PSI 5794 – Principles of Matrix Analysis

Sept, 20th 2021

Prof. Cássio Guimarães Lopes

1. Contact information

Office: D2-10 email: cassio.lopes@usp.br (11) 964471235

Teaching Assistant: Felipe Chaud Pinheiro <u>fchaudpinheiro@gmail.com</u>

2. Syllabus

1. Linear Vector Systems

Gauss Elimination and Gauss-Jordan. Scaling and Pivoting. Finite precision operations. Echelon forms and rectangular systems. Consistency. Homogeneous and non-homogeneous systems.

2. Matrix Algebra

Elementary operations; matrix product. Block matrices and partitioning. Transposition, symmetries and structured matrices. Trace operator. Matrix inversion. Matrix inversion lemma. Elementary matrices. Equivalence. LU factorization.

3. Vector Spaces

Groups, rings, fields, finite fields. Vector spaces. Subspaces. Operations with subspaces. Linear independence, basis and dimension. Range and null spaces.

4. Linear Transformations

Matrix representation of a linear transformation (LT). Change of basis and vector coordinates. Similarity transformations. Equivalence transformations. Structure of LTs. The four fundamental spaces. Inverse linear transformation. Pseudo-inverse.

5. Least-Squares

The least-squares problem. Orthogonality principle and the geometric argument. The algebraic argument. Weighted least squares. Regularized least-squares. Recursive least-squares.

6. Eigenvalues and Eigenvectors; Canonical forms; Matrix Polynomials

Fundamentals. Eigenvalues and similarity. Multiplicity of eigenvalues: algebraic and geometric. Jordan form. Matrix polynomials. Matrix functions, series and sequences.

7. Norms: vectors and matrices

Definition. Vector norms via inner products. Vector p-norms. Convergence of sequences. Matrix norms. Induced matrix norms. Condition number.

8. Special matrices

Normal matrices. Unitary and orthogonal matrices. Hermitian and symmetric matrices. Positive definite matrices.

9. QR factorization, Householder and Givens transforms

Orthonormal bases from generic bases. QR theorem. Least-squares and QR. QR implementation.

10.Singular Value Decomposition (SVD)

Conceptual construction. The fundamental theorem. Outer product expansion. Pseudo-inverse revisited. Bases for the fundamental spaces. Linear systems solution. Image compression.

11.Kronecker (tensor) product

The vec operator. Matrix linear systems. Sylvester and Lyapunov equations.

3. Grading

G = (a1*HW + a2*E + a3*P)/(a1+a2+a3)

HW = homeworks (**No late** homework policy !)

- **E** = exams (in class)
- **P** = papers (in groups)

4. References

1. A.J. Laub, *Matrix Analysis for Scientists and Engineers*, SIAM: Society for Industrial and Applied Mathematics, 2004;

2. C.D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000;

3. R.A. Horn e C.R. Johnson. *Matrix Analysis*. Cambridge University Press, 2nd edition, 2013;

4. R.A. Horn e C.R. Johnson. *Topics in Matrix Analysis*. Cambridge University Press, 1991;

5. G.H. Golub e C.F. Van Loan. *Matrix Computations*. Johns Hopkins University Press, 3rd edition, 1996.

6. C. Pinter. A Book of Abstract Algebra. 2nd edition. Dover Publications;

7. N. Jacobson. *Basic Algebra I* . 2nd edition. Dover Publications, 2009;

7. N. Loehr. Advanced Linear Algebra. CRC Press, 2014;

8. B. N. Cooperstein. Advanced Linear Algebra. 2nd edition. CRC Press, 2015.