

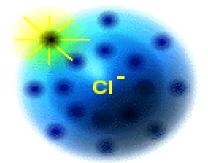
Controle do crescimento microbiano por agentes físicos e químicos

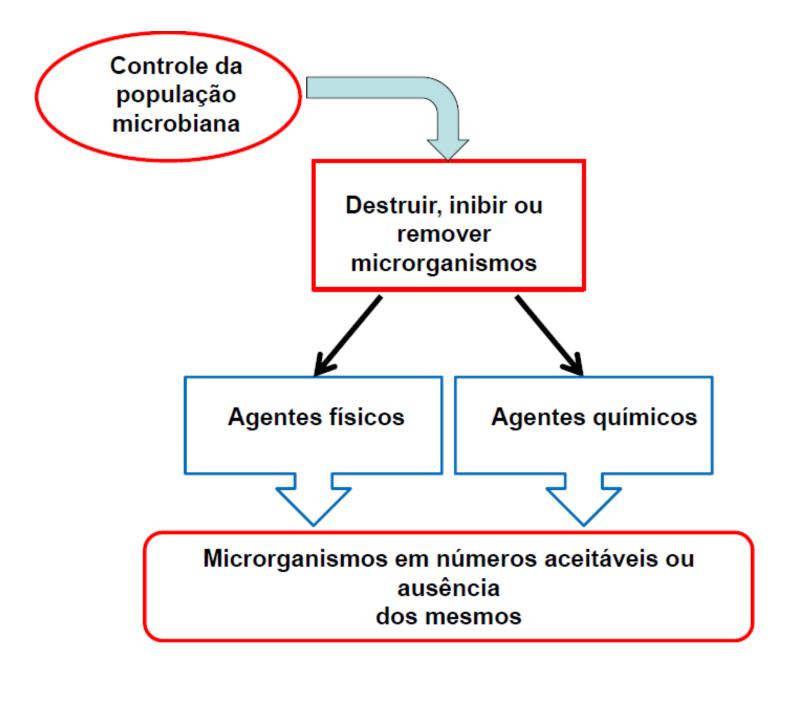
Prof. Marcio Dias

mvbdias@usp.br

Livro recomendado para esta aula:

Microbilogia – Tortora, GJ, Funke, BR, Case CL. (a partir da 10 ed).


Controle de Microrganismos



chloride ion

Antimicrobianos

Definições para o controle microbiano em relação ao

processo

Esterilização: destruição de todas as formas de vida microbiana ;

Esterilização comercial: destruição dos endósporos de *Clostridium botulinum;*

Desinfecção: Mata tudo menos endósporos, reduz contaminação na superfície de objetos inanimados

Antissepcia e degerminação: Termos dirigido aos tecidos vivos, geralmente remoção mecânica.

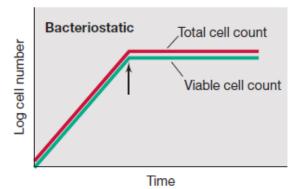
Sanitizantes: Redução das contagens de microrganismos a níveis considerados seguros

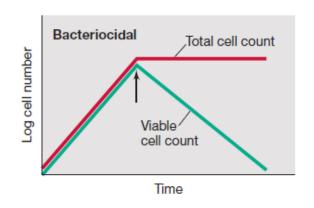
Terminologia com relação ao efeito sobre os microorganismos

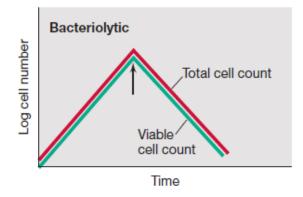
-Sufixo -cida

-Sulfixo - stático

-Sepse


A maioria dos métodos de controle do crescimento bacteriano que "matam" os microrganismos, é devido a:


-oxidação de estruturas celulares

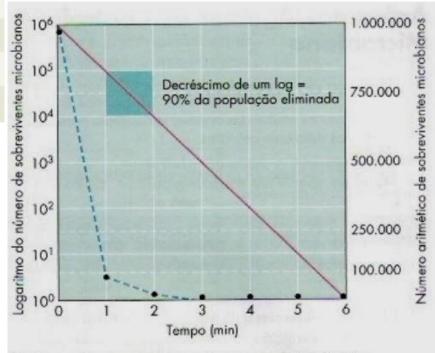

-desnaturação de proteínas

-desestruturação ou ruptura de membranas

Terminologia com relação ao efeito sobre os microrganismos (curva de crescimento)

Taxa de morte microbiana

Microbial Exponential Death Rate:
TABLE 7.2 An Example


Deaths per Minute	Number of Survivors
0	1,000,000
900,000	100,000
90,000	10,000
9000	1000
900	100
90	10
9	1
	900,000 90,000 9000 900 900

Taxa de morte microbiana

Microbial Exponential Death Rate:

TABLE 7.2 An Example

Time (min)	Deaths per Minute	Number of Survivors
0	0	1,000,000
1	900,000	100,000
2	90,000	10,000
3	9000	1000
4	900	100
5	90	10
6	9	1

(a) A curva é representada logaritmicamente (linha sólida) e aritmeticamente (linha tracejada). Nesse caso, as células estão morrendo em uma taxa de 90% por minuto.

Motivos para controle microbiano

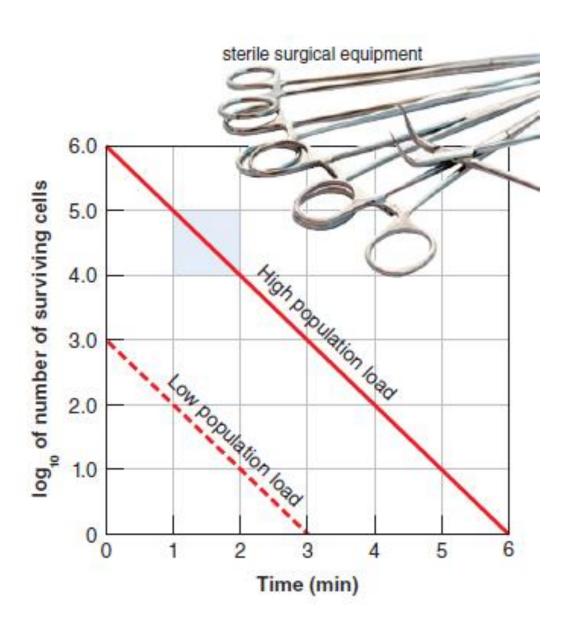
- Inibir propagação de bactérias patogênicas:
 - humanos
 - animais
- Conservação de alimentos;
- Contaminação da Água e ambiente;
- Aumento da validade de produtos alimentícios;

Por que não devemos comprar alimentos enlatados "estufados"?

Por que o leite de caixa dura mais que o "leite de saguinho "?

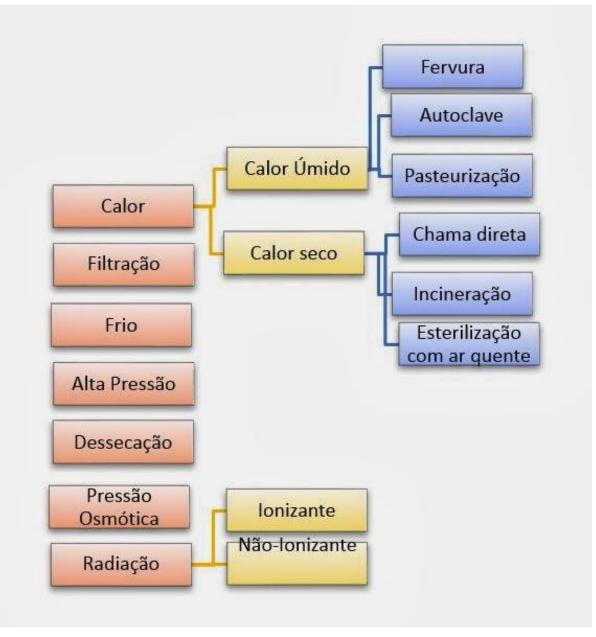
Fatores que influenciam na efetividade dos tratamentos antimicrobiano

-Número de micróbios


-Influências ambientais

-Tempo de exposição

-Caracterísicas microbianas



Efeito do tamanho da população inicial de micróbios

Agentes Físicos

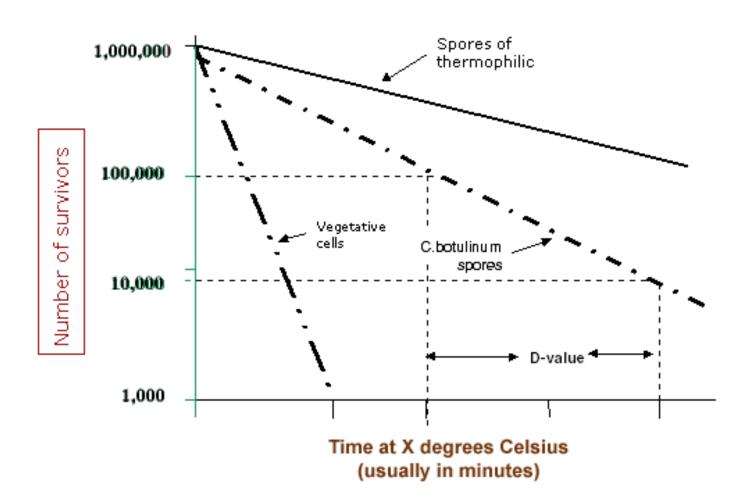
Métodos físicos no controle microbiano

Calor

Utilizado:

-na indústria alimentícia

- em laboratórios


-Modo de ação????

Terminologia:

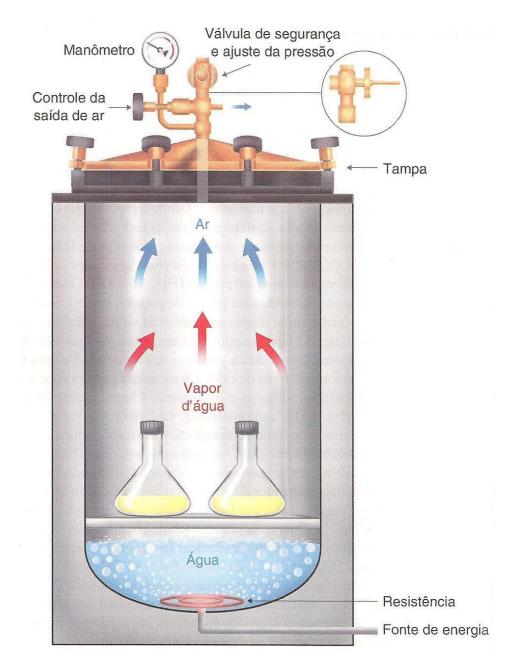
Ponto de morte térmica (MPT)

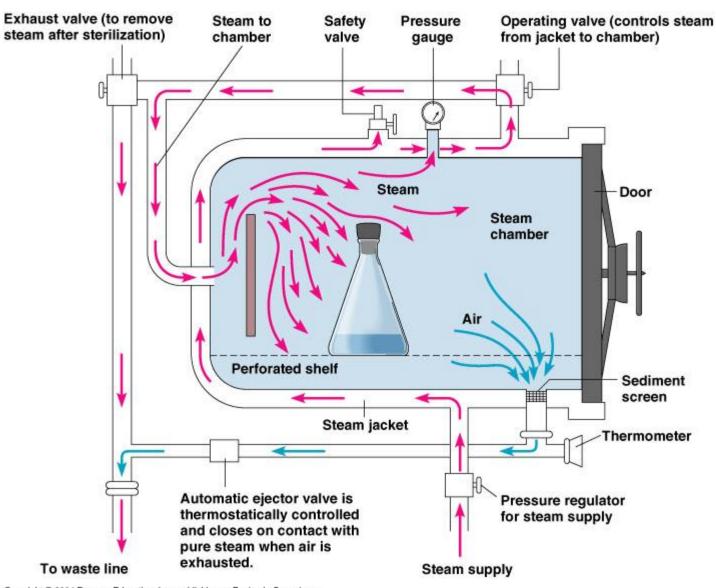
tempo de morte térmica (TMT)

Thermal Death Rate Curves

Calor Úmido

-fervura (100 °C por 15 minutos)


-autoclave (Vapor d'água sob pressão (121 ° C/15 minutos)



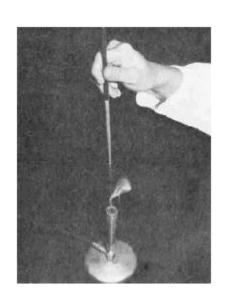
O autoclave

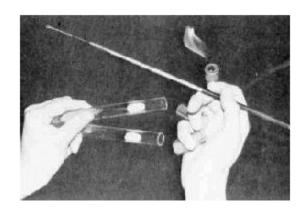
O autoclave

Pressure – Temperature Relations in Autoclave (Figure based on complete replacement of air by steam)

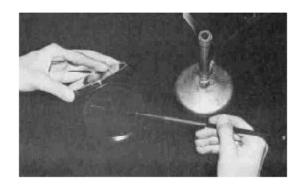
Pressure in (PSI)	Temperature °C	Temperature °F
5	109	228
10	115	240
15	121	250
20	126	259
25	130	267
30	135	275

Métodos indicativos de temperatura de autoclave


- -Uso de pastilhas
- -Suspensão de endósporos
- -Indicativos de cor através de reações químicas



Esterilização por calor seco


- Mata por efeitos de oxidação

Chama direta

Esterilização em ar quente

	TEMPO DE EXPOSIÇÃO EM MINUTOS		
ARTIGOS	170°C	160°C	140°C
Frascos, balões e tubos		60	
de ensaio			
Agulhas de sutura		60	
Lâminas de corte (bisturi, tesouras, serras etc.)		60	
Vaselina líquida e óleos em geral (em camadas de 0,5 cm de altura)	60	120	
Gaze vaselina (20 unidades em cada caixa - 4cm de espessura)		150	
Óxido de zinco (camadas de 0,5cm de altura		120	
Sulfas (camadas de 0,5cm de altura)	60	120	180

Calor seco

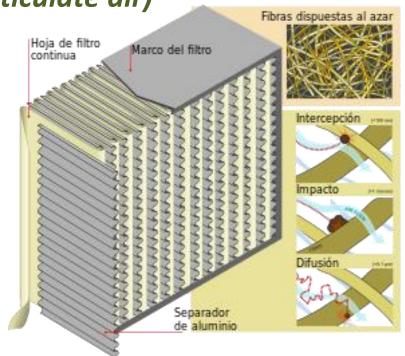
Forno de esterilização:

- ✓ oxidação de componentes orgânicos;
- √ esterilização (170°C 2 horas);
- ✓ instrumetos cirúrgicos.

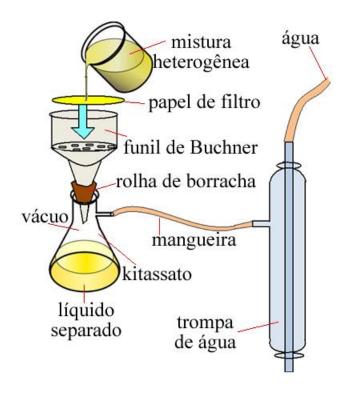
Calor seco

Incineração:

- √ queima dos microganismos até se tornarem cinzas (oxidação);
- ✓ esterilização;
- √ lixo hospitalar, animais de experimentação.

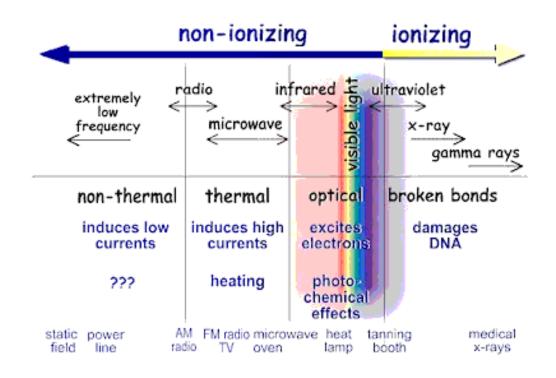

Adaptado de: www.cibg.rj.gov.br/detalhenotici as.asp?codnot

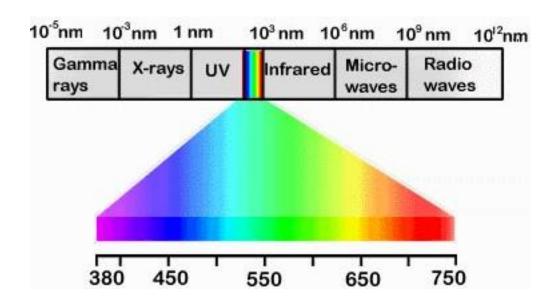
Filtração


- Passagem de um líquido ou gás através de um material semelhante a uma tela, suficientemente pequenos para reter microorganismos.

-utilizada para realizar a esterilização de materiais sensíveis ao calor, como por exemplo enzimas.

Filtros HEPA (high efficiency particulate air)



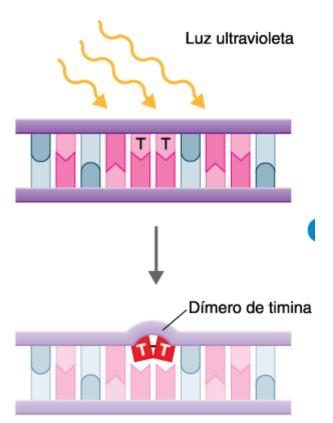

Filtros de membranas

Radiação

- ★ Ionizante (raio X e γ)
 Destroem o DNA
- Não-ionizantes (UV) Alteram DNA através da formação de dímeros de pirimidinas

Radiação ionizante (raios gama, X e feixe de elétrons de alta energia)

- -Causa a ionização da água formando radicais hidroxilas aitamente reativos que causam mutações no DNA ou outras macromoléculas, principalmente alguns grupos dos aminoácidos de proteínas
- -Alto poder de penetração
- -esterilizante


- -Aparelhagem cara e utilizada somente em materiais sensíveis ao calor
- geralmente materiais já embalados

Radiação não ionizante (luz ultra violeta)

- Causa mutações no DNA pela formação de ligações entre bases pirimidinas adjacentes
- -produção de peróxido de hidrogênio
- -pouco penetrante exposição direta

Radiação

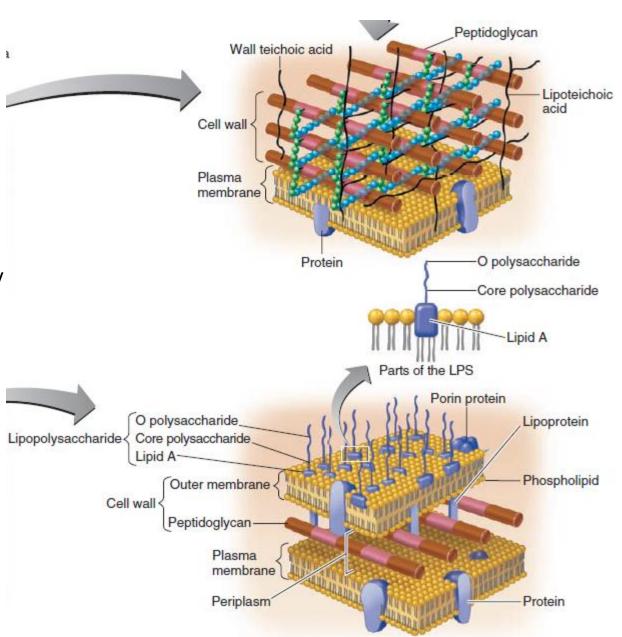
Ionizante	Não-ionizante
Raios gama e X	Raios UV
Destruição DNA	Lesão no DNA
Esterilização	Microbiostático ou microbicida
Produtos farmacêuticos e suprimentos médicos e odontológicos	Controle de ambiente fechados

Adaptado de:

www.uvcomparison.com/uvscience.php

Agentes Químicos

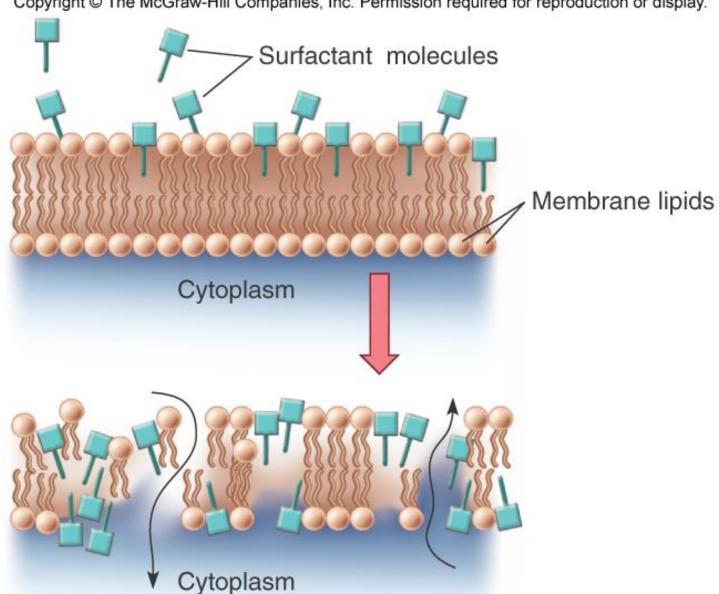
Principais grupos:


- 1. álcoois;
- compostos fenólicos (
 aldeídos e derivados; compostos fenólicos (fenóis);
- halogênios e derivados;
- 5. biguanidas;
- 6. agentes de superfície (detergentes);
- 7. conservantes químicos de alimentos;
- 8. quimioesterelizantes gasosos (gases);
- agentes oxidantes (peroxigênios);
- 10. metais pesados.

Parede Celular e membrana:

Alvo: Proteínas/Camada fosfolipidica/ Lipopolisacarideos/ peptidioglicano

Ação: Afeta a permeabilidade Síntese, rompimento, favorecimento da lise celular

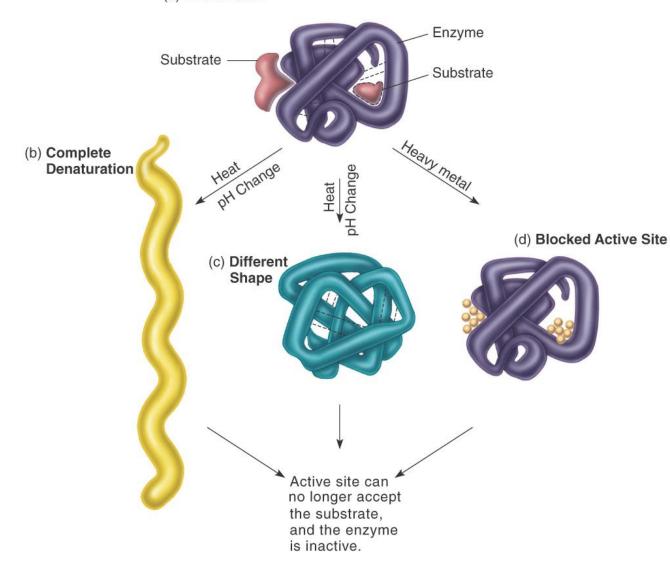

Causa: Afeta o crescimento celular e pode levar a morte.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exemplo:

Surfactantes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

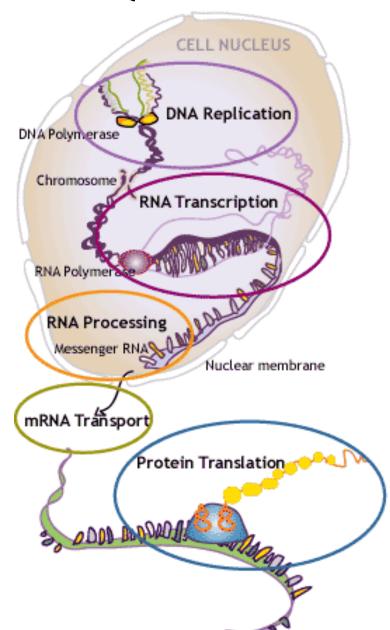

(a) Native State

Proteínas

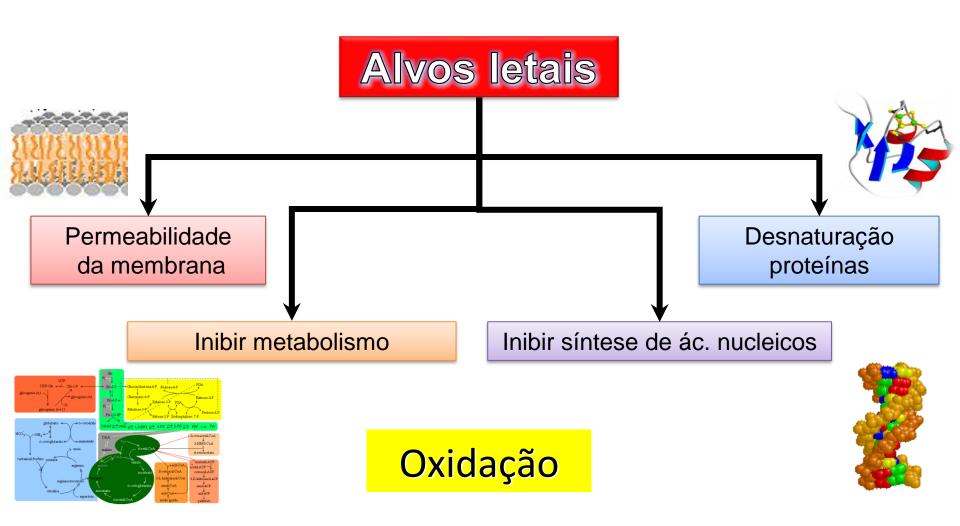
Alvo: Proteínas em Geral

Ação: Romper pontes de hidrogênio, Cross-linking, alquilação, reduzir ou oxidar pontes disulfetos, ...

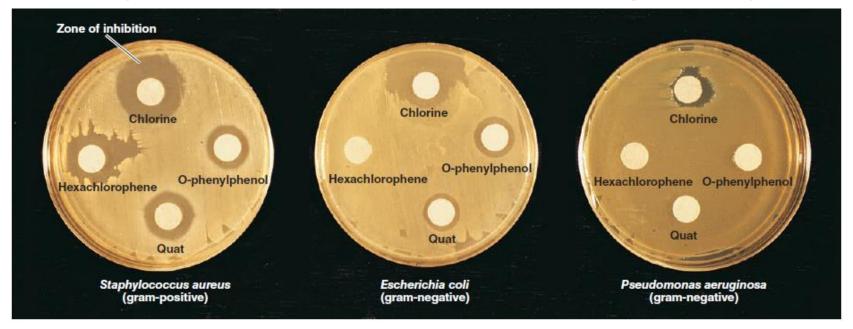
Causa: Desnaturação de proteínas e/ou inativação Ex. Enzimas inativas


DNA ou RNA

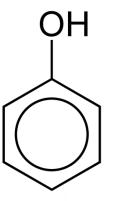
Alvo: DNA e/ou RNA

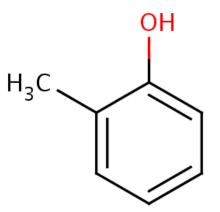

Ação: Ligar covalentemente,

degradar.


Causa: Ligar no ribossomo e parar a tradução. Ligar no DNA e inibir a replicação e Transcrição Degradar o DNA e/ou RNA

Mecanismos de ação


Métodos para estimativa da eficácia dos agentes químicos



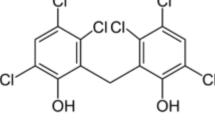
- -A atividade de uma substância pode ser testada pelos métodos de uso-diluição ou de disco-difusão
- -Para que utilizar métodos de controle químicos?
- -São utilizados tanto para controlar o crescimento de microrganismos em ambos os tecidos vivos ou objetos inanimados
- -Poucas substâncias tem ação esterelizante e apenas reduz o número de microrganismos

Tipos de desinfetantes

Fenol e compostos fenólicos

Sr Joseph Lister, 1827-1912

Fenol e Fenólicos


- Usado no controle de infecção em mesas cirúrgicas
- 1% fenol tem ação antibacteriano forte
- Age na membrana plasmática ocasionando o vasamento do centeúdo celular – Morte celular.
- Estável e não afetado por compostos orgânicos
 - Desinfecção de pus, saliva, feses.
- Raramente usado como antiséptico ou desinfectante
 - Irritante para a pele
 - Odor

Bisfenóis

pHisoHex

- -Utilizado em ambiente hospitalar e berçários
- -Bem ativo contra estafilococos e estreptococos
- -Tóxico

Triclosano

- -Usado desde a sabonetes a cabos de faca
- -Inibe enzimas da biossíntese de ácido graxos
- -Eficaz contra gram+ e menos eficaz contra gram e fungos

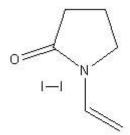
Biguanidas

$$H_2N$$
 NH
 NH
 NH
 NH
 NH
 NH

- -controle microbiano de pele e mucosas
- -Em combinação com detergentes e álcool é usada para preparação cirúrgica
- -O seu efeito é causado devido a lesão na membrana plasmática, desnaturação proteíca e inibição do metabolismo

Halogênios (iodo e cloro)

Halógeno	Molécula	Estructura	Modelo	d(X-X) / pm (fase gaseosa)	d(X-X) / pm (fase sólida)	
Flúor	F ₂	F-F		143	149	
Cloro	Cl ₂	CI ₂ CI—CI		199	198	
Bromo	Br ₂	Br_BrBrBrBr		228	227	
Yodo	l ₂	266 pm	0	266	272	


- Alta Eletronegatividade: Rouba e⁻, principalmente o flúor
- Agentes Oxidantes

Iodo

-disponível na forma de tinturas – solução de álcool aquoso

-geralmente como iodóforo – combinação de iodo e molécula orgânica

usado para tratamento de feridas

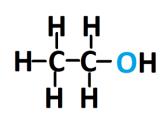
betadine (povidone iodine complex) C₆H₀I₂NO

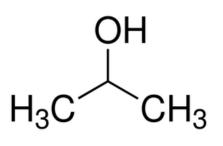
Cloro

(1)
$$Cl_2 + H_2O \rightleftharpoons H^+ + Cl^- + HOCl$$

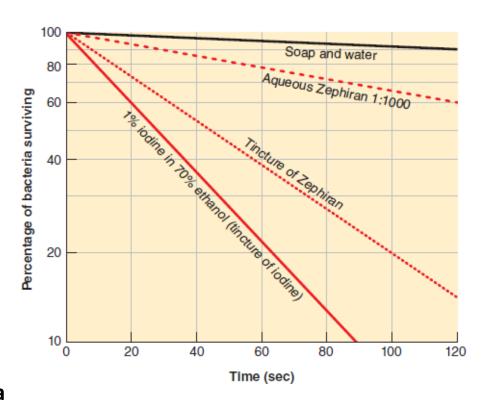
Chlorine Water Hydrogen Chloride Hypochlorous ion ion acid

- -atua como agente oxidante impedindo a maquinaria celular
- Formas gasosas também podem ser usadas como o dióxido de cloro




4. Halogênios e derivados

- Particularidades:
 - Cloro e hipocloritos (formulações):
 - Gás cloro comprimido (líquido) desinfecção de água;
 - Hipoclorito de cálcio;
 - Hipoclorito de sódio + bicarbonato de sódio.


Álcoois

- -Causa desnaturação de proteínas e rompimento de membranas
- -Vantagem de evaporação
- -não devem ser aplicados em feridas
- -mais utilizados etanol e isopropanol
- -álcool puro é pouco efetivo
- -não mata endosporos
- -também são usados para aumentar a eficiência de outros agentes químcos

Ação de diferentes concentrações de álcool

Biocidal Action of Various Concentrations of Ethanol in Aqueous Solution against

 TABLE
 7.6
 Streptococcus pyogenes

		Time of Exposure (sec)				
Concentration of Ethanol (%)	10	20	30	40	50	
100	G	G	G	G	G	
95	NG	NG	NG	NG	NG	
90	NG	NG	NG	NG	NG	
80	NG	NG	NG	NG	NG	
70	NG	NG	NG	NG	NG	
60	NG	NG	NG	NG	NG	
50	G	G	NG	NG	NG	
40	G	G	G	G	G	
Note: G = growth NG = no growth						

Fixa a Bactéria − Atua apenas

→ na Membrana Externa

Metais pesados e seus compostos

Prata

Mercúrio

Cobre

Zinco – comum em soluções para bocheco

SOMEDICAD

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I SUPPLIES AD ABSTRACTION OF THE CAPT CONSIDER

AND I S

Geralmente o efeito se da por ação oligodinâmica – atua sobre proteínas- inativando-as

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agentes de superfície

- -sabõoes e detergentes
- -pouco valor como anti-séptico e função importante na remoção mecânica
- -emulsifica as secreções oleosas da pele facilitando a remoção de microrganismos
- Pode romper a membrana plasmática

<u>Sabões</u>

Agentes surfactantes - diminuem tensão superficial - contribuem para umidificação e solubilização de substâncias

Sabões cosméticos: maioria não possui atividade antimicrobiana

Modo de ação geral:

Removem mecanicamente os microrganismos

Emulsionam a camada de lipídios da pele (muitos microrganismos estão retidos)

Os microrganismos são removidos pela água

Detergentes

Aniônicos:

grupos carregados negativamente na molécula. São utilizados em lavanderias.

Modo de ação:

semelhante aos sabões e alguns lisam pneumococos e atuam contra alguns vírus com envelope lipídico. Não são considerados desinfetantes.

Detergentes

Catiônicos CQA

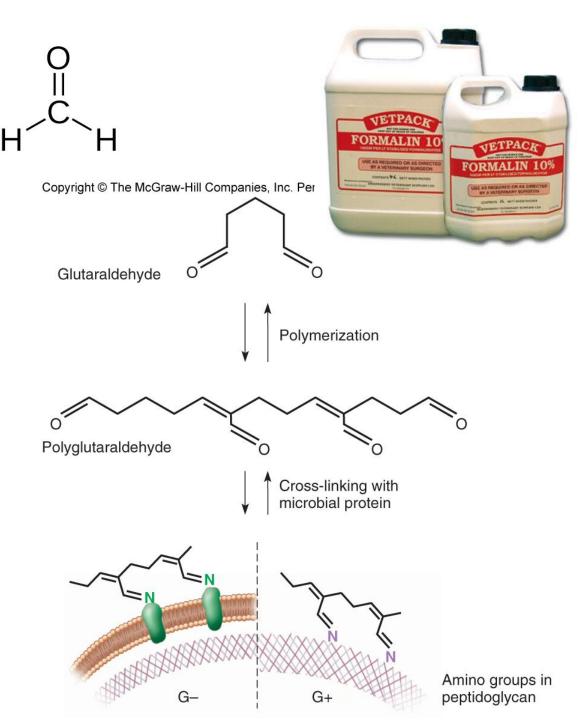
grupos carregados positivamente

- compostos quaternários de amônio: moléculas contém, no mínimo, 12 átomos de carbono, ligados ao íon amônio, os **quats**
- Mecanismo de ação: lise da membrana citoplasmática e desnaturação de proteínas

Ex.: cloreto de benzetônio, cloreto de benzalcônio, cloreto de cetilpiridínio (Cepacol).

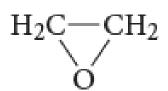
Cloreto de cetilpiridínio

Pouco tóxico


desinfetantes domésticos e hospitalares e anti-sépticos

Aldeídos

- É um dos mais efetivos
- Inativa Proteínas –
 ligações cruzadas entre
 grupos de amidas
 (Lisina) e sulfidrilas
 (cisteínas)


Formaldeído & Glutaraldeído

- Formaldeído gás ótimo desinfetante
- Comum Formalin: 37% formaldeído

Gases Quimio-esterilizantes

- Esterilizam em câmeras
 - Óxido de Etileno

Peróxido de hidrogênio esterilizador a plasma - médica esterilização gabinete

Gás H₂O₂ + radio freqüência ou microondas

= Produz radicais livres

– Ação Bactericida 4-18h:

Desnaturação de Proteínas

 Os hidrogênios lábeis (C, D, E, S, Y) são trocados por grupos alquilas (-CH₃) Utilização eficiente: controle de umidade, temperatura e pressão

50-56° C, umidade de 40%: esteriliza em 3-4 horas

temperatura e umidade ambientes (25° C; 60-70%): até 30 horas

- utilizado em programas espaciais

Mecanismo de ação: inativação de enzimas, proteínas e ácidos nucléicos que possuem átomos de hidrogênio lábeis:

Grupos carboxil (COOH)

Grupos sulfidrila (SH)

Grupos amino (NH₂)

Grupos hidroxil (OH)

Óxido de etileno

Gás [

vapores

irritantes para mucosas

Combinado a:

CO₂ e freon:

Vantagem: alto poder de

penetração

Desvantagem: baixa velocidade de

ação

Líquido: abaixo de 12º C

 H_2C

 CH_2

0

Peroxigênios (agentes oxidantes)

- Agentes Oxidantes:
 - Desnaturação de Proteínas e Morte cellular pela formação de espécies reativas de oxigênio
 - H₂O₂ Antiséptico
 - Ácido Peracético Esterilizante

$$\bigcirc$$
OOH

