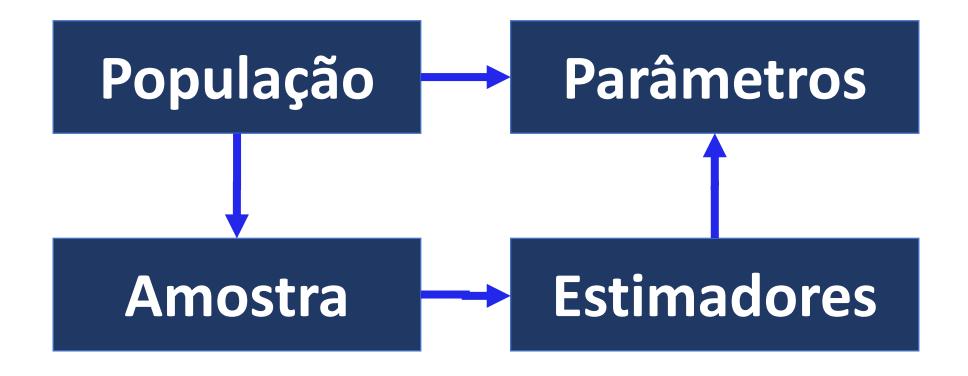


Engenharia de Produção

Engenharia da Qualidade II

Prof. Dr. Fabrício Maciel Gomes



Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais, pode-se inferir sobre a população.

No caso das inferências através do Intervalo de Confiança, busca-se "cercar" o parâmetro populacional desconhecido. Aqui formula-se uma hipótese quanto ao valor do parâmetro, e pelos elementos amostrais faz-se um teste que indicará a aceitação ou rejeição da hipótese formulada.

Exemplo 1: Caixa de Cereais

Proposta

Análise de dados por meio de testes de hipóteses.

Problema

Uma empresa de cereais se o processo de empacotamento está atingindo o alvo. O peso de enchimento das caixas de cereais deve ser de 365 gramas.

Dados Coletados

Para avaliar a média do processo, seis caixas de cereais foram escolhidas aleatoriamente e pesadas. Os dados da amostra foram utilizados para estimar a média da população (a média do processo).

Ferramentas

➤ Normality Test

Arquivo de Dados: Cerealbx.MPJ

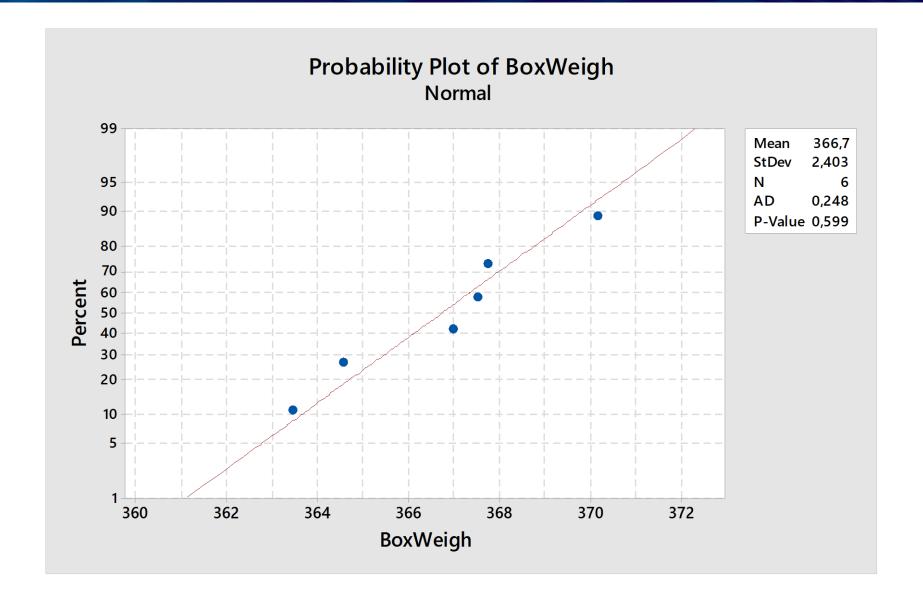
Variável	Descrição	
BoxWeigh	Peso da caixa do cereal	

Hipótese 0:

Os dados provem de uma população Normalmente distribuída

Hipótese 1:

Os dados não provem de uma população Normalmente distribuída

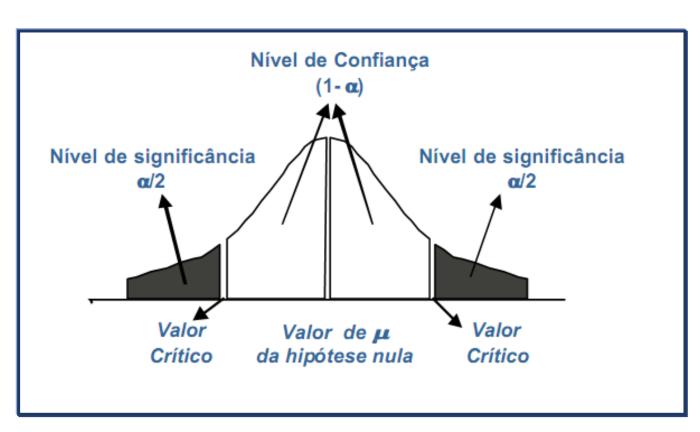

Normality test

- 1. Abra Cerealbx.mpj;
- Selecione Stat>Basic Statistics>Normality Test;
- 3. Complete a caixa de diálogo, como mostra a figura ao lado.
- 4. Clique em OK.

Normality Test		×
	Variable: BoxWeigh	
	Percentile Lines None At Y values: At data values:	
	Tests for Normality Anderson-Darling Ryan-Joiner (Similar to Shapiro-Wilk) Kolmogorov-Smirnov	
Select	Title:	
Help	OK Cancel	

Muito próximo? Muito longe? ...

O método do teste de hipóteses avalia tais diferenças e nos possibilita quantificar nosso processo de tomada de decisão



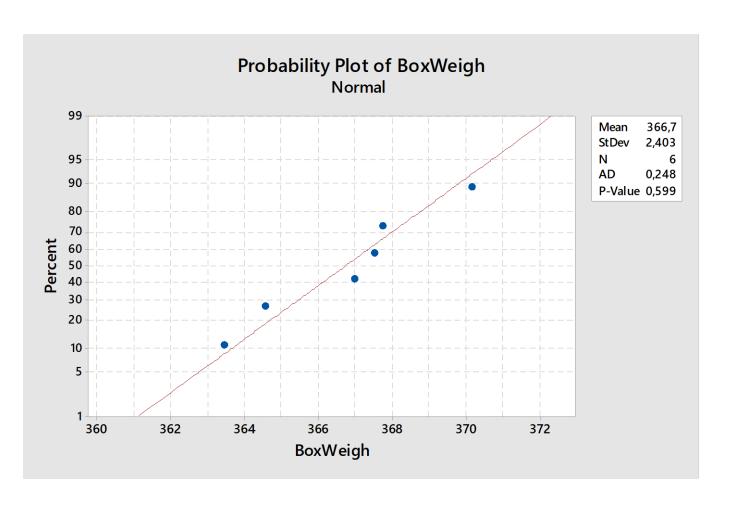
Regiões de Rejeição e de Aceitação

H₀: Hipótese a ser testada – Hipótese Nula

H₁: Hipótese Alternativa (negação de H₀)

Resultados de Teste de Hipóteses acerca de Parâmetros e suas probabilidades (α e β) condicionadas à realidade:

		REALI	IDADE
		H ₀ Verdadeira	H ₀ Falsa
D E C I	Aceitar H ₀	Decisão Correta (1-α)	Erro Tipo II (β)
S Ã O	Rejeitar H ₀	Erro Tipo I (α)	Decisão Correta (1-β)



 α : Probabilidade cometer Erro Tipo I Rejeitar H₀, sendo H₀ Verdadeira Risco do Vendedor (Produtor)

 β : Probabilidade cometer Erro Tipo II Aceitar H₀, sendo H₀ Falsa Risco do Comprador (Consumidor)

As hipóteses do teste de normalidade de Anderson-Darling são:

- H₀: Os dados provem de uma população normalmente distribuída;
- H₁: Os dados não provem de uma população normalmente distribuída;

O Valor-P do teste de Anderson Darling (0,599) avalia a probabilidade dos dados serem provenientes de uma população normalmente distribuída. Usa-se um α de 0,05, ou seja:

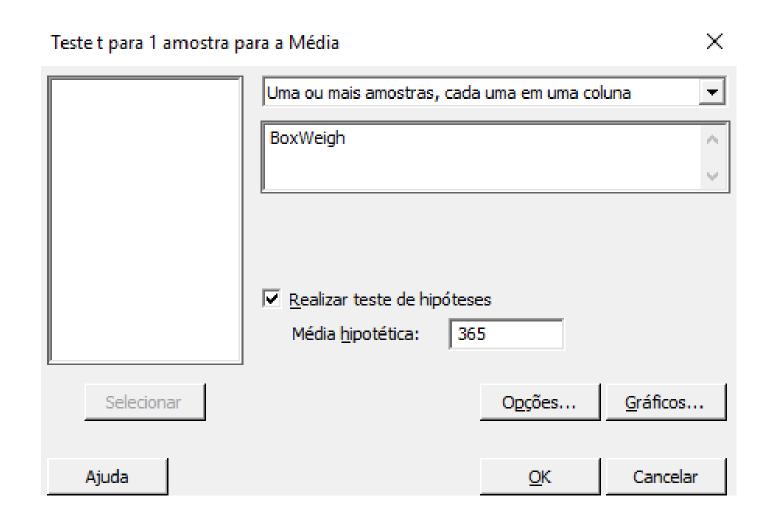
- Se o valor de P ≥ 0,05 aceita-se H₀;
- Se o valor de P < 0,05 rejeita-se H₀.

O Fabricante precisa determinar se a média do processo de empacotamento difere significativamente do peso do alvo de 365 gramas. Em termos estatísticos, a média do processo é chamada de μ (mi) ou média populacional.

Hipótese Estatística

Existem duas possibilidades: ou µ é igual a 365 ou não é. Essas alternativas podem ser declaradas com duas hipóteses.

- A hipótese nula (H_0) : $\mu = 365$ g;
- A hipótese alternativa (H₁): µ ≠ 365 g.


Uma vez que não é viável medir cada caixa da população, nunca poderemos saber qual hipótese é correta. Contudo um teste de hipótese apropriado pode nos ajudar a dar um palpite com um certo grau de certeza. Para esses dados, o teste apropriado é o teste t para uma amostra.

1-Sample t

- Selecione Estat>Estatísticas
 Básicas>Teste t para 1 amostra;
- 2. Complete a caixa de diálogo, como mostra a figura ao lado.
- 3. Clique em OK.

Para tomar uma decisão precisamos escolher o valor de α, em geral utiliza-se 0,05 (5%), e após isto aplica-se o teste:

- Se o valor de P ≥ 0,05 aceita-se H₀;
- Se o valor de P < 0,05 rejeita-se H₀.

Estatísticas Descritivas

N Média DesvPad EP Média IC de 95% para μ

6 366,704

2,403

0,981 (364,183; 369,226)

μ: média de BoxWeigh

Teste

Hipótese nula

H₀: μ = 365

Hipótese alternativa H₁: μ ≠ 365

Valor-T Valor-p

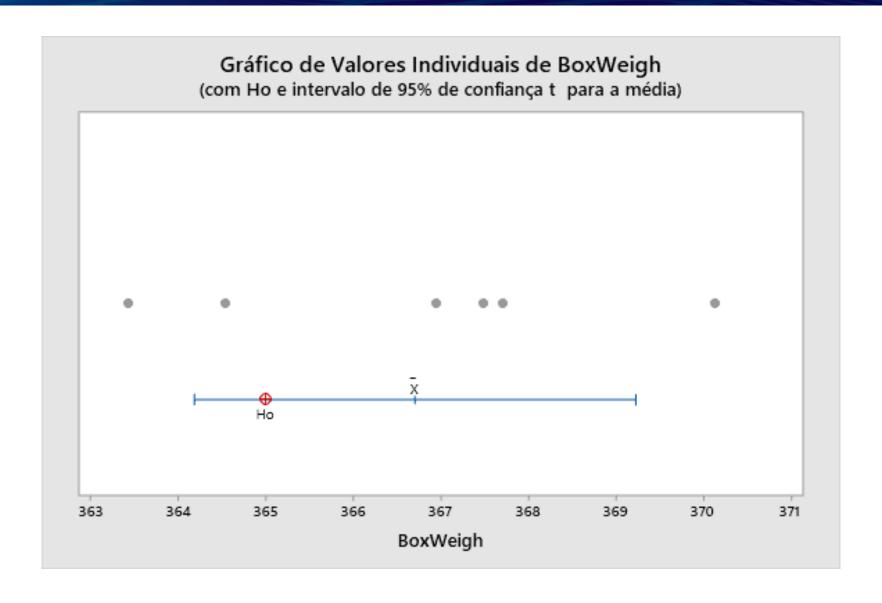
1,74 0,143

O que é um Intervalo de Confiança

Um intervalo de confiança é uma faixa de valores prováveis para um parâmetro populacional que se baseia em dados amostrais. Por exemplo, num intervalo de 95% de confiança para µ, tem-se 95% de confiança de que a média populacional esteja naquele intervalo.

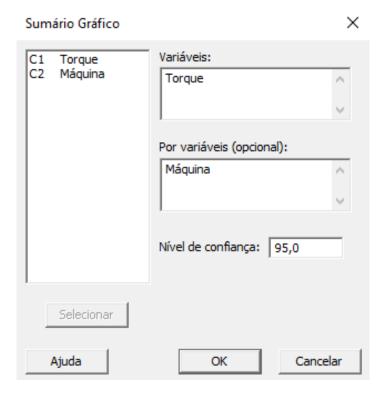
Quando usar um intervalo de confiança

Use um intervalo de confiança para fazer inferências sobre uma ou mais populações a partir dos dados da amostra ou para quantificar a precisão de estimativa de µ.


1-Sample t

- Selecione Estat>Estatísticas
 Básicas>Teste t para 1 amostra;
- Selecione a coluna BoxWeigh e na caixa Média hipotética insira o valor de 365.
- 3. Clique em Gráficos.
- 4. Complete a caixa de diálogo como a figura ao lado.
- 5. Clique em OK em todas as caixas de diálogo.

Teste t para 1 amostra:	Gráficos	×
☐ <u>H</u> istograma		
☑ Gráfico de <u>V</u> alores Inc	dividuais	
☐ <u>B</u> oxplot		
Ajuda	<u>0</u> K	Cancelar

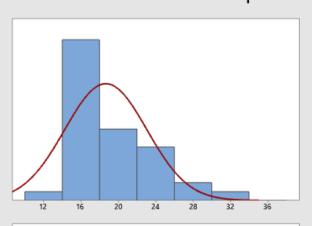

Retomando o Exemplo 3

Sumário Gráfico

Uma outra opção de se realizar uma análise completa é utilizando a ferramenta Sumário Gráfico para realizar diversos testes de hipótese e apresentar estadísticas descritivas com uma só ferramenta.

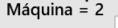
Sumário Gráfico

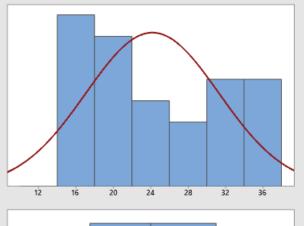
- Abra o arquivo TorqueTampa.mpj.
- 2. Selecione Estat>Estatísticas Básicas>Sumário Gráfico;
- 3. Selecione a opção Múltiplos;
- 4. Complete a caixa de diálogo como a figura ao lado.
- 5. Clique em **OK** em todas as caixas de diálogo.



Relatório Resumo para Torque

Máquina = 1






A-Quadra	do 1,05
Valor-p	0,008
Média	18,667
DesvPad	4,395
Variância	19,314
Assimetria	0,808077
Curtose	0,408176
N	36
Mínimo	10,000
1o. Quartil	15,250
Mediana	17,000
3o Quartil	21,750
Máximo	30,000
Intervalo de 95% d	e Confiança para Média
17,180	20,154
Intervalo de 95% de	Confiança para Mediana
16,000	20,000
Intervalo de 95% de	Confiança para DesvPad
3,565	5,733

Relatório Resumo para Torque

Teste de normalidade de Anderson-Darling				
A-6	Quadrado	0,64		
Va	or-p	0,087		
Mé	dia	24,188		
De	svPad	7,119		
Va	riância	50,673		
As	simetria	0,24879		
Cu	rtose	-1,21366		
N		32		
Mí	nimo	14,000		
10.	Quartil	17,500		
Me	diana	24,000		
30	Quartil	31,000		
Má	iximo	37,000		
Intervalo de 95% de Confiança para Média				
21,	621	26,754		
Intervalo de 95% de Confiança para Mediana				

Intervalo de 95% de Confiança para DesvPad

27,005

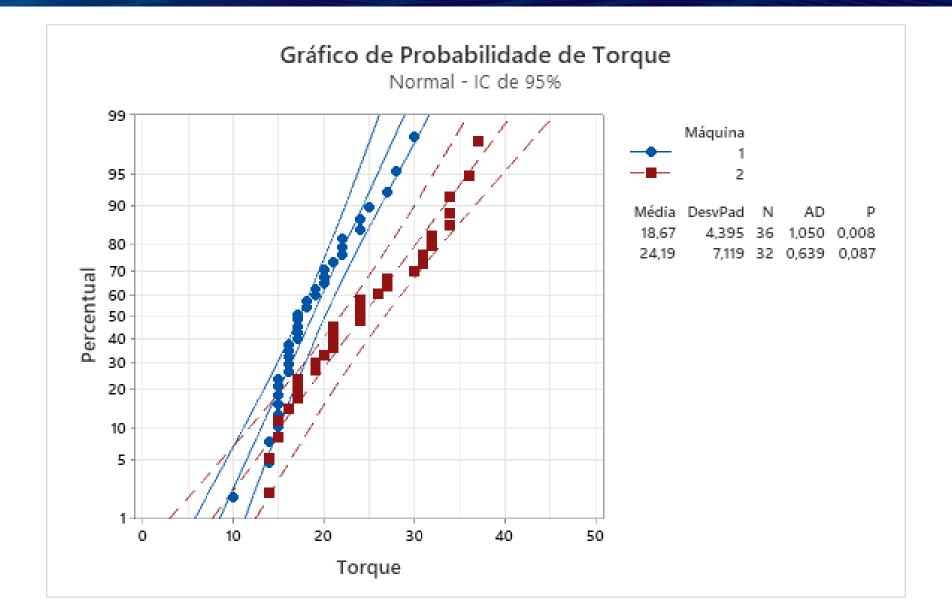
9,464

19.998

5,707

Gráfico de Probabilidade

Uma outra opção de se testar a normalidade de duas ou mais amostras de forma simultânea, é a utilização do Gráfico de Probabilidade.


Gráfico de Probabilidade

- Selecione Gráfico de Distribuição de Probabilidade;
- 2. Complete a caixa de diálogo como a figura ao lado.
- 3. Clique em OK em todas as caixas de diálogo.

Gráfi	ico de Probabilidade:	Múltiplo	×
C1 C2	Torque Máquina	Variáveis do gráfico: Torque	
		Variáveis <u>c</u> ategóricas para agrupamento (0-3): Máquina	
		✓ Varjáveis do gráfico formando grupos Distribuição Escala Rótulos	1
	Selecionar	Múltiplos Gráficos Opções de Dados	_
	Ajuda	<u>O</u> K Cancelar	

Teste de Hipóteses Não-Paramétricos

Teste de Mood para Mediana

- Selecione Estat>Não-Paramétricos>Teste de Mood para Mediana...;
- 2. Complete a caixa de diálogo como a figura ao lado.
- 3. Clique em OK em todas as caixas de diálogo.

Teste	Teste de Mediana de Mood			
C1 C2	Torque Máquina	Resposta:	Torque	
		Fator:	Máquina	
		_	:nar resíduos :nar valores ajusta	ados
		I HIIIIaco	ilai Yaloros ajaso	3003
	Selecionar			
_		011		
	Ajuda	OK	Cancel	ar

Estatísticas Descritivas

1	17	26	10	6,5	(16; 20)
2	24	11	21	13,5	(19,9984; 27,0047)
Global	20				

IC de 95,0% para mediana(1) - mediana(2): (-11;-2)

Teste

Hipótese nula H₀: as medianas da população são todas iguais

Hipótese alternativa H₁: as medianas da população não são todas iguais

GL Qui-Quadrado Valor-p

1 9,78 0,002

Análise do Poder

O Poder é a capacidade de um teste detectar um efeito quando este existir. Ao se executar um teste de hipóteses, existem quatro resultados possíveis

	Hipótese nu l a		
Decisão	Verdadeira	F alsa	
Não rejeitar	Decisão Correta $\mathbf{p} = 1 - \mathbf{\alpha}$	Erro tipo II $p=\beta$	
Rejeitar	Erro tipo I p=α	Decisão Correta p = 1 - β (poder)	

Exemplo 2: Caixa de Cereais – Poder da Amostra

Proposta

Avaliar o poder do testes de hipóteses.

Problema

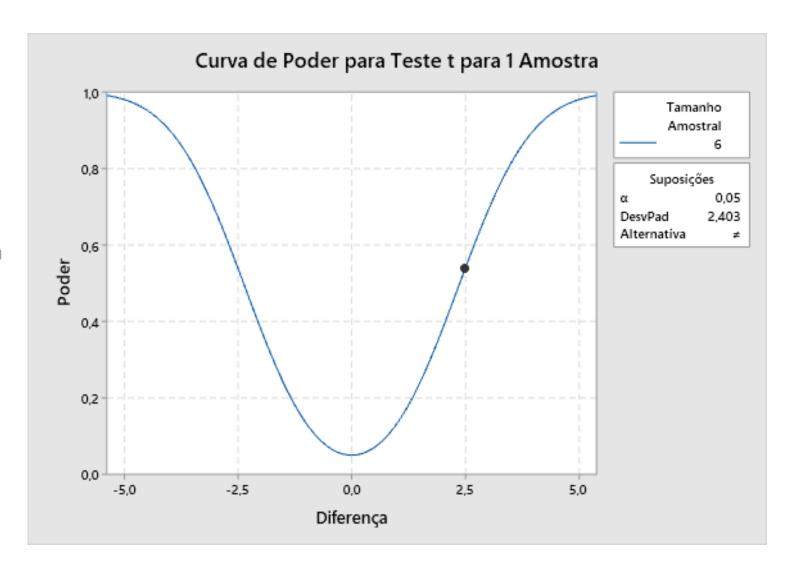
Os Engenheiros da empresa de cereais estão interessados em avaliar se o resultado da análise dos pesos de empacotamento do exemplo anterior, já que o tamanho da amostra é pequeno. Eles decidem usar uma análise de poder para determinar se a quantidade de dados é suficiente para detectar diferença entre pesos.

Os Engenheiros desejam certificar-se que a média dos pesos de empacotamento não difere do peso alvo de 365 gramas em mais do que 2,5 gramas.

Poder e Tamanho da Amostra

- 1. Selecione Arquivo>Novo>Projeto;
- 2. Selecione Estat>Poder e Tamanho da Amostra>Teste t para 1 amostra.
- 3. Complete a caixa de diálogo como a figura ao lado
- 4. Clique em OK.

Poder e Tamanho de A	Amostra para Teste t para 1 Amostra	X
Especifique valores para Tamanhos amostrais:	um dos dois itens a seguir:	
Diferenças:	2,5	
Valores de poder:		
Desvio padrão:	2,403	
	Opções Gráfico	
Ajuda	OK Cancelar	



Teste t para 1 Amostra Teste de média = nulo (versus ≠ nulo) Cálculo do poder para média = nulo + diferença α = 0,05 Desvio padrão assumido = 2,403

Resultados

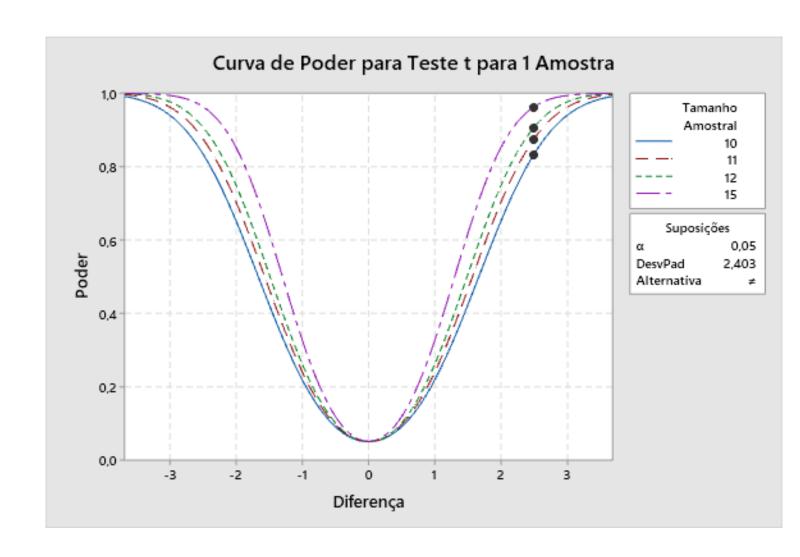
Tamanho
Diferença Amostral Poder
2,5 6 0,537662

Com 6 observações o poder do teste foi de apenas 0,5376. Para ter uma chance melhor de detectar um efeito, caso exista um, aumenta-se o poder do teste para pelo menos 0,8 (Regra geral). Calcularemos o tamanho da amostra requeridos para atingir os seguintes valores de poder: 0,8; 0,85; 0,9 e 0,95.

Poder e Tamanho da Amostra

- Selecione Arquivo>Novo>Projeto;
- 2. Selecione Estat>Poder e Tamanho da Amostra>Teste t para 1 amostra.
- 3. Complete a caixa de diálogo como a figura ao lado
- 4. Clique em OK.

Poder e Tamanno de Amostra para Teste t para T Amostra				
Especifique valores para um dos dois itens a seguir: Tamanho <u>s</u> amostrais:				
<u>D</u> iferenças:	2,5			
V <u>a</u> lores de poder:	0,8 0,85 0,9 0,95			
Des <u>v</u> io padrão:	2,403			
	Opções <u>G</u> ráfico			
Ajuda	<u>O</u> K Cancelar			



Teste t para 1 Amostra Teste de média = nulo (versus ≠ nulo) Cálculo do poder para média = nulo + diferença α = 0,05 Desvio padrão assumido = 2,403

Resultados

	Tamanho	Poder	
Diferença	Amostral	Alvo	Poder Real
2,5	10	0,80	0,832695
2,5	11	0,85	0,873928
2,5	12	0,90	0,905836
2,5	15	0,95	0,962487

Exemplo 6: Tamanho da Amostra para comparação entre fornecedores

Proposta

Avaliar a diferença entre duas médias amostrais empregando o teste t para duas amostras independentes.

Problema

Uma empresa que fabrica calculadoras está selecionando fornecedores de plástico para carcaças. A equipe de qualidade tem a seguinte filosofia para medir a qualidade: "Fornecedores com variabilidades similares e custos com médias maiores que um desvio padrão, são considerados diferentes um do outro.

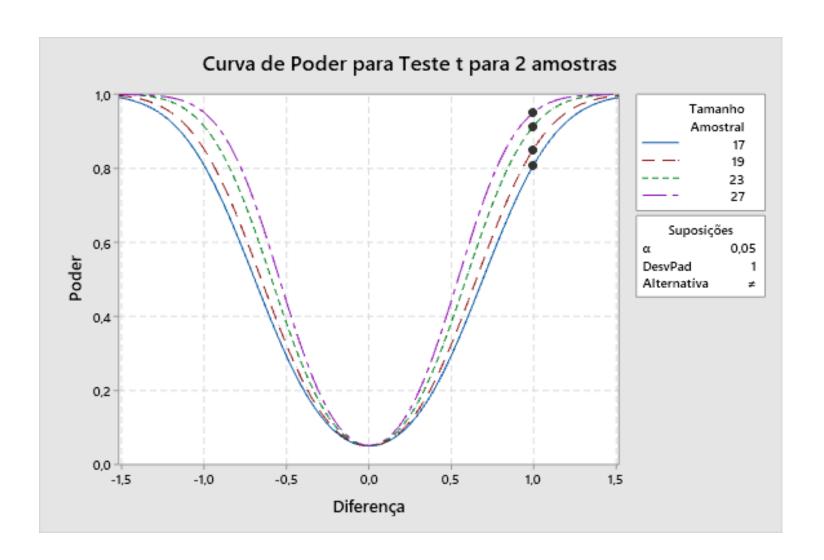
Ferramenta

> 2-Sample t

Poder e Tamanho da Amostra

- Selecione Arquivo>Novo>Projeto;
- 2. Selecione Estat>Poder e Tamanho da Amostra>Teste t para 2 amostras.
- 3. Complete a caixa de diálogo como a figura ao lado
- 4. Clique em OK.

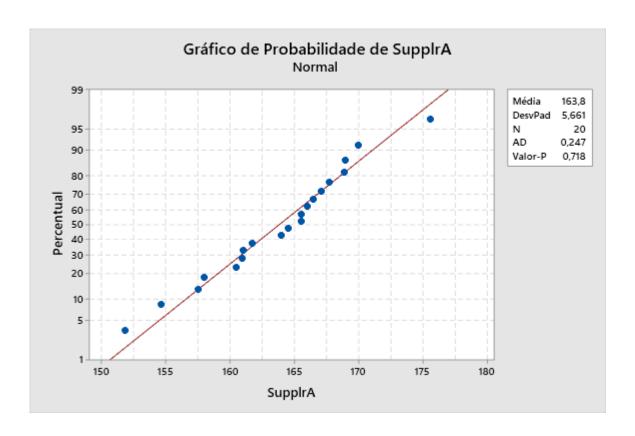
Poder e Tamanho de Amostra para Teste t para 2 Amostras				
Especifique valores para um dos dois itens a seguir: Tamanhos amostrais:				
<u>D</u> iferenças:				
V <u>a</u> lores de poder: 0,8 0,85 0),9 0,95			
Des <u>v</u> io padrão: 1				
	O <u>p</u> ções	<u>G</u> ráfico		
Ajuda	<u>0</u> K	Cancelar		

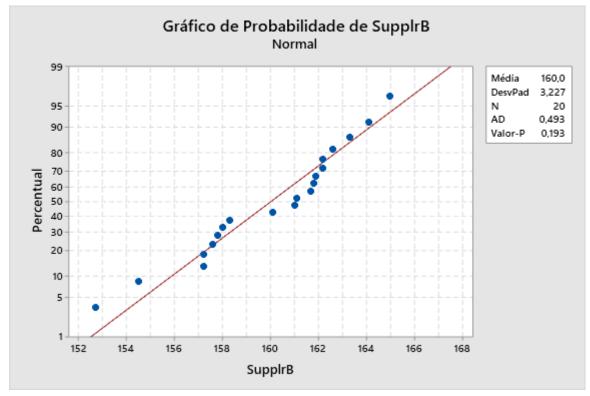


Resultados

	Tamanho	Poder	
Diferença	Amostral	Alvo	Poder Real
1	17	0,80	0,807037
1	19	0,85	0,850612
1	23	0,90	0,912498
1	27	0,95	0,950077

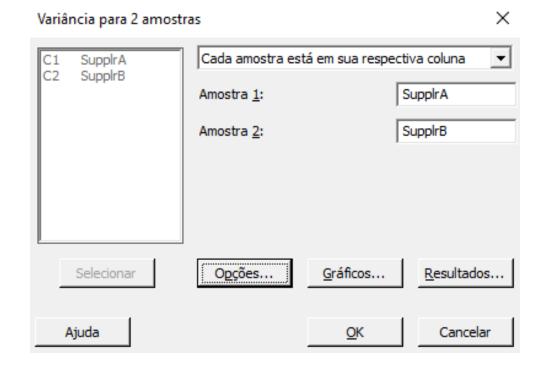
O tamanho amostral é para cada grupo.


Como estamos interessados em comparar médias, o teste estatístico apropriado para os dados dos fornecedores é o teste t para duas amostras independentes. Este teste assume que os dados provem de uma população normalmente distribuída.


Teste de Normalidade

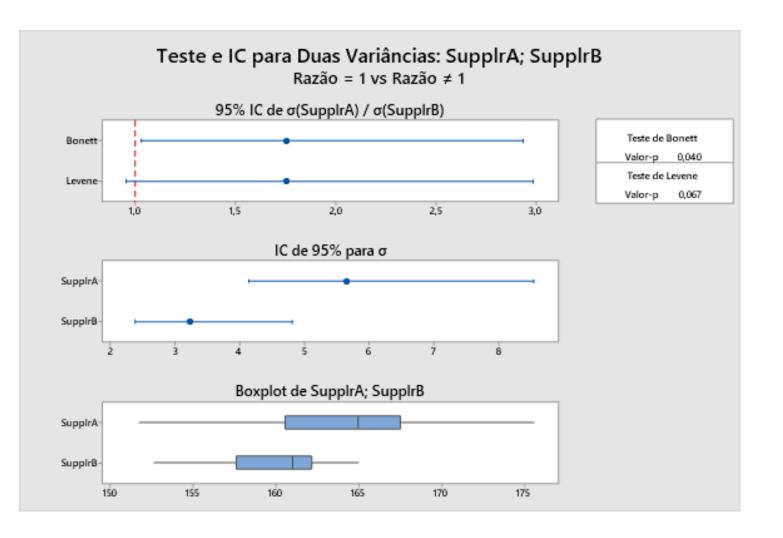
- 1. Abra o arquivo Plastic.mpj
- 2. Selecione Estat>Estatísticas Básicas>Teste de Normalidade.
- 3. Em Variáveis digite SupplrA:
- 4. Clique em OK;
- 5. Pressione Ctrl+E;
- 6. Em Variáveis digite SupplrB:
- 7. Clique em OK;

Antes de avaliarmos as médias dos fornecedores, devemos avaliar as variâncias das duas distribuições para ver se elas diferem. Á duas razões para se fazer isso.

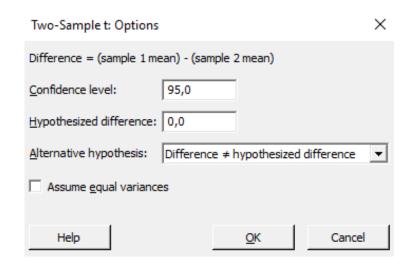

É importante saber se o produto de um fornecedor varia mais que o outro

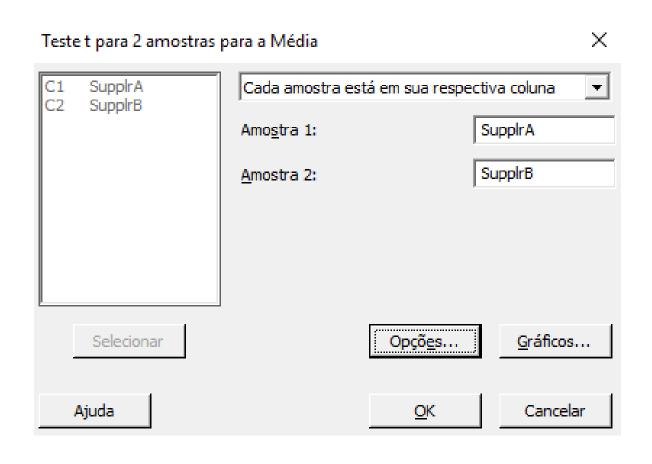
Os cálculos do teste t para duas amostras dependem das variâncias das amostras serem as mesmas ou

serem diferentes.


2 Variances

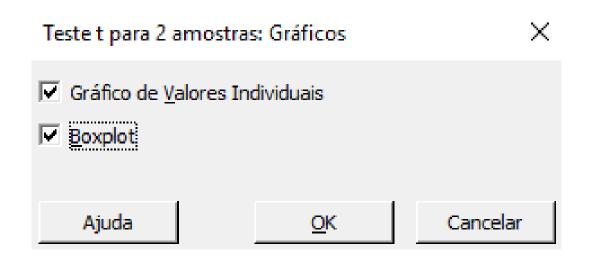
- 1. Selecione Stat>Basic Statistic>2 Variances.
- 2. Complete a caixa de diálogo como na figura ao lado.
- 3. Clique em OK;


- O teste de **Bonnet** é preciso para qualquer distribuição contínua e não necessita que os dados sejam normais. Em geral, o teste de **Bonett** é mais confiável do que o teste de **Levene**.
- O teste de Levene, também é preciso com qualquer distribuição contínua. Para distribuições de cauda extremamente assimétrica e pesada, o método de Levene tende a ser mais confiável do que o método de Bonett.



Teste T para 2 Amostras

- 2. Complete a caixa de diálogo como na figura ao lado.
- 3. Clique em Opções.
- 4. Clique em OK;



Teste t para 2 amostras

- 1. Clique em Gráficos.
- 2. Marque as opções na caixa de diálogo como a figura ao lado.
- 3. Clique em OK em todas as caixas de diálogo;

Método

μ₁: média de SupplrA

μ₂: média de SupplrB

Diferença: μ1 - μ2

Não assumiu-se igualdade de variâncias para esta análise.

Estimativa da diferença

IC de 95%

para a

Diferença Diferença

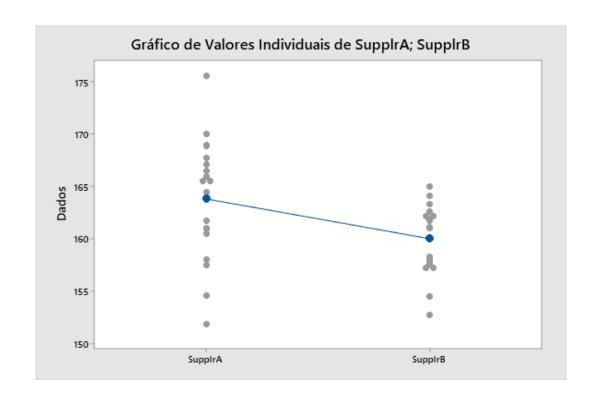
3,80 (0,82; 6,78)

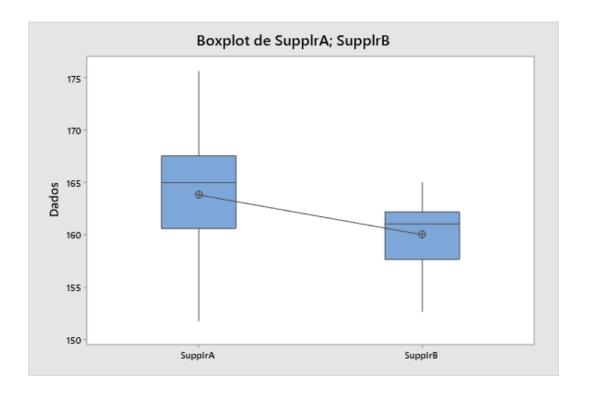
Estatísticas Descritivas

Amostra	Ν	Média	DesvPad	EP Média
SupplrA	20	163,81	5,66	1,3
SupplrB	20	160.01	3.23	0.72

Teste

Hipótese nula H_0 : $\mu_1 - \mu_2 = 0$


Hipótese alternativa H_1 : $\mu_1 - \mu_2 \neq 0$


Valor-T GL Valor-p

2,61 30 0,014

O que é um Teste t Pareado

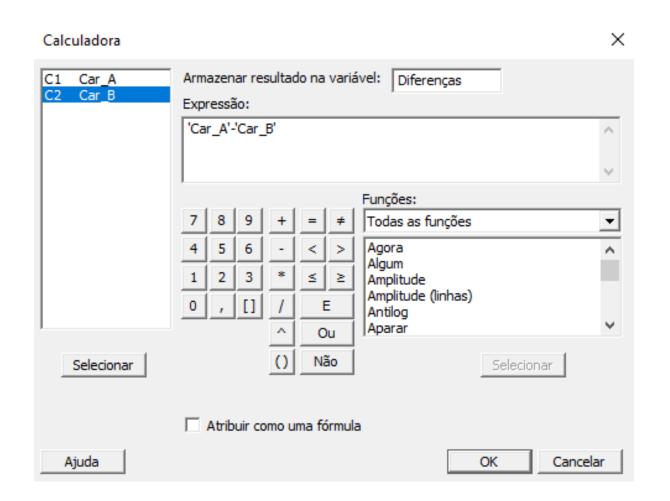
Um teste t pareado ajuda a determinar se a diferença média entre as observações pareadas é significativa. Isto é equivalente a executar um teste t para uma amostra nas diferenças de cada observação pareada.

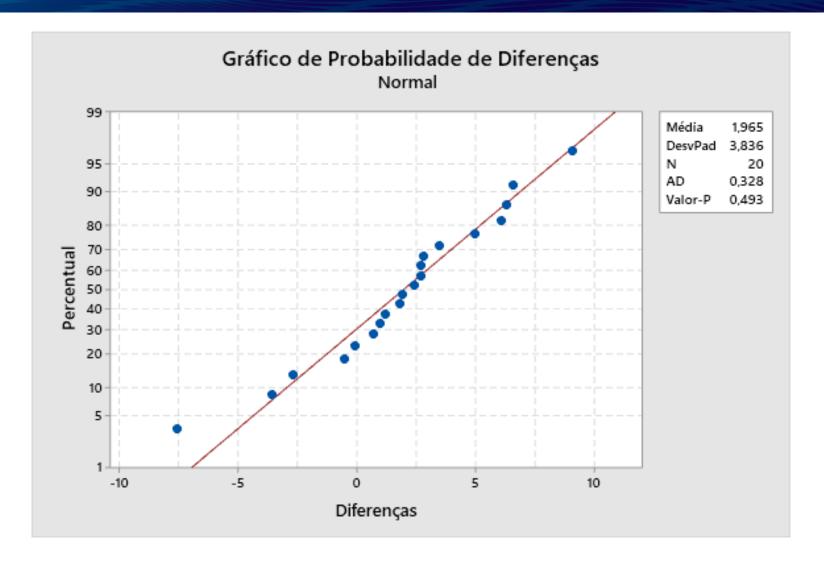
Exemplo 6: Tempo de Manobra

Proposta

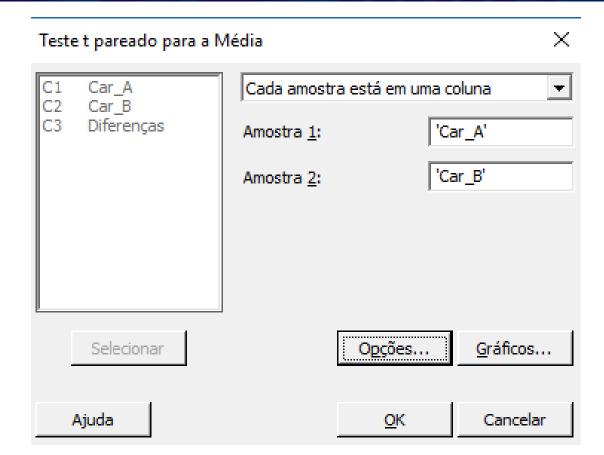
Avaliar a diferença entre observações usando o teste t emparelhado.

Problema


Um grupo de consumidores deseja determinar se há diferença na facilidade de manobra entre dois carros populares. Para medir a habilidade de manobra nos dois carros, os tempos necessários para estacionar os dois carros por cada um dos consumidores foi mensurado.


Teste t Emparelhado

- 1. Abra Carctl.mpj
- Selecione Calc>Calculadora.
- Complete a caixa de diálogo como na figura ao lado.
- 4. Clique em OK;
- 5. Selecione Estat>Estatísticas
 Básicas>Teste de Normalidade.
- 6. Em Variáveis digite Diferenças.
- 7. Clique em OK



Teste t Emparelhado

- 1. Selecione Estat>Estatísticas Básicas>Teste t Pareado.
- 2. Complete a caixa de diálogo como na figura ao lado.
- 3. Clique em Gráficos.
- 4. Marque Gráfico de valores individuais de diferenças.
- 5. Clique em Ok em todas as caixas de diálogo

Estatísticas Descritivas

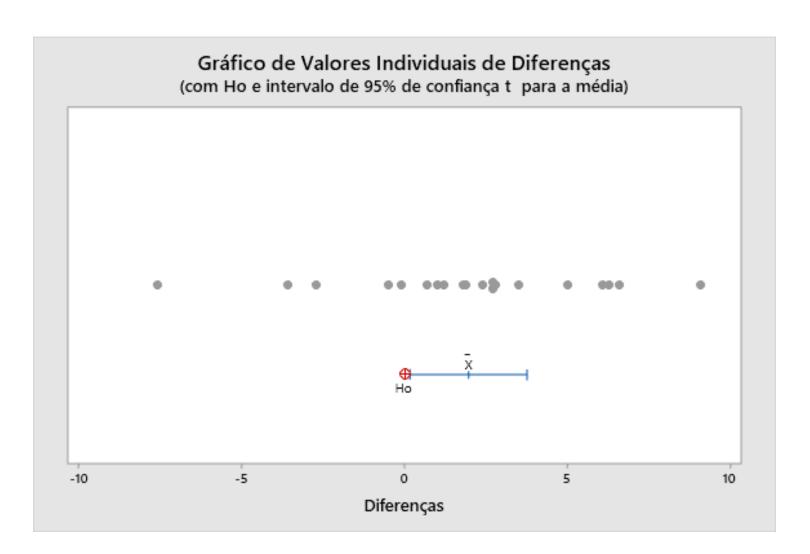
 Amostra
 N Média
 DesvPad
 EP Média

 Car_A
 20
 34,86
 7,59
 1,70

 Car_B
 20
 32,90
 7,27
 1,63

Estimativa da diferença pareada

IC de 95% da


Média DesvPad EP Média diferença_μ

1,965 3,836 0,858 (0,170; 3,760)

diferença μ: média de (Car A - Car B)

Teste

Hipótese nula H₀: diferença_μ = 0 Hipótese alternativa H₁: diferença_μ ≠ 0 <u>Valor-T Valor-p</u> 2.29 0.034

Exercício 1

Um fabricante de equipamentos está preocupado com a possibilidade de um diâmetro tenha se deslocado do valor alvo (0.5 cm). Uma mudança de 0,01 cm é o bastante para que seja necessária a parada e o ajuste do equipamento. Tipicamente o desvio padrão é de 0,004 cm.

Amostragem

Dez rolamentos são retirados aleatoriamente e medidos.

Arquivo: bearings.mpj

Responda:

- 1) O tamanho da amostra é ideal ou vc recomendaria um tamanho de amostra diferente?
- 2) O processo necessita de ajustes?

Exercício 2

Engenheiros desenvolveram um sistema de medição on-line que acreditam que irá medir o pH com a mesma exatidão do sistema atual de seu laboratório. O sistema on-line fornece um retorno mais rápido e permite o ajuste do sistema em tempo real. Eles desejam saber se os dois sistemas fornecem leituras similares de pH.

Amostragem

Foram medidos o pH de 20 lotes de purificadores selecionados aleatoriamente por ambos os sistemas.

Arquivo: labtest.mpj

Responda:

- 1) Os dois sistemas fornecem leituras de pH que podem ser consideradas como iguais?
- 2) Qual seria sua conclusão utilizando um α de 2% e de 10%?