study by EPR).



The simplest case: electron configuration d1: Ti3+, V 4+,  Mn6+

In an octahedral coordination environment
Free ion term symbol 2D

General form of the wave function: ψ = R(r)Ө(θ) Ф(ф) ϕ(s)
Parts R(r) and ϕ(s) have no orientation dependence
Orientation dependence of part Ө(θ) can be disregarded by choice of coordinate system

Only orientation dependence of Ф(ф) must be considered. The five wavefunctions differ
with respect to the orientational quantum number ml: 2, 1, 0, -1,-2  
(because l =2 for d-electrons).

Thus, the basis relevant to this problem is 5-dimensional, consisting of the five
orthogonal d-wavefunctions.
Ф(ф) = exp imlф

For each group considered, we have 5×5  matrices to describe the symmetry
operations. Again, all that matters are the characters of these symmetry operations



Again, the symmetry operation is described by a matrix multiplying a 5-dimensional vector

exp+2iф
exp + iф

exp 0ф
exp − iф
exp − 2iф

exp+2i(ф + α)
exp + i(ф + α)

exp 0(ф + α)
exp − i(ф + α)
exp − 2i(ф + α)

Rotate
by α

exp+2iф
exp + iф

exp 0ф
exp − iф
exp − 2iф

= 

𝑒𝑥𝑝2𝑖α 0 0 0 0
0 𝑒𝑥𝑝𝑖α 0 0 0
0 0 𝑒𝑥𝑝0α 0 0
0 0 0 𝑒𝑥𝑝 − 𝑖α 0
0 0 0 0 𝑒𝑥𝑝 − 2𝑖α

Transformation matrix – rotation by 𝛂

Thus, our representation of the group is the set of 5-dimensional transformation matrices for all the symmetry
operations that occur in the group. This representation is generally reducible, and the characters characterizing
the symmetry operations are again denoted cT . 

cT = 𝐞𝐱𝐩(𝟐𝐢𝛂) + 𝐞𝐱𝐩(𝐢𝛂) + 𝐞𝐱𝐩(𝟎𝛂) + 𝐞𝐱𝐩(−𝐢𝛂) + 𝐞𝐱𝐩(−𝟐𝐢𝛂)

This is the relevant formula for L = 2 (a single d-electron). For other electronic states with different L values our
Representation is 2L+1 – dimensional, and the trace will have 2L+1 summation terms, with mL values ranging from L, 
L-1,……to –L. The above formula then turns into

cT = 𝐞𝐱𝐩(𝐋𝐢𝛂) + 𝐞𝐱𝐩( 𝐋 − 𝟏 𝐢𝛂) +….. + 𝐞𝐱𝐩(−𝐋𝐢𝛂) (there are 2L+1 terms)   



This summation can be written as:      cT = 𝐞𝐱𝐩(−𝐋𝐢𝛂)σ𝐤=𝟎
𝟐𝐋 𝐞𝐱𝐩(𝐢α) 𝐤 A

For the summation we may write:  σ𝐤=𝟎
𝟐𝐋 𝐞𝐱𝐩(𝐢α) 𝐤 =  

𝐞𝐱𝐩 𝐢𝛂 𝟐𝐋+𝟏 −𝟏

𝐞𝐱𝐩 𝐢𝛂 −𝟏

Proof: Substituting x = exp(i𝜶) the summation reads:

σ𝐤=𝟎
𝟐𝐋 𝒙 𝐤 = x2L + x2L-1 +……….+1

(x-1) σ𝐤=𝟎
𝟐𝐋 𝒙 𝐤 = x2L+1 + x2L +……….+x - x2L - x2L-1 -……….-1

(x-1) σ𝐤=𝟎
𝟐𝐋 𝒙 𝐤 = x2L+1 -1

σ𝐤=𝟎
𝟐𝐋 𝒙 𝐤 = 

x2L+1 −1

(x−1)

Re-substituting x = exp(i𝜶), we see that σ𝐤=𝟎
𝟐𝐋 𝐞𝐱𝐩(𝐢α) 𝐤 =  

𝐞𝐱𝐩 𝐢𝛂 𝟐𝐋+𝟏 −𝟏

𝐞𝐱𝐩 𝐢𝛂 −𝟏

We multiply both sides by x-1

Using this result in A we get cT = 𝐞𝐱𝐩(−𝐋𝐢𝛂)σ𝐤=𝟎
𝟐𝐋 𝐞𝐱𝐩(𝐢α) 𝐤 = 𝐞𝐱𝐩(−𝐋𝐢𝛂)

𝐞𝐱𝐩 𝐢𝛂 𝟐𝐋+𝟏 −𝟏

𝐞𝐱𝐩 𝐢𝛂 −𝟏

cT =  
𝐞𝐱𝐩 𝐢𝛂 𝐋+𝟏 −𝐞𝐱𝐩 −𝐢𝐋𝛂

𝐞𝐱𝐩 𝐢𝛂 −𝟏
=  

𝐞𝐱𝐩 𝐢𝛂 𝐋+𝟏/𝟐 𝐞𝐱𝐩
𝐢𝛂

𝟐
−𝐞𝐱𝐩 −𝐢𝐋𝛂

𝐞𝐱𝐩 𝐢𝛂 −𝟏
= =  

𝐞𝐱𝐩 𝐢𝛂(𝐋+
𝟏

𝟐
) −𝐞𝐱𝐩 −𝐢𝛂(𝐋+

𝟏

𝟐
)

𝐞𝐱𝐩
𝐢𝛂

𝟐
−𝐞𝐱𝐩(−

𝐢𝛂

𝟐
)



Our result corresponds to:
cT =  

𝐬𝐢𝐧(𝐋+
𝟏

𝟐
)𝛂

𝐬𝐢𝐧 𝛂/𝟐

Irreducible representations of the electronic states in octahedral complexes

Relevant group: Oh, but can be simplified to O, because both groups differ only in the existence of a center of inversion,
Which is absent in the group O. In the group Oh there exist irreducible representations of both types g and u. However,
d-orbitals always belong to a g-representation. Their wave function is always of the form  ψ(x,y,z) = ψ(-x,-y,-z)  



Irreducible Representations of the d1 electronic states (L=2) for the group O 

cT =  
𝐬𝐢𝐧(𝐋+

𝟏

𝟐
)𝛂

𝐬𝐢𝐧 𝛂/𝟐

Characters of the reducible representation for
the five classes E, C3, C4, C2, C2‘ 

cT (E)  =  5

cT (C4)=  
𝐬𝐢𝐧𝟓π/𝟒

𝐬𝐢𝐧 π/𝟒
= -1

cT (C3) = 
𝐬𝐢𝐧𝟓π/𝟑

𝐬𝐢𝐧 π/𝟑
= -1

cT (C2) = 
𝐬𝐢𝐧𝟓π/𝟐

𝐬𝐢𝐧 π/𝟐
= 1

cT (C2‘)= 
𝐬𝐢𝐧𝟓π/𝟐

𝐬𝐢𝐧 π/𝟐
= 1

Developing the irreducible representation
using the decomposition formula

al = 
𝟏

𝐡
σ𝑹 χT(R) χ(l‘) (R) =

𝟏

𝐡
σ𝒄 χT(c)g(c) χ(l‘) (c) =

where the g(c) are the number of operations belonging to the same class

aA1 = 
𝟏

𝟐𝟒
(5×1×1 + (-1)×6×1 + (-1)×8×1 + 1×6×1 + 1×3×1) = 0

aA2 = 
𝟏

𝟐𝟒
(5×1×1 + (-1)×6×(-1) + (-1)×8×1 + 1×6×(-1) + 1×3×1) = 0

aE = 
𝟏

𝟐𝟒
(5×1×2 + (-1)×6×0 + (-1)×8×(-1) + 1×6×0 + 1×3×2) = 1

aT1  = 
𝟏

𝟐𝟒
(5×1×3 + (-1)×6×1 + (-1)×8×0 + 1×6×(-1) + 1×3×(-1) = 0

aT2  = 
𝟏

𝟐𝟒
(5×1×3 + (-1)×6×(-1) + (-1)×8×0 + 1×6×1  + 1×3×(-1) = 1

Γ(d1
Oh) = Eg + T2g



This corresponds to the known result we can already arrive at by inspection. 
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Octahedral versus Tetrahedral Coordination and d1 vs. d9

d1

d9

T2g

T2Eg

E

Coord Ti3+d1 Cu2+d9

Octah.  T2g Eg

Tetrah. E T2

single electron vs single hole

Δ

Δ

Δ

Δ

Δ

Δ

Δ
Δ

Δ
Δ

Δ

Δ

2

5

2

5

3

5

3

5



Jahn-Teller Effect
Degenerate ground states suffer geometric distortions that remove the degeneracy
lowering the overall energy of the complex. Here Oh -> D4h distortion

Cu2+ Ti3+

Correlation table of
Terms generated by symmetry reduction

Hermann Arthur Jahn
1907-1979
U. Southampton

Edward Teller
1908-2003
U. Chicago, Los 
Alamos, Florida Inst. 
Technol, LLNL, UCD, 
UCB



Systems d2 (V3+, Cr4+ , Mn5+) and d8 (Ni2+) in octahedral crystal field
Inspection no longer possible, group theory needed. There are two principal effects
1) Intra-atomic interelectronic repulsion
2) Interelectronic repulsion d-electrons/ ligand electrons.

1S
1G 
3P 
1D
3F2

L
0
4
1
2
3

cT =  
𝐬𝐢𝐧(𝐋+

𝟏

𝟐
)𝛂

𝐬𝐢𝐧 𝛂/𝟐

1A1
1E + 1T1 + 1T2 + 1A1
3T1
1E + 1T2
3T1 + 3T2 + 3A2

Different cases to be distinguished:

Weak ligand field case: Mother states still dominate, ligand field makes a perturbation
Extremely strong field case: intra-atomic repulsion is neglected
Strong-field case: Intra-atomic repulsion is a perturbation to the extremely strong field case

Weak field case: Spin multiplicity of the mother state is preserved. 



The extremely strong-field and the strong field cases for d2

E
e2

e1 t2
1

t2
2

E x E              4            1              4                0              0
T2 x E 6            0 -2 0 0
T2 x T2 9 0 1 1 1

Irreducible representations

Interelectronic repulsion via direct product formation

No inter-electronic 
repulsion

weak inter-
electronic repulsion

E + A1 + A2

2T1 + 2T2

A1 + E + T1 + T2 Decomposition formula



Assigning spin multiplicities by the method
of descending symmetry

Consider the case of d2 in octahedral ligand field. 
Forthe eg

2 state the distribution possibilities are:

triplet singlet singlet

Inter-eletronic repulsion produces the states
But we do not know their spin multiplicities
Solution: lower the symmetry : Oh -> D4h

E + A1 + A2

The correlation table tells us A1g -> A1g

A2g -> B1g

Eg -> A1g + B1g

In the reduced symmetry, the two eg orbitals have different energies. Now the distribution possibilities are:

Only distribution 1 produces a triplet back-correlation to Oh

1 a1g x b1g= B1g triplet -> 3A2g

2 a1g x b1g= B1g   singlet -> 1Eg

3 b1g x b1g= A1g singlet -> 1Eg

4 a1g x a1g= A1g singlet -> 1A1g

1 2 3 4

a1g

b1g

This procedure has told us that the Eg state is a singlet and the A2g state is a triplet. The cases egt2g and t2g
2

can be treated in the same way: egt2g -> 3T1g + 3T2g +
1T1g + 1T2g 

t2g
2 -> 1A1g + 1Eg + 3T1g + 1T2g

Overall we find 1:1 correspondence of weak-field and strong-field states.



Orgel diagrams: Plot of Energy versus ligand field strength D

Leslie Orgel
1927-2007
U. Cambridge,
Salk Inst. San 
Diego

Strength of the ligand repulsion

1:1 Correspondence of
weak-field and strong-field states.

Connect state by lines

Non-crossing rule for state belonging to
the same irreducible representation. 
They characterize the same relative
symmetry of ligands relative to d-orbitals
and thus respond to a change in D in 
the same direction. 

Assembling the Orgel diagram



Tanabe-Sugano diagrams:

Plot of E/B versus Δ/B, where B = energy of interelectronic repulsion
(Racah parameter) weak field -> strong field
Abscissa is identical with the energy of the electronic ground state

Satoru
Sugane,

1928-
U. Tokyo, 
Himei Inst.

Giulio Racah
1909-1965
Hebrew. U 
Jerusalem

d2 d3



d4 d5



d6 d7



d8



Spectroscopic Aspects:
Basis for discussion: The Tanabe-Sugano Diagrams.
1. Only the electronic ground state is populated
2. Spin multiplicity is always conserved upon the transition
3. Selection rules: ×Γψg Γx Γψe

Γψg Γy Γψe

Γψg Γz Γψe

×
× ×
× ×

These direct
products must
be analyzed

For octahedral complexes x,y,z belong to the representation T1u

While ψg and ψe always belong to a representation of type g.
Transitions are forbidden (Laporte rule). True for all ligand fields
with a center of symmetry

Otto Laporte
1902-1971
U. Michigan

Wave function for the electronic ground state: ψg = ψ(el)g ψ(vib)g = ψsg ψ(orb)g ψ(vib)g 

Wave function for the electronic excited state: ψe = ψ(el)e ψ(vib)e= ψse ψ(orb)e ψ(vib)e

Transition Moment Integral : M =  < ψg |µ| ψe > = < ψg |µn + µe| ψe > Wave function contains vibrational,
orbital and spin parts.
µn acts on vibrational part
µe acts on orbital part

M =    < ψsg ψ(orb)g | ψse ψ(orb)e > < ψ(vib)g |µn | ψ(vib)e > + < ψ(vib)g| ψ(vib)e >  < ψsg ψ(orb)g |µe| ψse ψ(orb)e >
M =     < ψ(vib)g| ψ(vib)e >  < ψsg ψ(orb)g |µe| ψse ψ(orb)e > = < ψ(vib)g| ψ(vib)e >  < ψsg|ψse> < ψ(orb)g|µe|ψ(orb)e > 

zero due to orthog. Franck-Condon factor

< ψsg|ψse > = 0 if the spin wave functions of ground and excited state are different. -> spin multiplicity is conserved
< ψ(orb)g|µe|ψ(orb)e subject to orbital selection rule (group theory)
< ψ(vib)g| ψ(vib)e > non-zero because they refer to different electronic states.



Vibronic Coupling
Relaxation of the Laporte rule due to vibrational modes that break the inversion center. (vibronic coupling).
We can see this when we consider the vibrational part of the complete wavefunction

×Γψg Γx Γψe

Γψg Γy Γψe

Γψg Γz Γψe

×
× ×
× ×

Wave function for the electronic ground state: ψg = ψ(el)g ψ(vib)g

Wave function for the electronic excited state: ψe = ψ(el)e ψ(vib)e

Thus we must consider the 5-factor direct products of the type:

Γψ(vib)g      Γψel,g Γx,y,z Γψ(vib)e     Γψel,e× × × ×

Where Γψ(vib)g = A1 (vibrational ground state of the ground state electronic wave function)
If the electronic transition results in the population of the first excited vibrational level of the excited electronic
State, Γψ(vib)e is the same as the irreducible representation of the mode itself. 

The Laporte rule is relaxed because the electronic transition ( which normally occurs from the vibrational ground level) is
accompanied by vibrational transitions.  

The transition moment Integral is given by: 
M =  < ψg |µ| ψe > = < ψ(el)g ψ(vib)g |µ|ψ(el)e ψ(vib)e >



The reason for having the vibrational wave function of the electronic excited state represented by the one representing
the vibrational mode itself lies in the fact that owing to the Franck Condon principle, a substantial fraction of the molecules
end up in a vibrationally excited state with n =1 (or 3, etc)

James Franck
1882-1964
U. Göttingen,
Johns Hopkins U.
U. Chicago,
Nobel Prize 1925 

Edward Condon
1902-1974
US Government,
Washington U., 
U. Colorado, Boulder

1. Optical transition is
much faster than
vibrational motion
2. Internuclear
distance
in the optical excited
state is larger than in
the ground state

1.Upon electronic excitation
the molecule ends up
In various excited vibrational
states.
2.Due to this fact, vibronic coupling
is possible, relaxing the Laporte
rule



To relax the Laporte rule, the vibrations have to be of type u

Electronic transitions are much faster than the vibrational motion. From the viewpoint of electronic spectroscopy
the sample is a collection of molecules in different stages of vibrational motion. If the vibrational analysis produces
normal modes of type u (it always does), the Laporte rule is relaxed, because the sample always contains molecules
whose center of symmetry is broken by the vibrational motion. 



Spectroscopic
observables:

1)Frequency -> D (nature of the
ligand/spectrochemical series)
2)Linewidth -> transition
Assignments/unresolved splittings
3)Peak splittings -> J.T. effects Distribution of ligand fields due

to molecules in different stages
of vibration

Linewidths of the transitions
~ inclination in the TS-diagram

Range of transition
energies = width of
the spectrum

Spectrum for d2 ions in 
an octahedral ligand field

3T1g -> 3A2g very broad, 
often not observed



A walk through the first transition metal series

d1

2T2g -> 2Eg

Ti3+ V4+ Cr5+ Mn6+

2E -> 2T2

octahedral
tetrahedral

Jahn-Teller distortions will always occur,
Strongly distorted V4+: „vanadyl“ VO2+

D increases with increasing charge of the
central ion:



d2

Distribution of ligand fields due
to molecules in different stages
of vibration

Linewidths of the transitions
~ inclination in the TS-diagram

3T1g -> 3A2g very broad, 
often not observed

Range of transition
energies = width of
the spectrum

Ti2+ V3+ Cr4+ Mn5+

3T1g -> 3T2g
3T1g -> 3T1g
3T1g -> 3A2g

Octahedral LF:

J-T distortions



d3 V2+ Cr3+ Mn4+d
Octahedral LF:

4A2g -> 4T2g
4A2g -> 4T1g
4A2g -> 4T1g

Octahedral LF 
strongly preferred
No J-T distortion

Cr3+ absorption in phosphate glasses



d4

5Eg -> 5T2g

Cr2+ Mn3+ Absorption spectrum of Mn-containing phosphate glass

Mn3+

Mn2+

O2-atmosphere
N2-atmosphere

high spin low-spin

J-T distortion



d5
Fe3+, Mn2+

High-spin ground state 6A1g:
No spin-allowed transitions
Weak forbidden transitions
Mn2+ complexes are colorless



d6 Fe2+, Co3+ High-spin:
Low-spin:

5T2g->
5Eg

1A1g -> 1T1g
1A1g -> 1T2g

J-T effect
No J-T effect

Spin Transition in hemoglobin upon binding to O2

Low spin
high spin

https://www.hoddereducation.co.uk/media/Documents/magazineextras/Chemistry%20Revie
w/ChemRev%2025_4/ChemistryReview25_4_Haemoglobin_extension.pdf?ext=.pdf



d7 Co2+
Co2+ in glasses: metal in tetrahedral and octahedral
Coordination. Tetrahedral coordination gives rise to
Intense blue color of Co in glasses.

Spectrochim. Acta 188 (2018), 507



d8 Ni2+ 3A2g -> 3T2g
3A2g -> 3T1g 

3A2g -> 3T1g

Octahedral LF:

No J-T distortions

J.Chem. Ed. 75 (1998), 98



d9

2T2g -> 2Eg

Cu2+ 

2E -> 2T2

tetrahedral
octahedral

Very strong Jahn-Teller effects from
Octahedral coordination:

CuF2: 4 ligands at 193 pm (in plane)
2 ligands at 227 pm (along C4)

CuBr2: 4 ligands at 240 pm (in plane)
2 ligands at 320 pm (along C4)

Band position very sensitive to ligands.



Optical Spectra of the transition metal aquo complexes in solution


