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1 I n t r o d u c t i o n  

The area of Petri Nets was initiated by C.A.Petri in the early sixties ([Pet62]). 
Since then this area has been developed tremendously in both the theory and the 
applications. Although many other models of concurrent and distributed systems 
have been developed in the meantime, the Petri net model is still a central model 
for such systems. It is also often used as a yardstick for other models. 

One of the main attractions of Petri nets is the way in which the basic aspects 
of concurrent systems are identified both conceptually and mathematically. The 
ease of conceptual modelling (based also on a natural graphical notation) makes 
Petri nets the model of choice in many applications. The natural way in which 
Petri nets allow to formally capture many of the basic notions and issues of 
concurrent systems contributed greatly to the development of a rich theory of 
concurrent systems based on Petri nets. 

Petri nets is actually a generic name for a whole class of net-based models 
which can be divided into three main layers. The first layer is the most funda- 
mental and is especially well suited for a thorough investigation of foundational 
issues of concurrent systems. The basic model here is that of Elementary Net 
Systems, or EN systems (introduced in [RozThi86, Thi87, Roz87]). This model 
is not suitable for practical applications because the size of the model explodes 
even for simple but nontrivial applications. The second layer is an "intermediate" 
model where one folds some repetitive features of EN systems in order to get more 
compact representations. The basic model here is Place/Transition Systems, or 
P / T  systems (see for example [Pet81, Rei82]). Finally, the third layer is that 
of high-level nets, where one uses essentially algebraic and logical tools to yield 
"compact nets" that are suited to real-life applications. Predicate/Transition 
Nets (see, e.g., [Gen87]) and Coloured Petri Nets (see, e.g., [Jen92]) are the best 
known high-level models. 

In the framework of EN systems a concurrent system is seen as consisting 
of local states, local transitions (between local states), and the neighbourhood 
relationship between the local transitions and the local states. The global state 
of a system (its configuration) is simply the collection of all local states that 
(con)currently hold. The extent of change caused by a (local) transition is fixed 
and is restricted to the neighbourhood of the transition; it does not depend on 
the part of the global state that is outside that neighbourhood. This simple and 
elegant setup lends itself to a nice graphical representation of both the static 
structure of the system and its dynamic behaviour. 
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The EN system model has resulted from a number of modifications of the 
basic system model called Condit ion/Event  Systems, or C / E  systems, introduced 
by Petri (see, e.g., [Rei82, Thi87]). Perhaps the most significant difference is 
that  in C /E  systems transitions can also be reversed, recovering in this way the 
history of the system. An EN system can also be viewed as a special case of a 
P / T  system. 

In this chapter we present a comprehensive introduction to the theory of EN 
systems, covering both their structure and behaviour. The chapter is organized as 
follows. It consists of eight sections, of which this is the first. The  second section 
recalls some standard mathematical  notions needed in this chapter. Section 3 is 
a basic introduction to  EN systems, both informally and formally. It  begins with 
an informal introduction of EN systems. This is followed by the formalization of 
the notion of a net which represents the structure of an EN system. It consists 
of places (i.e., local states) and transitions (i.e., local transitions), connected 
by the neighbourhood relation. Then the dynamic execution of a net in both a 
sequential and a concurrent setting is discussed. An EN system is a net with 
an initial state, where all its executions begin. The sequential executions of the 
system that  start  from the initial state are called its firing sequences. Considering 
all states that  are reachable by such a firing sequence leads to the state space of 
an EN system, formalized by the notion of a sequential configuration graph. The 
sequential configuration graph is extended to the (full) configuration graph of 
the system, in which also concurrent execution steps are represented. It  is shown 
that  the full configuration graph of an EN system is completely determined 
by its sequential configuration graph. Finally we demonstrate how fundamental 
situations of concurrent systems can be naturally expressed in the model of EN 
systems. 

Section 4 discusses a number of structural and /or  behavioural normal forms 
for EN systems. This is done in the framework of several fundamental behav- 
ioural equivalence relations for EN systems, based on their state spaces. A first, 
basic, normal form is tha t  for every EN system an equivalent EN system can 
be constructed that  has no redundant  transitions or places. For such "reduced" 
EN systems, a structural characterization is given for the behavioural notion of 
a sequential EN system, i.e., an EN system of which every global state consists 
of one local state only. After formalizing the notion of a sequential component 
of an EN system (i.e., a subsystem that ,  on its own, is a sequential EN system), 
a second, more involved, normal form is shown: for every EN system an equiv- 
alent EN system can be constructed that  can be viewed as a concurrent set of 
communicating sequential components. Such systems are conceptually easier to 
understand. 

In the last three sections we turn  to the partial order view of concurrent 
behaviour, where the partial order represents the causal dependencies between 
the events in a run of the EN system. In Section 5 the notion of a concurrent 
run of an EN system is formalized; as usual in Petri  net theory, it is called a 
"process". It is one of the nice features of Petri  net theory that  such a process 
is in fact itself an EN system, called a process net (or causal net); it consists 
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moreover of a mapping that labels the places and transitions of the process net 
with those of the given EN system. Through this mapping, the firing sequences 
of the processes correspond to a partition of the set of firing sequences of the 
EN system. Since a process net is acyclic, the transitions of a process naturally 
represent a partial order that is labelled by the transitions of the EN system. 
There is a one-to-one correspondence between the processes of an EN system 
and the corresponding labelled partial orders. EN systems with the same set of 
labelled partial orders are said to be lpo-equivalent; this is a natural concurrent 
behavioural equivalence of EN systems. 

In Section 6.1 it is demonstrated that two EN systems are lpo-equivalent 
if and only if they have the same firing sequences. This shows that all var- 
ious notions of behaviour considered in this chapter actually amount to two 
equivalences: configuration equivalence (where two EN systems have the same 
sequential configuration graph) and firing sequence equivalence (where two EN 
systems have the same firing sequences). It is remarkable that these two equiv- 
alences formalize the sequential behaviour of EN systems. This means that the 
concurrent behaviour of an EN system (as, e.g., formalized by lpo-equivalence) 
can be derived from its sequential behaviour. In Section 6.2 it is demonstrated 
that the above partition of the set of firing sequences of an EN system corre- 
sponds to the so-called trace-equivalence relation on firing sequences: two firing 
sequences are trace-equivalent if the one can be obtained from the other by the 
interchange of causally independent transitions. 

Section 7 discusses the notion of a branching process of an EN system, which 
formalizes the combination of a finite number of concurrent runs of the system, 
showing where these runs are in conflict and, thus, have to branch. The theory of 
branching processes (or unfoldings) of EN systems is very similar to the theory 
of processes, with the notion of partial order replaced by the notion of event 
structure, which is a partial order with a conflict relation. Finally, Section 8 
contains a conclusion. 

We note here that we only consider the finite behaviour of an EN system, 
i.e., we only formalize finite executions or runs of the system. Thus, infinite 
executions or runs of the systems should be understood through their finite 
initial parts. 

This chapter is based on [Rei82, RozThi86, ThiS7, Roz87] and on the lecture 
notes for the lecture "Theory of Concurrency I" given for several years already 
at the Department of Computer Science of Leiden University, The Netherlands. 

2 P r e l i m i n a r i e s  

In this section we recall some well-known concepts and notation concerning sets 
and words. 

The sets of non-negative and positive integers are denoted by N -- {0, 1, 2, . . .} 
and N+ = {1, 2,3, . . .},  respectively. 

For a set A, P(A) is the set of all subsets of A, and #A denotes the number 
of elements of A. We consider total functions only, i.e., if ] : A -> A ~, then f(a) is 
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defined (and in A') for every a E A. If ] : A --+ A' and B C A,  then f r B denotes 
the restriction of f to B, i.e., the function B ~ A' defined by ( f  r B)(b)  = f (b ) .  
A function f : A -~ A' is injective if ] ( a l )  ¢ f ( a2 )  whenever al i~ a2, ] is 
surjective if for every a ~ E A' there exists an a E A such that  f ( a )  = a r, and f 
is a bijection (between A and A ~) if f is injective and surjective. 

For a binary relation R C_ A x A, the transitive (and reflexive) closure of R is 
denoted by R + (R*, respectively). Hence, (a, b) E R + iff there exist a l , . . . ,  an E 
A, with n _> 1, such that  al = a, an = b and (ai, a i+l)  E R for all 1 < i < n - l ,  
and (a, b) e R* iff (a, b) E R + or a -- b. 

For an alphabet E ,  Z* is the set of all words over E ,  and A is the empty 
word. The length of a word x e ~* is denoted by [x[; thus, [A[ = 0. A word y is 
a prefix of a word x if there exists a word z such that  x = yz .  A language over 
E is a subset of Z*. We note that  any finite set can be viewed as an alphabet. 

Let  E and A be alphabets and let h : E --+ A. We extend h to a function 
from Z* to A* in the following way: h(A) = A and, for a word x = al  - . - an ,  
with n > 0 and ai E ,U for all 1 < i < n, h (x )  = h ( a l ) . . ,  h(an) .  Furthermore,  
for a language L C_ ,U* we define h(L)  = {h(x) I x e L}. In formal language 
theory, h is called a letter-to-letter homomorphism. 

3 E N  S y s t e m s  

3.1 I n f o r m a l  I n t r o d u c t i o n  

Elementary net systems form the most fundamental  class of Petri nets. Like 
most of the models that  fall under the generic name Petri  nets, elementary net 
systems are a net-based model. The basic intuition behind net-based models is 
that  such a model consists of a net, and of the rules of a token game played on 
the net. The net describes the static s tructure of a concurrent system, and the 
rules describe the dynamic behaviour of the concurrent  system. Different classes 
of Petri  nets differ by the sort of underlying nets and /o r  rules of the dynamic 
token game. 

In this section we introduce the notion of a net for elementary net systems 
and the rules for playing the token game on such a net. These rules tell us how 
to get from one global state of the (elementary net) system to another global 
state. They give thus a potential state space of the system. In order to get the 
actual state space one has to specify the initial global state of the system: the 
actual state space is then obtained by starting from this initial global state and 
using the rules of the game. Hence a specific elementary net system is given by 
a net and an initial global state. The rules of the token game are the same for 
all elementary net systems. 

A characteristic property of Petri  nets is tha t  the global state is a set (or 
multiset) of local states and that  the transition from a global state to another  
global state is given by one or more local transitions, where local transitions act 
on local states. More precisely, a local transition replaces a subset of the local 
states of a global state by another such subset. Thus,  Petri  nets can be viewed 
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as set transition systems or set replacement systems (as opposed to the string 
rewriting systems of formal language theory). 

The local states of an elementary net system are also called places, and the 
local transitions are just called transitions. The net is a finite directed graph; 
its nodes are the potential places and transitions of the system, and its edges 
assign input and output places to each transition. Thus the net defines for each 
transition which local states are replaced by which other local states. The actual 
global state is indicated by putting tokens on the places that are the actual local 
states, and the token game is played by moving the tokens around, according to 
the transitions that are executed. 

Thus, in elementary net systems there are only finitely many potential local 
states, and a global state is a finite set of local states. An important consequence 
of this setup is that the state space of an elementary net system is finite. This 
means that elementary net systems are a model of finite-state concurrent systems 
(just as finite automata model finite-state sequential systems). 

This section discusses the basic notions of a net, the token game played on the 
net, and the state space of an elementary net system. However, before turning 
to the formal definitions, we wish to give the reader some intuitive feeling for 
the net-based approach to concurrent systems, through two easy and well-known 
examples. 

Very often, a concurrent system consists of several communicating concur- 
rent components, each of which is sequential (i.e., executes its actions one after 
the other). Concurrency of the components means that one component can per- 
form (some of) its actions independently of (and thus simultaneously with) the 
actions of another component. From time to time the components communicate 
with each other, which means that they have to wait for each other and inter- 
act by synchronizing their actions. In modelling such a concurrent system by 
an elementary net system, a local state is a state of a component, and a local 
transition is either an action of one component that is independent of the other 
components, or consists of a synchronized action shared by several communicat- 
ing components. 

The producer/consumer problem Fig. 1 shows an elementary net system 
that models the well-known producer/consumer problem. Places (i.e., local states) 
are indicated by circles, and transitions by rectangles. For each transition, the 
local states with an edge to the transition (the input places) are replaced by the 
local states with an edge from the transition (the output places). 

The system can be viewed as consisting of three components: the producer, 
the consumer, and the buffer. The producer puts "production units" in the buffer 
(which can contain only one such unit), and the consumer takes units from the 
buffer. 

The producer is always in exactly one of its local states Pl or P2. If it is in 
state pl, it can execute transition p (i.e., produce a unit) and go into state p2 
(which means that the token is moved from Pl to P2). Then it can synchronize 
with the buffer component through the execution of the shared transition f 
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producer consumer 

Fig. 1. The producer/consumer problem. 

(i.e., fill the buffer). The  producer then returns to state Pl,  and the buffer place 
b now also contains a token, to indicate that  the buffer is full. The  buffer can 
be emptied again by the shared transition e (i.e., empty the buffer) in which 
the consumer and the buffer synchronize, and the consumer moves to  its local 
state c2. Then the consumer can execute transition c (i.e., consume the unit) and 
return to its local state cl.  In the meantime the producer may have executed 
transition p independently, and may have executed transition f as soon as the 
buffer was empty. 

Note that  the producer and the consumer never communicate directly, i.e., 
never perform shared actions. However, they cooperate asynchronously via the 
buffer. 

The mutual  exclusion problem Fig. 2 shows an elementary net system that  
models the well-known mutual  exclusion problem. The system consists of three 
components: component 1, component 2, and the "permission" component.  Com- 
ponents 1 and 2 compete for access to the same shared resource (such as a 
printer). At any moment of time at most one of these components can use the 
resource. It is the task of the permission component to schedule access to  the 
resource. The availability of the resource is represented by a "permission" in 
place p; this permission is indicated by the presence of a token in place p. 

A "critical section" is a part  of a component which uses the shared resource 
and hence needs protection against a possible "disturbance" by the other com- 
ponent. The critical section of component 1 is represented by place cl and that  
of component 2 by place c2. The noncritical part of component i (for i -- 1, 2) is 
represented by places ri (the remainder) and wi (wait). Thus, component i has 
local states ci, ri, and wi. Component i can perform the actions ini ,  outi ,  and di 
(entering the critical section, exiting the critical section, and an action outside 
the critical section). To enter or exit the critical section it has to synchronize 
with the permission component,  which has local states p (the resource is not 
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e l  

component 1 component 2 

Fig. 2. The mutual exclusion problem. 

used), cl (the resource is used by component 1), and c2 (the resource is used by 
component 1), and can perform the actions ini and out~, i = 1,2. 

In the global state given in Fig. 2, components 1 and 2 compete for permis- 
sion. Clearly, only one of the transitions in1 or in2 can be executed, permitting 
either component 1 or component 2 (respectively) to access the resource. When 
component i has obtained permission and has finished using the resource, it re- 
turns the permission to place p through transition outi. Note that components 1 
and 2 never communicate directly, i.e., never perform shared actions. However, 
they solve their conflict by communicating with the permission component. Note 
also that the permission component has places in common with the other two 
components. Thus, place cl represents both a local state of component 1 and a 
local state of the permission component. 

3.2 Nets  

The main part of an elementary net system is its net, which is defined as follows. 

Defini t ion 1. A net is a triple N = (P, T, F),  where: 
(1) P and T are finite sets with P N T = 0,  
(2) F C (P x T) U (T x P), 
(3) for every t E T there exist p,q E P such that (p,t), (t,q) E F, and 
(4) for every t E T and p,q E P, if (p,t),(t,q) E F, then p # q. 
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Elements of P are called places, elements of T are called transitions, elements 
of X = P U T are called elements (of N),  and F is called the flow relation (of 
N).  We will also use the notations PN, TN, XN, and FN for P ,  T,  X,  and F ,  
respectively. Note that  N can be the empty net,  i.e., N = (0 ,  0 ,  0 ) .  

For each x E X,  °x = {y • X t (Y,X) • F}  is the input-set (or pre-set) 
of x and x ° = {y e X t (x, y) • F}  is the output-set (or post-set) of x; the  
set °x O x* is called the neighbourhood of x, denoted by nbh(x) .  Whenever we 
want to indicate the net under consideration, the notations (°x)g, (X')N, and 
n b h g ( x )  will be used. For Y c_ X,  we write °Y = U~EY "x, Y° = U ~ e r  x*, 
and nbh(Y)  = °Y U Y° and the terminology is carried over correspondingly. 
Note that  the flow relation F is completely determined if °t and t ° are known 
for every transition t E T. 

Conditions (3) and (4) of Definition 1 can now also be formulated as follows. 
For each transition t: *t ~ 0 ,  t* # o ,  and °t n t ° = 0 .  These requirements do 
not always appear in the literature, but  we use them for two reasons. Firstly 
because they are quite natural,  and secondly because they allow us to avoid 
many unnecessary technicalities. In the sequel, we will now and then indicate 
where these conditions are used. 

It is clear tha t  a net N = (P, T, F )  can in fact be seen as a directed graph 
GN: the nodes of GN are the elements of X and there is an edge from x to y 
iff (x,y) • F. Thus, the reflexive and transitive closure F* and the transitive 
closure F + indicate the paths in GN: (x, y) • F* iff there is a (possibly empty)  
directed path from x to y, and (x, y) • F + iff there is a nonempty directed path  
from x to y. 

Note that  in fact GN is a bipartite graph since {P, T} is a partit ion of X and 
an edge leads either from P to T or from T to P .  A difference between a net and 
an arbitrary bipartite graph is that the part i t ion is explicitly given and that  an 
explicit distinction is made between the two sets P and T of the partition, by 
the order in which they appear in the tuple (P, T, F) .  

Since nets are graphs, the standard conventions for drawing graphs can be 
applied to  nets. In a drawing of a net, places are represented by circles and 
transitions by rectangles. 

Example1. Let N = (P,T,F) be the net with P = {pl,P2,P3}, T --- {tl,t2,t3}, 
and F : {(pl, t2), (Pl, t3), (p2, t2), (p2, t3), (p3, t l ) ,  ( t l ,P l ) ,  (t2,P3), (t3,P3)}. N is 
drawn in Fig. 3. 

Since every net N corresponds in a natural  way to a graph GN, one can 
classify nets by "structural",  i.e., graph-theoretic properties. In particular, the 
following notions will be used in the sequel. 

D e f i n i t i o n  2. A net N = (P, T, F)  
(1) is acyclic if, for every x e X,  (x,x) ~ F +, 
(2) is P-simple if, for all p, q e P,  (°p = °q and p° = q°) implies p = q, 
(3) is T-simple if, for all s, t E T, (*s = °t and s ° = t °) implies s = t, and 
(4) has no isolated places if, for all p • P ,  nbh(p)  ~ O. 
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Fig. 3. A net. 

3 1  

P3 

Note that,  due to condition (3) in Definition 1, transitions are never isolated. 

Example 2. The net N from Example 1 (Fig. 3) is cyclic since, e.g., (Pl ,Pl) E F +. 
N is P-simple, but not T-simple because °t2 = *t3 and t2* : t3*. N has no 
isolated places. The net in Fig. 4 is P-simple and T-simple. It has an isolated 
place and is cyclic. 

E 

C 

Fig. 4. A net that is P-simple and T-simple. 

E 

) 

) 

In considerations concerning the structure of a net, the concrete elements 
of the net are not important.  To express this, we use the following notion of 
isomorphism. Note that ,  in the definition, the order of P and T in the tuple 
(P, T, F)  is taken into account; this is the way in which places and transitions 
are distinguished formally (cf. Example 3(1)). 

D e f i n i t i o n 3 .  Two nets N = (P,T,F) and N '  = (P ' ,  T', F')  are isomorphic, 
denoted by N =- N' ,  if there exist two bijections a : P --~ P '  and ~ : T -~ T',  
such that  for every p E P and t E T, 
(p, t) e F iff (~(p), ~(t)) e F '  and 
(t,p) e F iff (~(t),a(p)) e F'. 
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If we want to be more specific, we can say in the above situation that  N and 
N '  are ((~, ~)-isomorphic, denoted by N - ~  N '. The ordered pair (a,/~) is called 
an isomorphism between N and N'. 

The conditions for c~ and fl in Definition 3 can also be formulated as follows: 
for every t e T,  */~(t) = c~(*t) and ~(t) ° = ~(t*), where, clearly, °/~(t) stands for 
('~(t))N,, °t stands for ('t)N, and likewise for the output-sets.  

Example 3. (1) Let N and N '  be the two nets in Figs. 5 and 6, respectively. It is 
clear tha t  N = N '  does not hold; in fact, in N the output-set  of every transition 
is a singleton but  in N '  there are transitions with an output-set  of cardinality 
2. However, the graphs GN and GN, are isomorphic graphs: there is a graph 
isomorphism 7 between GN and GN,, viz. 7 defined by "/(tl) = P2, 7(t2) = pl ,  
7(t3) = P3 ,  7 ( P l )  ---- t3, 7(P2) = tl  and ")/(/)3) = t2). This isomorphism does not 
preserve the two sorts of the bipartition of the nets because it maps transitions 
into places, and places into transitions! 

Fig. 5. A net N. 

~ P2 

t3 

t l ~  p3 

Fig. 6. A net N', not isomorphic with the net N of Fig. 5. 

(2) Let N "  be the net in Fig. 7. Let c~ and ~ be the bijections from PN 
to PN" and from TN to TN,, defined by a(p l )  = Ps, a(p2) = Ps, ~(Pa) = Pl, 
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f ~ ( t l )  ---- t s ,  f~( t2)  = t3, and f~(t3) = t4. Now N and N "  are (a, f~)-isomorphic, and 
so N - ~  N" .  The isomorphism (a, f~) does preserve the sorts: it maps transitions 
into transitions, and places into places. 

t3 

t 
ts 

Pl 

Fig. 7. A net NIf, isomorphic with the net N of Fig. 5. 

3.3 The  Firing of  Transit ions 

A global state of a concurrent system consists of (is a set of) local states, where 
a local state can often be viewed as the state of a component of the system. A 
global state transition consists of local transitions. During a local transition a 
"small" number of local states change, for instance as the result of a commu- 
nication between some components of the system. Thus, the global states are 
"distributed", and so are the global state transitions. 

When modelling a concurrent system by a net, the local states of the system 
are represented by the places of the net and its local transitions are represented 
by the transitions of the net, together with the flow relation. A global state of 
the system is thus represented by a set of places; such a set of places will be 
called a configuration. 

D e f i n i t i o n  4. A configuration of a net N = (P, T, F )  is a subset of P .  

Graphically, a configuration C C P is represented by placing a "token" (i.e., a 
fat dot, or a thumbtack when we use transparencies) in every circle corresponding 
to  a place in C. Hence a single token represents a local state of the system, often 
corresponding tO the state of a component of the system. Since we mark the net 
with tokens, a configuration is also called a marking of the net. 

We are now ready to define the most fundamental Petri  Net model, the 
"elementary net system". It is a net together with the initial configuration of 
the system. 

Def in i t ion  5. An elementary net system, EN system for short, is a quadruple 
M = (P,T,F,  Cin), where: 
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(1) (P, T, F )  is a net and 
(2) Cin C_ P is the initial configuration. 

For an EN system M = (P,T,F, Cin), we denote by u n d ( M ) ,  PM, TM, 
FM, and (Cin)M the net (P,T, F),  P ,  T, F ,  and Cin, respectively. Furthermore,  
we will call u n d ( M )  the underlying net of M, the places will also be called 
conditions, and the transitions will also be called events (in the literature, when 
places are called conditions, a configuration is often called a case). Finally, the 
terminology and notations concerning nets carry over to EN systems through 
their underlying nets. Note that  M can be the empty EN system, i.e., M -- 

We represent an EN system M graphically by representing u n d ( M )  graphi- 
cally and marking the initial configuration (Cin)M by tokens. 

Example4. Let N = (P,T,F) be the net in Fig. 8. Then M = (P,T,F, Cin), 
with Cin -- {Pl, b, cl }, is an EN system with underlying net N. The EN system 
M is drawn in Fig. 9. Note that  M is the producer/consumer system of Fig. 1, 
with a full buffer. 

pl Cl 

Fig. 8. The underlying net of the EN system of Fig. 9 

Until now we have considered nets and EN systems only as static objects. 
We now turn to the definition of the dynamic behaviour of EN systems. This, 
however, is not as easy as it is for sequential systems (such as finite-state au- 
tomata) .  In fact, it is hard to express in a mathematical,  convincing way that  
certain events, such as the local state transitions of a concurrent system, occur 
independently, "at the same time". For this reason we will consider several de- 
finitions of the behaviour of an EN system, in which the concurrency of events 
is captured in different ways (without going into philosophical discussions about  
the concept of time). We start  with the simplest case, where we consider how a 
configuration of an EN system is transformed by the execution of one transition 



Fig. 9. An EN system. 

24 

Pt C1 

of the system. Hence, in this case we do not yet consider concurrent events. In 
other words, we star t  by defining the sequential behaviour of the EN system. 

A local transition of a concurrent system replaces a subset of the local states 
of a global state by another  such subset. In the corresponding EN system, when 
the input-set of the transition is a subset of the current configuration, execution 
of the transition consists of replacing the input-set by the output-set  of the 
transition. This is also called a firing of the transition. 

D e f i n i t i o n 6 .  Let M = (P,T,F,  Cin) be an EN system and let t E T. 
(1) Let C C P be a configuration. Then t has concession in C (or t can be 

fired in C, or t is enabled in C) if °t c C and t ° M C = O, written as t con  C. 
(2) Let C, D ___ P.  Then t fires from C to D if t c o n  C and D = (C - °t) Ut °, 

written as C[t)D; t is also called a sequential step from C to D. 

When it is necessary to indicate the EN system M under consideration, the 
index M is used: we then write t COnM C and C[t)MD instead of t c o n  C and 
C[t)D. In the li terature C[t) is often written instead of t c o n  C. 

Note that  a transition t can only be fired if it has both  input-concession (i.e., 
"t  c_ C) and output-concession (i.e., t ° n C = 0) .  Note also that ,  though we 
write C[t)D, the new configuration D is uniquely determined by C and t, i.e., if 
C[t)D1 and C[t)D2, then D1 = D2. 

The firing of a transition t is also called the occurrence of transition t, or 
the occurrence of event t. To represent the firing of a transition graphically, we 
play the so-called "token game" as follows. If, in a given configuration (token 
marking) C, there exists a transition (rectangle) t such that  every circle that  
corresponds to an element of the input-set of t contains a token, and every circle 
that  corresponds to an element of the output-set of t does not contain a token, 
then t can be fired (i.e., t has concession). The firing of t consists of removing 
a token from every circle that  corresponds to an element of the input-set of t 
and placing a token in every circle tha t  corresponds to an element of the output-  
set of t, cf. Fig. 10. In this way, the token marking tha t  corresponds to the 
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configuration (C - *t) U t ° is obtained. Note that  this configuration can also be 
written as (C U t °) - °t, since for arbi trary sets A, B and C the following holds 
i f A a n d B  are disjoint: ( C - A )  U B  = ( C U B ) - A  ( a n d ' t N t  ° = ~ due to 
Definition 1(4)). 

Example 5. Let M be the EN system from Example 4 (Fig. 9). Then transitions 
p and e have concession in Cin, i.e., p con  Cin and e c o n  Cin; transitions f and 
c do not have concession in Cin. Both Cin [p){p:, b, Cl} and Cin [e){pl, c2 } hold. 
The configuration {pl,c2} is drawn in Fig. 11. Also, e.g., {p2, b, Cl}[e){p2, c2}, 
{p2, c2 }[f) {pl , b, e2}, and {Px, b, c2 }[c)Cin hold. 

Fig. 11. The EN system of Fig. 9 after firing transition e. 

We can also view the occurrence of event t as a change of the values of certain 
conditions (= places). The idea behind the definition of concession (Definition 6) 
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is tha t  the result of the occurrence of an event must be observable in each 
component of the system that  is involved in this event. Hence the event t can only 
occur if all pre-conditions hold (i.e., *t C C_ C) and all post-conditions do not  hold 
(i.e., t ° NC = 0) .  After the event has occurred, the post-conditions hold and the 
pre-conditions no longer hold. Hence, viewing places as booleans, the occurrence 
of t can be intuitively described by the execution of the following conditional 
statement,  in which all booleans in *t = {Pl . . . .  ,Pro} and t* = {ql . . . .  ,qn} 
change their value: 

i f  pl a n d  --. a n d  Pm a n d  ( n o t  ql) a n d  --- a n d  ( n o t  qn) 

t h e n  b e g i n  Pl := false ; . . .  ; Pm := false ; 

ql : :  t rue ; . . . ;  qn := true 

end .  

It must be observed that  the execution of this statement is an atomic, indi- 
visible, action and that  the execution only takes place if the boolean condition 
(between the i f  and the t h e n )  is satisfied. Also note that  the order of the as- 
signments is irrelevant. 

The next result shows that  there is an alternative, symmetric, way of defining 
the firing of a transition. 

L e m m a  7. Let M = (P, T, F, Cin ) be an E N  system. Let t E T and let C, D c_ P. 
Then C[t)D iff C - D = "t and D - C = t ' .  

Proof. For arbitrary sets A, B, C, D, the following two statements are equivalent: 
(1) A C_ C, B N C  = g ,  and D = ( C - A ) U B ,  (2) C - D  = A and D - C  = B.  [] 

Let M = (P,T,  F, Cin) be an EN system. Assume that  an event t takes place 
in a configuration C and leads to configuration D (C[t)D in our notation).  Then 
the amount  of change of the configuration tha t  is caused by t, can be given by the 
pair ( C - D ,  D - C ) :  the conditions in C - D  stop being valid and the conditions 
in D - C  start  being valid. From Lemma 7 now follows that  the amount  of change 
caused by an occurrence of an event is determined only by the event itself, i.e., 
it is independent of the configuration in which it takes place. Thus we have: 

(Vt E T)(VC1,D1,C2,D2 c P)  : if CI[t)D1 and C2[t)D2, then 
C 1 - D I = C 2 - D 2 a n d D 1 - C I = D 2 - C 2 .  

This holds because, according to Lemma 7, C1 - D1 = "t = C~ - D2 and 
D1 - C1 = t* -- D2 - C2. Thus, each event t determines unambiguously the 
amount  of change it causes (when it occurs); this amount of change is given 
by its characteristic pair cp(t)  = (*t,t*). However, there can be two distinct 
events tl  and t2 tha t  cause the same amount  of change, i.e., they have the same 
characteristic pair: °tl  = ° t2  and tl  ° = t2 °. This cannot happen in a T-simple 
EN system, because in such a system a transition t is completely determined by 
its characteristic pair. Consequently, a T-simple EN system satisfies the following 
principle of extensionality: 
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(Vtl,t2 E T)(VC1,D1,C2,D2 C_ P)  : if CI[tl)D1 and C2[t~)D2, then 
tl = t2 iffC1 - D I  = C2 - D2 and D1 - C1 = D2 - C2. 

This means that ,  in a T-simple EN system, distinct transitions cause different 
amounts of change in all configurations. 

For a given EN system we are only interested in those configurations that  can 
be reached from the initial configuration by the repeated firing of transitions, 
and in the (sequences of) transitions tha t  lead to these configurations. Knowing 
the effect of firing a single transition allows us to define the effect of several 
transitions that  fire one after the other. Such a sequence of transitions can also 
be considered as an observation of the system by a sequential observer (i.e., an 
observer tha t  can observe only one event at a time). Formally, a sequence of 
transitions is a word over the alphabet T,  i.e., an element of T*. 

D e f i n i t i o n  8. Let M = (P, T, F, C~n) be an EN system. 
(1) Let t l . . . t n  E T*, with n :> 0 and t l , . . . , t n  E T. Let C,D C P. Then 

t l . . .  tn fires from C to D if there exist configurations Co, C 1 , . . . ,  Cn C_ P with 
Co ---- C, Cn = D and Ci-l[ti)C~ for all 1 < i < n, written as C[t l . . . t n )D.  

(2) Let x E T* and C c P .  Then x has concession in C (or x can be fired 
in C, or x is enabled in C) if there exists a D C P such that  C[x)D, written as 
X C O n  C .  

(3) x e T* is a firing sequence of M if x c o n  Cin. The set of all firing 
sequences of M is denoted by FS(M).  

(4) C C_ P is a reachable configuration of M if there exists an x e FS(M)  
with Cin[x)C. The set of all reachable configurations of M is denoted by CM. 

(5) t E T is a useful transition of M if there exists a reachable configuration 
C of M such that  t con  C. The set of useful transitions of M is denoted by 
useM(T) ,  or just use(T)  when M is clear from the context. 

(6) t E T is a live transition of M if for each C E CM there exists an x E T* 
with xt c o n  C. 

Note that  a configuration C is reachable (i.e., C E CM) if there exist tran- 
sitions t l , . . . , t n  E T (with n >_ 0) and configurations C 1 , . . . , C a  such that  
Cn -- C and Ci,~[tl)Cl[t2)C~.." [tn)Cn. Hence, CM can also be defined as the 
smallest set of configurations for which the following holds: (1) Cin E CM and 
(2) if C E CM and C[t)D for some t E T, then D E CM. Properties of reachable 
configurations can thus be proved by induction in the following way. Let P(C) 
be a property of (reachable) configurations C of M. Assume that  it has been 
proved that  (1) P(Vin) and (2) if C[t)D and P(C), then P(D). Then P(C) 
holds for all C E CM. We call this a proof by induction on C of the s tatement  
VC e CM : P(C). 

Intuitively, a transition is useful when it can eventually be fired start ing from 
the initial configuration, and it is live when it can eventually be fired start ing 
from any reachable configuration. Thus every live transition is useful. 

Example6. Let M = (P,T,F,  Cin) be the EN system of Example 4 (Fig. 9). 
From the discussion in Example 5 it follows that  the sequence of transitions 
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pe.f e T* fires from (PI, b, cl } to (PI, b, c2 }, and so {Pl, b, cl } [pe] ) {Pt, b, c2 }. Con- 
sequently, pe.f has concession in Cin = (Pl, b, Cl }, written as pe.f con  (Pl, b, cl }, 
and per is a firing sequence of M,  written as pe]: E FS(M).  The configura- 
tions (Pl, b, cl }, {P2, b, ct }, {P2, c2 }, and (Pl, b, c2 ) that  are "encountered" dur- 
ing the firing of pe.f are thus reachable configurations of M,  written as {Pl, b, cl }, 
(p2,b, Cl}, (p2, c2}, {pl,b, c2} E CM. Since c con  {pl,b, c2}, all transitions of M 
are useful. In the comments following Example 7 we observe that  all transitions 
of M are even live. The transitions of the EN system of Fig. 12 are all useful, 
but none is live: from the (reachable) configuration {P6} no other configuration 
can be reached, and so no transition can be fired anymore. 

Po 

Pl 

P3( ) P6 

~P4 ( )P5 

Fig. 12. An EN system of which all transitions are useful, but none is live. 

When analyzing the (sequential) behaviour of an EN system M,  its (sequen- 
tial) configuration graph is often useful. It directly represents the way in which 
the set CM is constructed from Cin by firing transitions. 
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Before presenting its formal definition, we first recall the notion of a (di- 
rected) edge-labelled graph. Here we want such a graph to be "initialized", i.e., 
to have an "initial node". Also, we allow an edge to have a set of labels rather 
than a single label, because this will be needed when we consider concurrent 
configuration graphs. In the literature, initialized edge-labelled graphs are also 
known as transition systems. 

Def in i t i on  9. An (initialized) edge-labelled graph is a quadruple (V, F, E, vin), 
where V is a finite set of nodes, vin is the initial node, ~ is a finite set of (edge-) 
labels, and F C V x 7:'(£7) × V is a set of (labelled) edges. 

For an edge e = (v,U,w) E F of such a graph G = (V,F,E,v~n), U C_ E is 
the set o] labels o]e. If U is a singleton, U = {a}, then we also write the edge e 
as (v, a, w) rather than (v, {a}, w). 

Isomorphism of edge-labelled graphs is defined in the following way. Note 
that  this notion of isomorphism also allows the labels to change. 

Def in i t i on  10. Let G1 = (V1, ['1, El ,  vl) and G~ = (V2,/"2, Z2, v2) be two edge- 
labelled graphs. Then G1 and G2 are isomorphic, denoted by G1 - G2, if there 
exist two bijections a : V1 --+ V2 and/3 : E1 ~ E2 such that  a(vl)  = v2 and, for 
all v, w e V1 and all Y C El ,  (v, U, w) e F1 iff ((~(v),/3(V), a(w)) e F2. 

Here, as usual,/~(U) = {/~(a) ] a E U}. If we want to be more specific, then 
we say that  G1 and G2 are (a,/~)-isomorphic, written as G1 - ~  G2. 

The (sequential) configuration graph of an EN system is now formally defined 
as follows; here each edge has exactly one label, i.e., T' c_ V × E × V. In the 
literature it is often called the sequential case graph, or the transition system of 
the EN system. 

Def in i t i on  11. Let M be an EN system. The sequential configuration graph of 
M, denoted by SCG(M), is the edge-labelled graph (V,F,E,  vin), where V = 
CM, Vin : ( C i n ) M ,  E = use(TM), and F = {(C, t ,D)  [ C,D e aM, t E 
T ,  , C[t) M P }. 

Example 7. For the EN system M from Example 4 (Fig. 9), SCG(M) is given in 
Fig. 13. The "wriggly" arrow indicates its initial node (i.e., the initial configura- 
tion of M).  To simplify notation, we use a la2"  "an for the set {al, a2 , . . . ,  an}. 

Note that  the useful transitions of an EN system M are precisely the labels 
that  actually occur on the edges of the sequential configuration graph of M. 
Also the liveness of a transition t of an EN system M can easily be decided by 
analyzing the sequential configuration graph of M: from each node of SCG(M) 
there must exist a path to a node with an outgoing edge labelled by t. Thus, for 
the EN system M of Fig. 9, SCG(M) of Fig. 13 shows that  all transitions of M 
are live. 
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pl bCl " 

p2bcl pl c2 ~ 

p2c2 pl cl ] 

\ Y" c f / 
Pl bc2 P2 ~1 / 

- -  p2bc2 

Fig. 13. A sequential configuration graph. 

The class of transition sytems corresponding to EN systems (i.e., the class 
of all sequential configuration graphs SCG(M)) is characterized and studied in 
[EhrRoz90, NieRozThi92a, NieRozThi92b, NieRozThi95]. 

The sequential configuration graph SCG(M) can be considered as the (se- 
quential) "state space" of the EN system M. Since M has only finitely many 
configurations, its state space is finite. Thus, an elementary net system M is a 
model of a finite-state concurrent system, and SCG(M) models its sequential 
behaviour. Since finite automata model finite-state sequential systems, there is 
a clear relationship between elementary net systems and finite automata. In 
fact, to the reader familiar with formal language theory (see, e.g., [I-IopUl179]) 
it should be clear that the sequential configuration graph SCG(M) can be seen 
as a finite automaton with initial state Cin (and all states being final states). A 
firing sequence of M is a word in T~I that forms the concatenation of the labels 
of a path in SCG(M) that starts in Cin. Hence, the firing sequences of M are 
precisely the words that are accepted by the finite automaton SCG(M). This 
gives the following result. 

Theorem 12. For every EN system M,  FS(M) is a regular language. 

Pro@ Let M = (P,T,F, Cin). Consider the (deterministic) finite automaton 
,4 with input alphabet use(T),  set of states CM, initial state Cin, set of final 
states CM (thus each state is a final state), and set of state transitions {(C, t, D) I 
C[t)MD}. Then FS(M) is the language accepted by A. 13 

Note that the language FS(M) is prefix-closed, i.e., if a word x is contained 
in FS(M), then also each prefix of x is contained in FS(M). This follows directly 
from the definition of a firing sequence (Definition 8) and explains why all states 
of the automaton .4 are taken as final states in the above proof. Hence not 
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every regular language is the set of firing sequences of an EN system (e.g., the 
language {ab}, with a, b E ~U, is regular but  not prefix-closed). Also, not every 
prefix-closed regular language is the set of firing sequences of an EN system; 
e.g., {~, t, tt} with t E ~ is such a language, because no transition can fire twice 
consecutively (if C[t)D, then °t N D = O, and hence t does not have concession 
in D). 

3.4 C o n c u r r e n c y  

Intuitively it is not so difficult to get an idea of a "run" of an EN system in 
which transitions can fire concurrently, i.e., independently of each other. In fact, 
in everyday life, people can be viewed as communicating concurrent components 
of a large system. However, to formalize this intuition is not so easy. We will now 
give a first a t tempt  to capture the concurrent firing of transitions in a formal 
definition. The second, more sophisticated, a t tempt  is presented in Section 5. In 
this first at tempt,  we still view the behaviour of an EN system in terms of global 
state transitions that are made in a step-wise fashion. However, as opposed to 
Definition 6(2), we now allow several transitions to fire in one such step. 

Intuitively, two transitions such tha t  each of them has concession in a given 
configuration, can be fired concurrently provided they are disjoint, i.e., have no 
common places. Also, it is intuitively clear how the configuration is transformed 
by firing both transitions. We will now formalize these intuitions; we do this 
right away for an arbitrary number of transitions (rather than two). 

D e f i n i t i o n  13. Let M = (P,T,F,  Cin) be an EN system. 
(1) Let U C_ T. U is a disjoint set of transitions if U ~ O and for every 

two distinct transitions tl ,t2 E U: n b h ( t l ) N  nbh( t2)  = o ;  this is denoted by 
disj(U).  

(2) Let U C_ T and let C C P.  Then U has concession in C (or U can be fired 
in C, or U is enabled in C) if disj(U),  *U C_ C, and U ° N C = o ;  this is denoted 
by U c o n  C. 

(3) Let U C_ T and let C, D C P .  Then U ]ires from C to D, written as 
C[U)D, if U con  C and D -- (C - °U) U U °. If # U  _> 2, then we also say that  
U is a concurrent step from C to D. 

The firing of a disjoint set of transitions U can be seen as a global state 
transition of the system M, consisting of local state transitions (namely the 
transitions in U). Thus, states and state transitions are now treated in a similar 
way: global states (configurations) are sets of local states (places) and global 
state transitions (concurrent steps) are sets of local state transitions (sequential 
steps). 

Analogous to Lemma 7 we obtain the following lemma. 

L e m m a  14. Let M = (P, T, F, Cin) be an EN system. Let U c T and let C, D C_ 
P. Then C[U)D holds iff disj (U),  C - D = °U, and D - C = U' .  
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The amount of change caused by a set of transitions is thus cumulative, i.e., it 
equals the sum of the changes caused by the separate transitions. As in the case of 
single transitions this means that  the amount of change caused by the occurrence 
of several disjoint events is determined only by these events themselves, not by 
the configuration in which they occur. However, in a T-simple EN system the 
principle of extensionality does not necessarily hold for concurrent steps. For 
example, it is easy to construct an EN system with three transitions t l , t2,  t3 for 
which "ta = °{tl , t2} and ts ° -- {tl, t2} °. 

Example 8. Let M be once again the EN system of Example 4 (Fig. 9). Then 
{p, e} is a disjoint set of transitions (thus disj({p, e})), but {f, e} is not. The 
only disjoint sets U with # U  >_ 2 are {p, e}, {p, c} and {f,  c}. The set {p, e} has 
concession in Cin (thus {p, e} con  {pl, b, cl}), and {Pl, b, Cl}[{p, e}){p2, c2}. 

The concession of a set U of transitions (in a given configuration) can be ex- 
pressed through the concessions of the transitions in U, together with a simplified 
disjointness condition, as follows. 

L e m m a  15. Let M = (P, T, F, Cin) be an EN system. Let C C_ P and let U C_ T 
with U ~ 0.  Then U c o n  C iff 
(1) t con  C for all t E U, and 
(2) for all tl,t2 E U with tl ~ t2, *tl N °t2 = O and tl* N t2* = O. 

Proof. Obviously, °U C_ C and U ° n C = O if and only if t con  C for all t E U. 
Moreover, if t l  con  C and t2 c o n  C ,  then °tl N t2 ° ---- O and tl* N *t2 = O. [] 

For a concurrent step U from configuration C to configuration D, each split- 
ting of U into nonempty sets U1 and U2 yields two (concurrent or sequential) 
steps U1, U2 which, when executed sequentially in arbitrary order (first U1 then 
Uu, or first U2 then U1), lead to the same configuration, i.e., fire from C to D. 
This is formally expressed as follows. 

L e m m a  16. Let M = (P, T, F, Cin) be an EN system, let C, D C_ P, and let 
U C T. Let {U1, U2} be a partition of U, i.e., U = U1 U U2, U1 N U2 = o and 
U1, U2 ~ 0. ff C[U)D, then there exists a configuration E C_ P such that C[U1)E 
and E[U2) D. 

Proof. It is intuitively clear that  E is the configuration that  is obtained by firing 
U1, i.e., E = (C - *U1) U UI*. The formal proof is as follows. 

To begin with, disj(U1) and disj(U2) follow from disj(U). From Lemma 14 it 
follows that  C n D ,  °U, and U ° are mutually disjoint sets with C = (CND)U*U 
and D = (C n D)U U*. From disj(U) and the fact that  {U l, U2 } is a partition of 
U it then follows that  CN D, *U1, °U2, U1 °, and U2 ° are mutually disjoint sets, 
with "U = °U1 (3 °U2 and U ° = UI* t9 U2 °. Hence C = (C N D) U *U1 t3 °U2 and 
D --- (Cf~D)UUI°UU2 °. Now consider the configuration E = (CND)UUI°U°U2 
(i.e., E - (C - "U1) t3 UI°). Then C - E = °U1 and E - C = U1 °, and thus 
C[U1)E according to Lemma 14. Likewise E - D = *U2 and D - E - U2 °, and 
thus E[U2)D according to Lemma 14. [3 
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This lemma expresses a so-called diamond property: if C[U)D and {U1,U2} 
is a partition of U, then there exist two configurations E1 and E2 such that 
C[U1)EI[U2)D and C[U2)E2[U1)D. A drawing (in Fig. 14) of the four steps 
C[U1)E1, EI[U2)D, C[U2)E2, and E2[U1)D gives a "diamond"; the step C[U)D 
is then a diagonal of this diamond. More general diamond properties are studied 
in [HooRozgl]. 

C 

Fig. 14. h diamond. 

It follows directly from Lemma 16 that a concurrent step can be realized by 
the firing of its elements in an arbitrary order. Such a realization of a concurrent 
step intuitively corresponds to a possible way in which a sequential observer 
sees the step as a sequence of sequential steps. This is expressed by the following 
lemma. 

L e m m a  17. Let M = (P, T, F, Cin) be an E N  system, let C, D C_ P and let U C_ 
T.  If  C[U) D , then C[tl . . . tn) D /or each ordering ( tl  , . . . , tn ) of the elements o/ 
U. 

Proof. By induction on #U.  The induction step follows directly from Lemma 16. 
[] 

This thus means that by allowing concurrent steps no new reachable config- 
urations are obtained (and no new useful transitions). Adding all steps (C, U, D) 
with # U  _> 2 to the sequential configuration graph leads only to new edges 
labelled by sets of transitions. 
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D e f i n i t i o n  18. Let M be an EN system. The configuration graph of M, denoted 
by CG(M),  is the edge-labelled graph (V,/', ~ ,  vin), where V = CM, vin = 
(Gin)M, z~ = use(TM), and F = {(C,U,D) I C,D E CM, U C_ TM, G[U)MD}. 

Note that  if C[U)MD and C E CM, then U C_ use(TM), according to 
Lemma 15. 

Example 9. Let M be the EN system from Example 4 (Fig. 9). The  configura- 
tion graph CG(M) is drawn in Fig. 15. Compare CG(M)  with the sequential 
configuration graph SCG(M) of Fig. 13. Also note tha t  CG(M)  contains sev- 
eral "diamonds" (see Fig. 14) such as, e.g., the diamond at the concurrent step 
{Pl, b, el }[(p, e}){p2, c2}. 

1 c2 \ 

plbC2 p2,Cl / 

p2bc2 

Fig. 15. A configuration graph. 

Rather  surprisingly, Lemma 17 also holds the other way around. To prove 
this (in Theorem 20) we use the following diamond property, which shows tha t  
a diamond exists whenever three of its sides are given, cf. [HooRozgl]. 

L e m m a  19. Let M = ( P, T, F, Cin ) be an EN system, let C c_ P and let s, t E T.  
I f  st c o n  C and t c o n  C, then {s, t} c o n  C. 

Proof. Since st c o n  C, s c o n  C certainly holds. Since t c o n  C also holds, it 
suffices according to Lemma 15 to show that  "s O "t  = O and s ° n t ° = 0 .  Let 
C[s)D. Then °s n D = ~ and s ° C D. Since t c o n  D, "t  C_ D and t ° n D = 0 .  
Hence "s n °t = o and s ° n t ° = 0 .  [3 

Now we prove the so-called sequentialization property. 
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T h e o r e m  20. Let M = (P, T, F, Ci~) be an EN system, let C, D C P and let 
U C T with U ~ o.  Then 

(1) U c o n  C ifftl . . . tn con C for every ordering ( t l , . . .  ,tn) of the elements 
of U, and 

(2) C[U)D iff C[tl . . .  tn)D ]or every ordering ( t l , . . . ,  tn) of the elements of 
U. 

Proo]. (Only-if) The only-if-part of (2) is Lemma 17. From this the only-if-part 
of (1) directly follows. 

(If) We first prove the if-part of (1). For each t E U there exists an or- 
dering ( t l , . . . , t n )  of U with tl = t. This implies that t con C for all t E U. 
What remains to be proved (see Lemma 15), is disj({s,t}) for every two dis- 
tinct elements s and t of U. To this aim, we use Lemma 19. We already know 
that t con C. If we now consider an ordering of U of the form (s,t, t3,. . .  ,tn), 
then, by assumption, stt3.., tn con C. Hence st con C, and so, by Lemma 19, 
{s, t} con C. Thus disj({s, t}). 

The if-part of (2) can now easily be deduced from the if-part of (1) and the 
only-if-part of (2). [] 

According to this theorem, the concession and the effect of a concurrent 
step are completely determined by the concession and the effect of sequences of 
sequential steps. Hence we can use the properties of firing sequences of transitions 
when reasoning about concurrent steps. In particular, it follows from Theorem 20 
that we can construct the configuration graph CG(M) of an EN system M from 
its sequential configuration graph SCG(M), even if we do not know M itself 
(see Section 4 of [HooRoz91]). Thus, the sequential configuration graph contains 
already all the information about concurrency! This is formally expressed in the 
next theorem. 

T h e o r e m  21. For EN systems M and M', 
SCG(M) = SCG(M') ii1 Ca(M) - CG(M'). 

Proof. (If) It follows directly from the definitions that if CG(M) -__~ CG(M'),  
then SCG(M) -y-~ SCG(M'). 

(Only-if) Assume that SCG(M) -=~ SCG(M'). This means that for all C, D E 
CM and t E use(TM), C[t)MD iff a(C)[/~(t))M,a(D). It is now easy to prove, 
by induction on Ix], that for all C,D E aM and x e use(TM)*, C[x)MD iff 
c~(C)[/3(X))M,a(D); note that, for x = t l - - - tn , /~(z)  ---/~(tl)---/3(tn) according 
to Section 2. From this and Theorem 20 it follows that for all C, D E CM and 
U C_ use(TM), C[U)MD iff a(e)[/~(U))M,a(D). Thus CG(M) --~ CG(M'). [-] 

It is shown in [HooRoz91] that this result (and in particular its If direction) 
is still true if the isomorphism between the configuration graphs disregards the 
fact that the edges are labelled by sets, viewing them as abstract symbols (i.e., if 
in Definition 10, ~ is taken as a partial injective function from P(Z1)  to P(~2)).  
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3.5 F u n d a m e n t a l  S i tuat ions  

An attractive feature of Petri Net models is that  important notions concerning 
concurrent systems can be formulated in terms of, e.g., EN systems in a very nat- 
ural way. To illustrate this aspect of EN systems, we discuss several fundamental 
situations that  may occur in the dynamic behaviour of (concurrent systems that  
can be modelled by) EN systems. In what follows, we assume that  an EN system 
M "- (P, T, F, Gin) is given. 

There are three fundamental relationships that  may hold between two events 
tl  and t2 in a given configuration C: causality, concurrency, and conflict. 

(1) C a u s a l i t y  (of events tl  and t2 in configuration C). 
This notion is illustrated in Figs. 16 and 17:t2 con  C does not hold, but 

tit2 con  C does hold. Thus, tl needs to occur to grant concession to t2 (input- 
concession in Fig. 16, and output-concession in Fig. 17). In other words, t l  is 
one of the causes of t2. An equivalent formal definition is: tit2 con  C holds, but 
tl ° n°t~ ~ ~ or*tx Nt2 ° ~ ~. 

Fig. 16. Causality: tl ° CI "t2 ~ O. 

Fig. 17. Causality: "tl f3 t2* ~ 0. 
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(2) C o n c u r r e n c y  (of events tl and t2 in configuration C). 
This notion is illustrated in Fig. 18: {tl,t2} con  C. Figure 19 shows a more 

complete picture of the situation: it gives a representation of C and P - C, and 
it shows how "tl ,  "t2 and tl °, t2 ° fit into C and P - C, respectively. 

Fig. 18. Concurrency. 

u;Z  

C P 

P - C  

Fig. 19. Concurrency, the complete picture. 

Hence if tit2 has concession in C, then tl and t2 a r e  related by either causality 
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or concurrency: if t2 con  C does not hold, then there is causality, and if t2 con  C 
does hold, then (by Lemma 19) there is concurrency. 

(3) Conf l ic t  (between events tl  and t2 in configuration C). 
This notion is illustrated in Figs. 20 and 21: both t l  con  C and t2 con  C 

hold, but {tl,t2} con  C does not hold. Consequently, by Lemma 15, *tl N ' t2  
O or tl  ° (3 t2* ¢ O. If the former holds, then we have an input-conflict (rep- 
resented in Fig. 20), and if the latter holds, then we have an output-conflict 
(represented in Fig. 21). Obviously, input-conflict and output-conflict can also 
both be present. 

Fig. 20. Input-conflict. 

Hence if tl and t2 both have concession in configuration C, then there is either 
conflict or concurrency. In the case of concurrency tl  and t~ are independent, 
whereas in the case of a conflict they are not independent. That  is why a conflict 
intuitively leads to a nondeterministic choice between the transitions (either 
tl occurs, or t2 occurs). Clearly there is no need for choice if tl and t2 are 
concurrent. EN systems in which no choice is made are particularly easy to 
understand; they are the concurrent equivalent of deterministic finite automata  
in the sequential case. 

D e f i n i t i o n  22.  An EN system M = (P, T, F, C~n) is conflict-free if for every C E 
CM and all transitions tl ,  t2 E T: if tl  con  C and t2 con  C, then {tl, t2} con  C. 
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Fig. 21. Output-conflict. 

Since in a conflict-free EN system choices are never made, it has only one 
run. The EN system of Fig. 1 is conflict-free, for "structural reasons": both 
p° and °p contain at most one transition, for every p E P;  such systems are 
clearly conflict-free: {tl,  t2) con C follows from "tl  N "t2 = O and tl  ° N t2" = O, 
by Lemma 15. In the literature (see, e.g., [LanRob78]) conflict-free systems are 
usually called persistent, in which case the term 'conflict-free' is reserved for a 
structural subclass such as the one above. 

The interplay between concurrency and conflict may be quite intricate, and in 
particular it can lead to confusion - a phenomenon that  seems to be fundamen- 
tally present in nature and appears in various disguises, depending on the chosen 
level and way of description of a concurrent system. Here we discuss confusion 
in the framework of EN systems. 

(4) Confusion. 
Consider the EN system in Fig. 22, hence Cin = {pl,P2,pa}. Let C = 

{P4,Ps}; thus Cin[{tl, t2})C. Different sequential realizations (tit2 and t2tl) of 
this concurrent step have drastically different properties. Since sequential real- 
izations of a concurrent step correspond to observations of the step by sequential 
observers, assume that  we have two honest sequential observers O1 (correspond- 
ing to t i t2) and 02 (corresponding to t2tl). They will report  their observations 
as follows: 
O1: "tl occurred first without having been in conflict with another event; then 
t2 occurred", and 
O2:"t2 occurred first; this resulted in a conflict between tl and t3 which was 
resolved in favour of t l ,  and so tl occurred". 
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~ P2 

Fig. 22. A conflict-increasing confusion. 

This is therefore a confusing situation, which resulted from the interplay be- 
tween concurrency (between tl  and t2) and conflict (between tl and t3). Systems 
where confusion occurs are in general difficult to analyze. This is due to the fact 
that  the intermediate configurations determined by the different sequential re- 
alizations of a concurrent step can differ drastically from each other, as we have 
seen in the example above. Consequently, in general one may have to analyze all 
possible sequentializations of the step rather than just one. The theory of Petri 
Nets suggests that  it is not the combination of concurrency and conflict as such 
that  causes difficulties. Only those combinations of concurrency and conflict that  
result in confusion create problems. Unfortunately it is not always possible to 
avoid confusion. Even the rather simple "mutual exclusion problem" discussed 
in Section 3.1 contains confusion (in configuration {Wl, p, r2 }). 

We now turn to a formal discussion of confusion. 

D e f i n i t i o n 2 3 .  Let M = (P,T,F, Cin) be an EN system, let C E CM, and let 
t E T be such that  t con  C. The conflict set of t in C, denoted by cfl(t, C), is 
the set (t '  e T t t '  con  C and -, {t, t '} con  C}. 

Hence the conflict set of an event t in a configuration C is the set of all events 
that  are in conflict with t in C. Note that  t is in conflict in C only if t itself has 
concession in C. 

D e f i n i t i o n 2 4 .  Let M = (P,T,F, Cin) be an EN system, let C 6 CM, and 
let tl,t2 ~ T. The triple (C, tl,t2) is called a confusion (in C) if t l ¢  t2, 
{tl,t2} con  C, and cf l ( t l ,C)  ~ cf l ( t l ,D) ,  where C[t2)D. Then M is confused 
in C if there is a confusion in C. 

Hence a triple (C, tx,t2) is a confusion if {tl,t2} is a step in C and the 
occurrence of t2 in C changes the conflict set of tl.  
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Example 10. Consider the EN system M depicted in Fig. 22. For the config- 
uration C = {pl,p2,p3} = Cin, cf l ( t l ,C)  --- ~.  Hence (C, tl,t2) is a confu- 
sion, because {tl,t2} con  C and cf l ( t l ,C)  = O ~ {t3} ---- c f l ( t l ,D) ,  where 
D = {PI,P3,P4}. 

It is natural to distinguish the following two types of confusion. 

D e f i n i t i o n  25. Let M = (P, T, F, C~n) be an EN system, let C E CM, let t l ,  t2 E 
T, let 7 = (C, t l ,  t2) be a confusion, and let C[t2)D. 

(1) 7 is a conflict-increasing confusion, ci confusion for short, if cfl(t l ,  D) 
cfl(tl, C). 

(2) ~/is a conflict-decreasing confusion, cd confusion for short, if eft(t1, D) 
eft(t1, C). 

Example 11. (1) Consider the EN system M and the confusion (C, t l ,  t2) from 
Example 10 (Fig. 22). Since cfl(tx, D) ~ eft(t1, C), (C, tl, t2) is a ci confusion. 

(2) Consider the EN system in Fig. 23. For C = Cin = {pl,p2}, (C, tl,t2) 
is a confusion because {tl,t2} con  C and cf l ( t l ,C)  = {t3} # 0 = cfl(t l ,  D), 
where D = {Pl,P3}. Furthermore, since cfl(t l ,  D) ~ cfl(tl ,  C), (C, tl, t2) is a cd 
confusion. 

Fig. 23. A conflict-decreasing confusion. 

(3) Consider the EN system in Fig. 24. For C = Ci ,  = {pl,p2,p4}, (C, tl ,  t2) 
is a confusion because e t t ( t l ,C)  = {t3} # {t4} = cf l ( t l ,D) ,  where D = 
{Pl,P3,P4}. Note that  (C, tl,t2) is neither a ci confusion nor a cd confusion. 

As we have seen in the above example, the classification of confusions into ci 
confusions and cd confusions is not exhaustive: there exist confusions tha t  are 
neither ci nor cd. 

If (C, t l ,  t2) is a confusion, then the occurrence of t2 in C has a rather strong 
impact on the occurrence of tl  in C: it changes the conflict set of t l .  Hence the 
fact tha t  (C, tl ,  t2) is a confusion shows an influence of t2 on tl (in C). In order 
to better understand the mutual dependency between tl and t2 it is important  to 
know whether tl has the same sort of influence on t2 (in C). This consideration 
leads to the notion of symmetric confusion. 
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t2 

V-] 

Fig. 24. A confusion that is neither conflict-increasing nor conflict-decreasing. 

Def in i t i on  26. Let M = (P, T, F, C~n) be an EN system, let C E CM, let tl ,  t2 E 
T and let 7 = (C, tl,t2) be a confusion. Then 7 is symmetric if (C, t2,tl) is also 
a confusion, otherwise 7 is asymmetric. 

Example 12. (1) Consider the EN system M and the confusion (C, t l ,  t2) from 
Example 10 (Fig. 22). Since (C, t2, tl) is not a confusion, (C, t l ,  t2) is a ci confu- 
sion that is asymmetric (see also Example 11(1)). 

(2) Consider the EN system in Fig. 25. For C = Cin = {pl,p3}, (C, tl,t2) is 
a ci confusion and (C, t2 , t l )  is a ci confusion. Hence (C, tl,t2) is a ci confusion 
that is symmetric. 

( 

E 

( 

t3 

Fig. 25. A symmetric confusion. 

~P3 

B t2 

(3) The confusion (C, t l ,  t~) from Example 11(2) (Fig. 23) is a symmetric cd 
confusion. 
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(4) The confusion (C, tl ,  t2) from Example 11(3) (Fig. 24) is a symmetric 
confusion that  is neither a ci confusion nor a cd confusion. 

The above example shows that  the division into ci and cd confusions is rather  
independent from the division into symmetric and asymmetric confusions. We 
will not consider the topic of confusion in more detail here, however we would 
like to mention that  the only nontrivial relation between these dividing lines is 
tha t  cd confusions are always symmetric (in fact, if (C, tl,  t~) is a cd confusion, 
then there is a transition t such that  t c o n  C and t is in conflict with both tl  
and t2). 

An EN system is said to be firee-choice if, for all transitions t l  and t2, 
°tt ¢q °t# # ~ implies "tl  = °t2. This is a structural  restriction on EN systems 
that  guarantees the absence of confusion as far as input-conflicts are concerned. 
Requiring additionally that  the system is contact-free (see Section 4.5), it is not 
difficult to show that  there is no confusion. The class of free-choice EN (and P / T )  
systems is a large class with many interesting properties, see [Hac72, DesEsp95]. 

4 Equiva lences  and N o r m a l  Forms  

When we wish to express in a formal, mathematical,  way that  two systems "are 
similar to each other" or that  they "behave in the same way", then we have to 
define an equivalence relation on the class of all systems, such that  the systems 
that  "are similar to each other" or "behave in the same way" form an equiva- 
lence class. Such equivalence relations are particularly useful when one wants to 
transform or optimize a system without changing its "behaviour", i.e., transform 
a system into a "better",  equivalent system. If R is a property of EN systems 
such that  for each EN system there is an equivalent one satisfying R, then we say 
that  R is a "normal form" for the class of EN systems. In this section we consider 
several notions of equivalence and normal forms for EN systems. In particular, 
we formalize the notion of a component of an EN system and show that  every EN 
system is equivalent with one that can be viewed as consisting of communicat- 
ing concurrent components (where each of the components is sequential). Such 
decompositions of Petri  nets are studied, e.g., in [Hac72, DesEsp95]. A survey of 
various notions of equivalence for EN systems is presented in [PomRozSim92]. 

4.1 E q u i v a l e n c e  

The simplest (and least interesting) definition of equivalence is isomorphism. 
Two EN systems are isomorphic if their underlying nets are isomorphic in such 
a way that  the initial configurations correspond to each other. 

D e f i n i t i o n  27. Two EN systems M = (P, T, F, Cin) and M'  --- (P', T' ,  F',  C~n ) 
a r e  isomorphic, denoted by M -: M ~, if there exist two bijections a : P -+ P~ 
and/3 : T  -+ T '  such that  u n d ( M )  - ~  u n d ( M ' )  and c~(Cin) = C~n. 
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Thus, isomorphic EN systems have the same static structure. Now we will 
try to capture the dynamic "behaviour" of EN systems through an equivalence 
relation, as discussed above. For EN systems there are many possibilities to 
define such a notion of equivalence, some weaker than others. If two systems are 
isomorphic, then they will be equivalent for any of these notions. The underlying 
idea for all the notions of equivalence that we will consider, is that "behaviour" 
is mainly concerned with the actions (transitions) that occur during a run of the 
system and not so much with the distribution of the global state of the system 
Cover the places). 

Our first notion of dynamic equivalence defines two EN systems to be equiv- 
alent if there exist one-to-one correpondences between the transitions and the 
configurations (not the places!), such that the correspondence between config- 
urations is preserved by firing corresponding transitions. This means that the 
systems "simulate each other's behaviour". 

Defini t ion28.  Let M -- (P,T,F,  Cin) and M' = (P',T',F',C~n) be two EN 
systems. Then M and M ~ are configuration equivalent, denoted by M ~ M ~, if 
there exist two bijections a : CM -'~ CM' and/3 : useM(T) --~ useM,(T ~) such 
that 
(1) a(Cin) = C~ and 
(2) for all C,D e CM and t e useM(T), C[t)MD iff ~(C)[[3Ct))M, aCD ). 

If we want to be more specific, then we say that M and M ~ are ( a,/~)- 
configuration equivalent, denoted by M ~ M ~. 

It can directly be seen that ~ is indeed an equivalence relation on the class of 
EN systems. In fact, configuration equivalence is strongly related to the configu- 
ration graphs. It immediately follows from the definitions that two EN systems 
are configuration equivalent iff their sequential configuration graphs are isomor- 
phic. Hence here the behaviour of an EN system is identified with (represented 
by) its sequential configuration graph, modulo isomorphism. According to The- 
orem 21 this notion of behaviour covers also the concurrent behaviour of the 
system. 

T h e o r e m  29. Let M and M ~ be two EN systems. 
Then M ~ M' iff SCG(M) =_ SCG(M') iff CG(M) - CG(M'). 

It is easy to see that M -= M ~ implies M ~ M ~, i.e., isomorphic EN systems 
are configuration equivalent. On the other hand there exist configuration equiv- 
alent EN systems that are not isomorphic (see the next example). Configuration 
equivalence is thus weaker than isomorphism of EN systems. 

Example 13. Let M be the EN system of Fig. 26 and M t the EN system of 
Fig. 27. M and M' are not isomorphic. It is clear that C M = {{Pl}, {P3,P4}, 
{P2,P4}, {P5}, {Ps}} and C M '  = {{Pl}, {P2}, {P3}, {P4}, {Ps}}. All transitions 
are useful. Let a : C M --~ C M '  and/3 : TM --~ TM, be the bijections defined as 
fo l lows:  = { p l } ,  = { p 2 } ,  = {p3} ,  = ( p 4 } ,  
a({p6}) = {Ps}, and/3(ti) = ti for all 1 < i < 6. Now it should be clear that 



45 

M ~ M'. The sequential configuration graphs SCG(M) and SCG(M ~) are 
given in Figs. 28 and 29. It is easy to see that SCG(M) - 2  SCG(M~)" Note 
that for both M and M' the configuration graph is the same as the sequential 
configuration graph. 

Pl 

Fig. 26. An EN system M. 

t6 

The following technical lemma is often useful in proofs of configuration equiv- 
alence. 

L e m m a 3 0 .  Let M = (P,T,F,  Cin) and M t = (P',TI,F',C~n) be two EN sys- 
tems. I ra  is an injective function, (~ : C.M --+ 79( P'), and fl is a bijective function, 

: USeM(T) ~ T' ,  such that 

(1) = Gin and 
(2) for all C,D e CM and t E useM(T), 

C[t)MD implies ~(C)[Z(t))M,a(D), and 
~(t) eonM, ~(C) implies t conM C, 

then M ..~ M'.  

Proof. We first prove the if-part of Definition 28(2). Let a(C)[fl(t))M,~(D). 
Then ]~(t) eonM, ~(C) and thus t conM C. Let C[t)ME. Then ~(C)[~(t))M, a(E).  
Hence aCE ) = a(D). Since c~ is injective, E -- D and thus C[t)MD. 

To prove that a is a bijection between CM and CM, we first show that 
(~(C) E CM, for every C E CM. This is done by induction on C. For C = 
Cin, a(Cin) = C~n E C.M' by (1). Now assume (as induction hypothesis) that 
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Fig. 27. An EN system M' configuration equivalent with the EN system M of Fig. 26. 

f P3P4 

/1,, 
tl | P2P4 

tI5 t6 

P6 

Fig. 28. The configuration graph of the EN system M of Fig. 26. 

ol(C) e CM' and let C[t)MD. We have to prove that  a ( D )  E CM,. From C[t)MD 
and (2) it follows that  o~(C)[/~(t))M,O~(D). Since a(C) e CM,, we obtain that  
a(D) E CM,. Next we show that  a is surjective, i.e., tha t  for every C' E CM, 
there exists C E CM with ct(C) = C'. This is done in the same way, by induction 
on C'. For C'  = C~n, according to (1), we can take C = Cin. Now assume that  
a (C)  = C'  for C E CM and let Cl[tl)M, DP. Since /~ is a bijection, there is a 
t e use (T)  with ~(t) = t'. Hence ~(t) c o n  a(C) and thus t c o n  C according 
to (2). Let C[t)MD. Hence D E CM. Then ct(C)[/3(t))M,a(D); in other words 
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P2 1I !; 
t4 l 
t514 t6 

P5 

Fig. 29. The configuration graph of the EN system M ~ of Fig. 27. 

C'[t')M,~(D), and thus (~(D) -- D'. 
We still have to prove that  ~ is a bijection from useM(T) to USeM, (TI), i.e., 

that  ~(t) • useM,(T')  for every t • useM(T).  If t • useM(T),  then there exist 
C,D E CM such that  C[t)MD. Hence ~(C)[~(t))M,~(D). Since a(C)  • CM,, 
j3(t) • useM,(T') .  [] 

A similar, but less stringent, definition of equivalence is obtained by no longer 
requiring the correspondence (~ between configurations to be a bijection, but just 
a relation. In that  way the systems can still simulate each other's behaviour "step 
by step", but the configuration graphs no longer need to be isomorphic. Again, 
the correspondence between the transitions is a bijection because we are mainly 
interested in the transitions (modulo their identity) of a system. 

Def in i t i on  31. Let M = (P, T, F, Cin) and M '  -- (P ' ,  T' ,  F ' ,  C~,~) be two EN 
systems. M and M t are weakly configuration equivalent, denoted by M ~--w M *, 
if there exists a relation (~ C CM x CM, and a bijection ~ : use(T) -~ use(T~), 
such that  
(1) (Cin, Gin) E c~, 
(2) for all C,D e CM, C' • CM', and t • use(T):  if C[t)MD and (C,C') • ~, 
then there is a D ~ • CM, such that Ct[/3(t))M,D ' and (D,D ~) • ~, and 
(3) for all C',D' • CM,, C e CM, and t' E use(T') :  if C'[t')M,D' and (C,C') • 
~, then there is a D • EM such that  C[~-l(t'))M D and (D,D') • ~. 

In the literature the relation a is often called a bisimulation, and weak con- 
figuration equivalence is then called bisimilarity or observation equivalence (see, 
e.g., [Mil89]). 

Condition (1) means that  both systems start  in corresponding configurations. 
Condition (2) means the following: if both systems are in corresponding config- 
urations and M takes a step by firing transition t, then M ~ can simulate that  
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step by firing the corresponding transition ]~(t), after which M and M ~ are in 
corresponding configurations again. Condition (3) says the same as condition 
(2), with the roles of M and M I reversed. 

As in the case of configuration equivalence, it can be shown also here (using 
Theorem 20) that conditions (2) and (3) also hold for concurrent steps C[U)MD 
and CI[]~(U))M , 0 I. 

It is clear that configuration equivalent EN systems are also weakly configu- 
ration equivalent. On the other hand there exist weakly configuration equivalent 
EN systems that are not configuration equivalent (see the next example). Hence 
weak configuration equivalence is weaker than configuration equivalence (as the 
name already suggests!). 

Example I~. Let M and M' be the EN systems in Figs. 30 and 32, respectively; 
their (sequential) configuration graphs are given in Figs. 31 and 33, respectively. 
Since SCG(M) has less nodes than SCG(M'), SCG(M) and SCG(M') are not 
isomorphic, and so M and M ~ are not configuration equivalent. They are however 
weakly configuration equivalent, with the bisimulation a that consists of the fol- 
lowing pairs: ((Pl}, {Pl}), ((P2}, {P2}), ((P3}, {P3}), ({P3}, {P3, q}), ((P4}, (Pa}), 
((Pa}, (P4, q}), ({P5}, (Ps, q}), and ((Ps}, (Ps}). For fl we take the identity. 

a P2 b 

--@ 

5 

Fig. 30. An EN system M, weakly equivalent with the EN system M' of Fig. 32. 

An even less stringent definition of equivalence is obtained by requiring only 
that the firing sequences of two equivalent EN systems (bijectively) correspond 
to each other, with no requirement at all on the configurations of the two EN 
systems. Thus here the behaviour of an EN system M is defined as (represented 
by) its set FS(M) of firing sequences, modulo the identity of the transitions. In 
this way we abstract completely from the global states of the system. 

Note that if fl : use(TM) --+ use(TM,), where M and M ~ are EN systems, 
then fl(FS(M)) C_ use(TM,)*, see Section 2. 
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a j p2 " ~  

Pl / c P3 d ~  p4 

o\ 
P5 --f-.- P6 

Fig. 31. The configuration graph of the EN system M of Fig. 30. 

a P2 b 

p3 d P4 

P5 

Fig. 32. An EN system M ~, weakly equivalent with the EN system M of Fig. 30. 

De f in i t i on  32. Let M and M '  be two EN systems. M and M'  are f ir ing sequence 
equivalent, denoted by M ~fs  M' ,  if there exists a bijection /~ : use(TM) --~ 

use(TM,) such that /~(FS(M))  = FS(M') .  

Example  15. The (weakly configuration equivalent) EN systems M and M '  of 
Example 14 (Figs. 30 and 32) are firing sequence equivalent because FS(M) = 
FS(M')  = {)~, a, c, e, ab, cd, el ,  abd}. 

Even though firing sequence equivalence abstracts completely from the con- 
figurations, it turns out to be the same as weak configuration equivalence! This 

P2 b . P3 . d . p4 

,~ -~Pl  P3q d P4q 

Psq f P6 

Fig. 33. The configuration graph ofthe ENsys temM'  of Fig. 32. 
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is essentially due to the fact that firing a transition leads from a configuration 
to a unique next configuration (see [Eng85, Mi189, PomRozSim92]). 

T h e o r e m  33. Two EN systems are firing sequence equivalent iff they are weakly 
configuration equivalent. 

Proof. Let M and M'  be two EN systems. 
First assume that M ~w M', with bisimulation ~ and bijection 8. It suf- 

fices to prove that /~(FS(M)) C_ FS(M'): by symmetry this also proves that 
/3-1(FS(M')) C_ FS(M). 

It follows directly from the definition of weak configuration equivalence that 
each event t of M can be simulated by event ~(t) of M'  in such a way that the 
relation a between the (old and new) configurations continues to hold. Hence 
each firing sequence x of M can be simulated in such a way by the sequence ~(x) 
of M'. This implies that 8(x) is a firing sequence of M'. Formally, we use the 
following extension of Definition 31(2), which can easily be proved by induction 
on Ixl: for all C,D E CM, C t • CM', and x • use(TM)*: 

if C[x)MD and (C, C') • a, then there exists D' E CM, such that 
C'[8(X))M,D' and (D,D') • a. 

Taking C = Cin and C' = C~n, this shows, by Definition 31(1), that ifx • FS(M) 
then 8(x) • FS(M'). 

Now assume that M = (P, T, F, Cin) and M'  = (P',  T', F', C~n ) are firing 
sequence equivalent, with bijection 8- Hence, if x is a firing sequence of M, 
then 8(x) is a firing sequence of M',  and vice versa. This leads to the following 
definition of the relation a C_ CM X CM, : 

(C,C') • a iff 3x • T* : Cin[x)MC and C~nLS(X))M,C'. 

It is straightforward to verify that ct is a bisimulation, i.e., that a and/3 sat- 
isfy the three conditions in Definition 31. For condition (1) take x = )~. For 
condition (2), assume that Cin[X)MC and Ctin[8(~))M,C t, and that C[t)MD. 
Then Cin[xt)MD. Thus xt is a firing sequence of M, and so 8(xt) is a firing 
sequence of Mq Hence there exists D' • EM, such that C~n[8(xt))M, Dq Clearly 
(D,D') • a. It remains to prove that C'[8(t))M,D'. Since 8(xt) = 8(x)8(t), 
there exists E'  • CM, such that C~n[8(X))M,E' and E'[8(t))M,D'. Since the 
firing of 8(x) leads from C~n to a unique configuration, E' = C' and thus indeed 
C'[8(t))M,D I. Condition (3) can be proved analogously. 12 

Since configuration equivalence implies weak configuration equivalence, the 
following corollary is obtained from the above theorem. 

Corol la ry  34. I f  two EN systems are configuration equivalent, then they are 
also firing sequence equivalent. 

This corollary can also be seen directly: if two EN systems M and M'  are 
configuration equivalent, then they have isomorphic configuration graphs and 
hence FS(M) and FS(M') are recognized by isomorphic finite automata (see 
Theorem 12). 
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To recapitulate, in this subsection we have introduced four equivalence rela- 
tions for EN systems, of which one is static (isomorphism) and the other three 
are dynamic, depending on the intuitive notion of "behaviour". The following 
relationships hold between these four equivalences: isomorphism implies config- 
uration equivalence, which in turn implies firing sequence equivalence, which 
equals weak configuration equivalence. Thus in formal notation we have, for EN 
systems M and M ~, 

M =- M '  =~ M .~ M ~ ~ M ~'fs M t  ¢~ M ,.~w M t. 

4.2 R e d u c t i o n  

We now turn to normal forms for EN systems. 
It is intuitively natural to assume that  an EN system contains no "super- 

fluous" transitions and places, hence in particular no useless transitions and no 
isolated places. Such transitions and places clearly play no part  in the behaviour 
of the system. We will formalize this intuition by showing that  for every F,N 
system M there exists an equivalent EN system M ~ containing useful transi- 
tions and nonisolated places only. This holds for the strongest dynamic notion 
of equivalence from the previous subsection, viz. configuration equivalence. 

De f in i t i on  35. An EN system M is reduced if all transitions of M are useful. 
M is strongly reduced if M is reduced and has no isolated places. 

Our first normal form result is the following. 

T h e o r e m  36. For every E N  system M there exists a reduced E N  system M ~ 
such that M ~ M ~. 

Proo]. Let M = (P, T, F, Cin). We construct M t by simply removing all useless 
transitions. Let M'  be the EN system (P, T r, F ', Ciu) with T'  = useM(T) and 
F'  = F M ( (P x T ' )  U (T'  × P)). It is clear that  M and M ~ even have the same 
sequential configuration graph and thus are configuration equivalent. Hence M ' 
contains only useful transitions and is thus reduced. [] 

This theorem can be strengthened as follows. 

T h e o r e m  37. For every E N  system M there exists a strongly reduced E N  system 
M ~ such that M ,~ M ~. 

Proof. Let M = (P, T,  F, Cin). According to Theorem 36 we may assume that  
M is reduced, i.e., useM(T) = T. We now simply construct M ~ by removing 
all isolated places. Define use(P)  = {p e P I nbh(p)  # o};  thus use(P)  is the 
set of nonisolated places of M. Let M'  = (p, ,  T, F, C~n ) with p l  = use(P)  and 
C~n = Ci,, N pt .  Obviously M ~ has no isolated places. 

Define the function (~ : CM -+ 7)(P ') with ~(C)  = C N P'  for all C E CM 
and let /~ be the identity on T. We prove that  M ~,~ M '  using Lemma 30. It 
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is easy to prove by induction on C that ,  for all C E CM, C - p i  = G i n  - pt  
(intuitively this holds because the marking of the isolated places never changes). 
This implies that  a is injective. Also ct(Cin) = C" n. By Lemma 30 it now suffices 
to prove that  C[t)MD iff C 1"1 P'[t)M,D ffl P'. This can easily be proved using 
Lemma 7, because (C N P~) - (D N P ' )  = (C - D) A P '  (for arbitrary sets) and 
"t  A P~ = °t, and analogously for D - C and t*. Hence M ~ is (a, ~)-configuration 
equivalent with M. Finally, by Definition 28, ~ is a bijection between useM(T) 
and useM, (T). This implies tha t  useM, (T) = T. Hence M t is reduced and thus 
strongly reduced. O 

Example 16. According to the constructions in the proofs of Theorems 36 and 37, 
the EN system M in Fig. 34 is transformed into the equivalent strongly reduced 
EN system M ~ of Fig. 35: first the useless transition ta is removed and then the 
isolated places Pr and Ps are removed. 

Pl P2 P3 

t3 L_I 

Fig. 34. An EN system with useless transition t3. 

We will now show that  a strongly reduced EN system contains no "superflu- 
ous" places in the following sense: for every condition there exists a configuration 
in which this condition holds, and there exists a configuration in which this con- 
dition does not hold. Hence there are no void, static conditions that  either always 
hold or never hold. 

T h e o r e m  38. Let M = (P, T, F, Cin) be a strongly reduced EN system. For 
every p E P there exist configurations C, D E CM such that p E C and p ~ D. 
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Pl P2 P3 

Fig. 35. A strongly reduced EN system, configuration equivalent with the EN system 
of Fig. 34. 

Proof. Since p is not isolated, there is a transit ion t such tha t  t E nbh(p) .  Since 
t is useful, there is a reachable configuration E with t c o n  E.  Let E[t)E'. If  
t E p°, then p E E and p ~ E ' .  And if t E "p, then p E E '  and p ~ E.  [] 

We have now proved tha t  isolated places and useless transit ions can be re- 
moved from an EN system M.  But, in general, there are also other kinds of 
"superfluous" places and transitions, in particular when M is not simple (see 
Definition 2(2,3)). There  are two types of simplicity, which we will now consider 
from this viewpoint. 

First assume tha t  M is not P-simple. Then there are two distinct places p 
and q such tha t  "p = °q and p° = q°. I t  is intuitively clear tha t  one of these two 
places is superfluous. It  can easily be shown that  the removal of either p or q 
results in an EN system tha t  is configuration equivalent with M.  Hence for every 
EN system there exists a configuration equivalent strongly reduced EN system 
tha t  is P-simple. 

Now assume that  M is not T-simple. Then there are two distinct transitions 
s and t such that  °s -- "t  and s* = t °. Intuitively one of these two transitions 
is again superfluous. However, if s and t are useful, then the removal of either s 
or t does not result in a configuration equivalent EN system, simply because the 
number  of useful transit ions of two configuration equivalent EN systems must  
be equal (~3 is a bijection). We will now show that  T-simplicity is not a normal 
form for EN systems, not even with respect to the weakest kind of equivalence 
(viz. firing sequence equivalence). 

T h e o r e m  39. There exists an EN system M such that for every EN system M'  : 
if M'  ~fs  M, then M' is not T-simple. 

Proof. The following technical proper ty  of an (arbitrary) EN sys tem M '  will 
be useful in our proof: if s, u E TM, and there exists an x E T ~ , ,  such tha t  
xsus E FS(M' ) ,  then s ° _C °u and °s C_ u °. This is proved as follows. Since 
xsus E FS(M' ) ,  there exist configurations C, D1, D2, and E of M '  such tha t  
C[s)D1, DI[u)D2, and D2[s)E. Since D1 - D 2  = "u, s ° C_ D1, and s ° AD~ = g ,  
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we have s ° C_ °u. Since D2 - D1 = u °, *s n D1 = ~,  and °s c_ D2, we have 
°8 C '~°. 

Now consider the EN system M = ( P , T , F ,  Cin)  with P = {p ,q} ,  T = 
{ s , t , u } ,  Cin = {p},  °s  = °t  = u ° = {p} and s* = t ° = °u = {q}. Suppose 
that  M '  is an EN system that  is firing sequence equivalent with M, and assume 
for the sake of simplicity that  FS(M')  = FS(M)  (i.e., that  i5 is the identity). 
Since s u s  • FS(M)  = FS(Mt),  the technical property given above implies that  
s ° C_ °u and °s C u t hold in M' .  Likewise it follows from s u s u  • FS(M')  tha t  
u ° _C °s and °u C_ s ° (take x = s and interchange s and u in the statement of 
the above technical property).  Hence s ° = °u and *s = u ° in M ~. Analogously 
we have t ° = °u and °t -- u ° in M r. Hence s ° = t ° and °s = °t in M r, and M r 
is thus not T-simple. [] 

We would like to point out that  the difference between P-simplicity and T- 
simplicity demonstrated above is a direct consequence of the fact that  we are 
more interested in transitions than in places (which is formally expressed in our 
definitions of equivalence by requiring the existence of a bijection ~ between the 
useful transitions). 

Note that  it is also not possible to find for every EN system M a firing 
sequence equivalent EN system M r that  has only live transitions. In fact, liveness 
of a transition t of M means (cf. Definition 8(6)) tha t  for every x E FS(M) there 
exists y E T ~  such that  x y t  E FS(M).  This implies that  if ~(FS(M))  = FS(M') ,  
then t E TM is live iff f~(t) E TM, is live. Hence liveness of transitions is preserved 
by firing sequence equivalence. 

4.3 Sequential EN Systems 

An EN system can often be bet ter  understood when it can be seen as several 
communicating concurrent subsystems (or components),  where each such sub- 
system is "simpler" (can be easier understood) than the whole system itself. It 
would be particularly desirable if the considered EN system could be decom- 
posed into subsystems that  no longer contain concurrency themselves, i.e., into 
sequential EN systems. Though this is not always directly possible, we will show 
in the next  subsection that  every EN system is equivalent with such a system. 
Hence "sequentially decomposable" systems are a normal form for EN systems. 

In this subsection we define sequential EN systems and study several of their 
properties. We call an EN system sequential if its global states are not distributed 
(see the beginning of Section 3.3). 

D e f i n i t i o n  40.  An EN system M is sequential  if # C  = 1 for all C E CM. 

Example  17. The  EN systems of Figs. 27 and 30 are sequential. This can be seen 
from their configuration graphs, which are given in Figs. 29 and 31, respectively. 

Here is a sufficient (structural) condition for sequentiality; it is satisfied by 
the EN systems of the previous example. 
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L e m m a 4 1 .  If  M = (P,T,  F, C~n) is an E N  system for which 
(1) #Cin  = 1, and 
(2) # ( ' t )  = # ( t  °) = 1 for all t E T ,  
then M is sequential. 

Proof. It is easy to prove by induction on C that  # C  = 1 for all C E CM. [] 

Systems that  just satisfy the second property of this lemma are called state 
machines or S-systems in the literature, see, e.g., [Hac72, DesEsp95]. 

Finite automata,  which are the usual model of finite-state sequential systems, 
are closely related to EN systems with the two properties of Lemma 41. The 
differences are that  finite automata also have final states, that  their transitions 
are labeled, and that  transitions t with °t = t ° are allowed (cf. Definition 1(4)). 
These additional features have also been considered for Petri nets in the literature 
(see, e.g., [Pet81, Tau89, Och95]). 

It should be clear that  in the case of reduced EN systems the two properties 
of Lemma 41 characterize sequentiality. In fact, for a sequential EN system M, a 
transition with more than one place in its input- or output-set must be useless. 
If, moreover, M is strongly reduced, then every configuration {p} is reachable, 
because every place p is the input- or output-set of at least one useful transition. 

L e m m a  42. Let M = (P, T, F, Cin) be a reduced E N  system. 
(1) M is sequential iff 

(i) #Cin  = 1, and 
Oi) # ( ' t )  = # ( t ' )  = 1 for all t E T.  

(2) I f  m is stron91y reduced and sequential, then CM = { {p} I P E P}. 

From this lemma it easily follows that  isomorphism and configuration equiv- 
alence coincide for strongly reduced sequential systems. 

T h e o r e m 4 3 .  Let M and M ~ be two strongly reduced sequential EN systems. 
Then M ~ M '  iff M -~ M' .  

Every strongly reduced sequential system is in fact isomorphic with the finite 
automaton constructed in the proof of Theorem 12. 

The definition of a sequential EN system (Definition 40) is "place oriented": 
the global state of the system is not distributed. Another possibility is a "tran- 
sition oriented" definition, where we require that  the global state transitions are 
not distributed (see the beginning of Section 3.3), i.e., that  concurrent steps do 
not occur (cf. the discussion of the notions of sequentiality and concurrency in 
Section 3.5). EN systems satisfying this property are "concurrency-free". 

Def in i t i on  44. An EN system M is concurrency-free if there do not exist C E 
CM and t l , t2  E TM such that  {t l , t2} con  C. 

It should be clear that  every sequential EN system is concurrency-free. This 
does not hold the other way around: the EN systems of Figs. 26 and 32 are 
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concurrency-free (as can be seen from their configuration graphs in Figs. 28 
and 33, respectively), but not sequential. It is shown in Examples 13 and 14 
that these EN systems are (weakly) configuration equivalent with sequential 
EN systems. However, there exist concurrency-free EN systems that are not 
even firing sequence equivalent with any sequential EN system. To show this we 
observe that for a sequential EN system M = (P, T, F, Cin) and for x, y, z E T* 
and t e T, if xt, yt, xz e FS(M) then yz E FS(M); this is because if Cin[x)C 
and Cin[y)D, then C = "t --- D. The concurrency-free EN system of Fig. 36 does 
not satisfy this property: take x = tt ,  y = t2, t = t3, and z = t3t2. 

-~t3 

Fig. 36. A concurrency-free EN system that is not firing sequence equivalent with any 
sequential EN system. 

Finally we observe that Theorem 43 does not hold for concurrency-free sys- 
tems: the EN systems M (Fig. 26) and M I (Fig. 27) from Example 13 are con- 
figuration equivalent, but not isomorphic. 

4.4 Subsys tems  and  Sequent ia l  C o m p o n e n t s  

In this subsection we will show that every EN system is configuration equivalent 
with an EN system that can be decomposed into sequential subsystems, i.e., 
in subsystems that, considered on their own, are sequential EN systems (see 
Definition 40). Sequential subsystems will also be called sequential components. 

We first define the notions 'subsystem' and 'sequential component' and then 
study several of their characteristics. These notions, or variants of them, can be 
found in, e.g., [Hac72, DesEsp95]. 

Intuitively, a subsystem M ~ of M consists of a set of places of M (the local 
states of the subsystem) together with all transitions of M that can put tokens 
in these places and/or can remove tokens from these places, i.e., all transitions 
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that  belong to the neighbourhoods of these places. The flow relation F t of M '  
is completely determined by the flow relation F of M: a place and a transition 
of M t are connected by F t i f f  they are connected by F .  The same holds for the 
inital configuration: a place of M ~ belongs to the initial configuration of M ~ iff 
it belongs to the initial configuration of M. Hence the subsystem is uniquely 
determined by its set of places. 

D e f i n i t i o n  45. Let M -- (P ,T ,F ,  Cin) and M' = (P' ,T' ,F' ,C~,~) be EN sys- 
tems. M t is a subsystem of M if: 
(1) P ' C _ P , T ' C _ T , F ' C _ F , C ~ n  CC~n, 
(2) Vp e P ' :  nbhM(p)  C nbhM,(p) ,  and 
(3) Vp e P '  : if p e Cin, then p E C~n. 
If, moreover, M ~ is a sequential EN system, then M ~ is a sequential component 
of M. 

Note that  the empty EN system (~, g ,  ~ ,  g )  and M itself are subsystems of 
M. They will be called the trivial subsystems of M. 

In the next lemma we state some properties of subsystems that  are easy to 
prove. 

L e m m a 4 6 .  Let M = (P, T, F, Cin) and M'  = (P', T' ,  F',  C~)  be E N  systems. 
(1) M'  is a subsystem of M iff 

P '  C_ P ,  T '  -- n b h M ( P ' ) ,  F' = F M ( ( P ' x T ' ) U ( T ' x P ' ) ) ,  andC~n = CinMP'. 
(2) If  M ~ is a subsystem of M then: 

for every t E T' ,  (°t)M' = (°t)M N P' and ( t ° ) M  , : (t°)M N P' ,  
for every t E T - T r, nbhM(t )  M P~ = O, 
for every p E P' ,  (°P)M' = (*P)M and (P°)M' = (P°)M. 

Lemma 46(1) says that  a subsystem is indeed completely determined by its 
set of places. However, not every set of places of an EN system determines a sub- 
system! Formally this means that ,  for a given EN system M = (P, T, F, Cin) and 
a given subset P' of P ,  the 4-tuple M' = (pt ,  T t, F',  C~n ) with T' = nbhM(P' ) ,  
F '  = F M ((P '  x T ' )  U (T '  x P ' ) ) ,  and C~n = Cin N P' does not have to be 
an EN system. For example, take P = {p,q}, T = {t}, F ---- {(p,t),  (t ,q)},  and 
Cin = {p}, and consider P '  -- {p}. Then T '  = {t}, F ~ = {(p, t)}, and C~n = {p}. 
But M ~ is not an EN system because ( P t , T ~ , F )  is not a net: (t°)M , = O (see 
Definition 1(3)). 

If the 4-tuple M j determined by the set p t  (as in Lemma 46(1)) is an EN sys- 
tem, then we call M t the subsystem of M determined by P~. We now characterize 
the sets of places tha t  determine subsystems. 

L e m m a 4 7 .  Let M = (P ,T ,F ,  Cin) be an EN system and let S C P.  There 
exists a subsystem M ~ of M with PM, = S i1~ °S = S °. 

Proof. (Only-if) Assume that  M'  = (S, T ' ,  F ' ,  C~n ) is a subsystem of M. We first 
prove that  °S C_ S ° (where the ° is of course the one of M).  Take a t E *S and let 
p E S such that  t E "p. Then, according to Definition 45(2), t E nbhM,(p)  and 
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thus t E T'.  Definition 1(3) then implies that  there exists q E S with (q, t) E F',  
and thus (q,t) E F. This means that  t E S °. The inclusion S ° C_ *S can be 
proved analogously. 

(If) Assume that  *S = S °. Define M'  = (P', T' ,  F',  C~n ) with P'  = S and T', 
F ' ,  and C~n as in Lemma 46(1). It is easy to check that  M'  is an EN system, i.e., 
M '  satisfies the conditions from Definitions 1 and 5. In particular, the equality 
°S = S ° guarantees that  Definition 1(3) is satisfied. According to Lemma 46(1), 
M'  is then a subsystem of M. [:] 

Note that  condition (3) from Definition 1 is essentially used in the above 
proof. 

Since a subsystem is uniquely determined by its set of places, in the sequel 
we will often make no distinction between a subsystem and its set of places. 
Thus, according to Lemma 47: a set of places S is a subsystem iff "S = S °. This 
property of S has the following equivalent formulation: for all t E T, °t n S ~ 
iff t ° n S # 0.  Note also that,  for a subsystem M'  = (S, T',  F ,  C~n ) of M,  
T ' = nbh(S)  = °S U S ° according to Lemma 46(1), and hence T ~ = °S = S °. 
Finally note that,  according to Lemma 47, the union of two subsystems is again 
a subsystem (or more precisely: the union of the sets of places of two subsystems 
determines a subsystem). 

Example18. (1) The subset {P3,P5} of the set of places of the EN system M 
from Fig. 37 is a subsystem of M; this can easily be proved using Lemma 47. 
The subsystem determined by {P3,P5} is M' = (S, T, F, Cin) with S = {Pa,Ps), 
T = {t3,t4}, F = {(P3, t4), (t4,P5), (Ps, t3), (ta,P3)}, and Cin = {p3}. Since M'  
is sequential, M '  is thus a sequential component of M. Another subsystem of M 
is {pl,P2,p3,p4}; for this subsystem T = { t l , t2 , t3 , t4}  , F = {(t l ,pl) ,  (Pl , t2) ,  
(t2,P2), (p2,t3), (t3,P3), (P3,t4), (t4,P4), (p4, t l )} ,  and Cin = {Pl,P3}. Since 
#C~n > 1 this is not a sequential component of M. Using Lemma 47 one can 
check that  the only other subsystems of M are the trivial ones, i.e., the empty 
subsystem and the system M itself. 

(2) Subsystems of the EN system M of Fig. 9 are {Pl,p2} (the consumer), 
{Cl, c2} (the producer), and {Pl,P2, Cl, c2} (the union of the producer and the 
consumer). The producer and the consumer are both sequential components of 
M, but their union is not. M has no other nontrivial subsystems. In particular 
{b} (the buffer) is not a subsystem of M. Thus, our notion of subsystem is more 
restricted than suggested in the discussion of the producer/consumer problem 
in Section 3.1, where the buffer was viewed as a component of the system. In 
Example 23 (Fig. 47) we will see that  there is a slight variation of M in which 
the buffer is also a sequential component. 

We will give (in Theorem 49) a characterization of the sets of places that  de- 
termine sequential components. First we prove an important property of subsys- 
tems: when we restrict a reachable configuration of an EN system to a subsystem, 
then we obtain again a reachable configuration of the subsystem. 

L e m m a 4 8 .  Let M'  = (S ,T  , F  ,C~n) be a subsystem of an E N  system M = 
(P,T ,F ,C~, ) .  
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Pl t2 P2 

tl 

P4 t4 P3 

t3 

Fig. 37. An EN system with two nontrivial subsystems: {pa,ps} and {p~ ,p2, pa,p4}. 

(1) For all C C P, if C E CM then C n S E CM, . 
(2) For all t E T', if t E useM (T) then t E useM, (T'). 

Proof. Before proving (1) and (2), let us consider configurations C, D of M and 
a transition t of M such that C n S E CM, and C[t)MD. Then we claim the 
following: i f t  ~ T' then DNS = COS, and i f t  6 T' then (COS)[t)M,(DDS). To 
prove this, note first that, by Lemma 7, C - D = (°t)M and D - C = (t')M, and 
hence ( G A S ) -  (DNS) = ( ° t ) M n S  and ( D A S ) -  (CDS) = (t°)M AS. I f t  ~ T', 
then, by Lemma 46(2), (°t)MNS = O and (t°)M AS -~ 0,  and so D D S  = CDS. 
If t e T', then, by Lemma 46(2), ('t)M, = ('t)M N S and (t')M, = (t°)M N S, 
and so, by Lemma 7, (C n S)[t)M, (D N S). This proves our claim. 

(1) We prove this by induction on C. By Lemma 46(1) the statement holds 
for C = Ci,~. Now assume that C N S  E CM, and let C[t)MD for a t E T. By the 
above claim, either t ~ T' and D N S  = CNS,  or t E T' and (CAS)[t)M,(DAS).  
In both cases, D n S E CM,. 

(2) Assume that t eonM C for a C E CM and let C[t)MD. By (1), C n S E 
CM,. Thus, by the above claim, (C n S)[t)M, (D n S). Hence t conM, C n S. [] 

In the next example we will show that the mapping from CM to CM, that 
maps C to C n S (see Lemma 48(1)) need not be surjective nor injective. 

Example 19. Let M be the EN system of Fig. 38. Its configuration graph is drawn 
in Fig. 39. 

(1) Figure 40 shows a subsystem M1 of M, and Fig. 41 gives the configuration 
graph of M1. For {Pl,Ps} E CM1 there does not exist C E CM such that C n 
PM1 = {Pl,Ps}; this also holds for {P4,P5} E CM1- Furthermore, note that 
though M is a concurrency-free EN system, M1 is not. 

(2) Figure 42 shows a subsystem M2 of M (and of M1), and Fig. 43 gives the 
configuration graph of M2. This subsystem is a sequential component of M. The 
configurations {Pl, P2, P3 }, {P2, Pc,/)4 }, {/)2, P6 } E CA/ all give the configuration 
{p2} e CM2 when intersected with PM2. 
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Fig. 40. A subsystem M1 of M. 
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Fig. 41. The configuration graph of M1. 
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Fig. 42. A subsystem M2 of M. 
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Fig. 43. The configuration graph of M2. 

Compare the following characterization with Lemma 42(1). 

T h e o r e m  49. Let M = (P, T, F, Cin) be a reduced E N  system and let S C_ P.  
Then the following statements are equivalent. 
(1) There is a sequential component M ~ of M with PM, = S. 
(2) # ( C  n S)  = 1 for all C e aM.  
(3) (i) # (Cin  n S)  = 1, and 

(ii) Vt e T : # ( ' t m S )  = # ( t  ° mS) = l or # ( ' t m S )  = # ( t "  OS) =O. 

Proof. (1) implies (2): Follows directly from Lemma 48(1) and the definition of 
a sequential EN system (Definition 40). 
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(2) implies (3): To prove (ii), consider a t • T. Since M is reduced, there is 
a C • ~M with t con  C. Since # ( C  V) S) = 1, # ( ° t  M S) < 1. Now let C[t)D. 
Since # ( D  M S) = 1, it is easy to see that  # ( ° t  M S) --- # ( t  ° M S). 

(3) implies (1): Condition (3)(ii) implies that  °S = S °. Hence, according to 
Lemma 47, there exists a (unique) subsystem M ~ of M with PM, : S. Then, by 
Lemma 46(1), #((Cin)M,) = 1 and, by Lemma 46(2), #((*t)M,) = #((t°)M ,) = 
1 for all t E TM,. Lemma 41 now implies tha t  M ~ is sequential. [2 

According to Theorem 49(2) a sequential component of an EN system is 
always in exactly one local state (there is always exactly one token in its set of 
places). 

Subsystems S that  just satisfy proper ty  3(ii) of Theorem 49 and, moreover, 
are strongly connected (viewed as graphs), are called state machine components 
or S-components in the literature (see, e.g., [DesEsp95]). Such subsystems contain 
an arbitrary, but fixed number of tokens. 

We will now show that,  for strongly reduced EN systems, sequential compo- 
nents themselves do not have nontrivial subsystems and are thus not decompos- 
able. 

L e m m a  50. Let M be a strongly reduced sequential EN system and let M ~ be a 
subsystem of M. Then M' is trivial. 

Proof. Let M = (P,T,F,  Ci~) and M '  = (S,T',F',C~n). By Lemma 47, °S = 
S °. By Lemma 46 it suffices to prove that  S = o or S = P.  Assume that  
S ~ O; then it remains to prove that  S = P .  Since M is strongly reduced, 
CM ---- {{p} [ p E P}  according to Lemma 42(2). Thus for all t E T and p, q E P ,  
if {p}[t)M{q}, then (p E S iff q E S). This implies that  for all x E T* and 
p, q E P ,  if {p}[x)M{q}, then (p E S iff q E S). Now let Cin = {Po}. Take a 
q E S. Since {q} e CM, {pO}[X)M{q} for some x E T*. Thus P0 • S. To prove 
that  P C S, consider an arbitrary p • P .  Since {p} • CM, {PO}[X)M{p} for 
some x • T*. Thus p • S, and so S = P.  [] 

T h e o r e m  51. Let M be a strongly reduced EN system, and let M ~ be a sequential 
component of M. Then M ~ has no nontrivial subsystems. 

Proof. Since M is reduced, Lemma 48(2) implies that  M t is also reduced. Since 
M has no isolated places, neither does M ~ (by Definition 45(2)). Hence M ~ is 
strongly reduced, and so, by Lemma 50 has no nontrivial subsystems. [] 

The  following example demonstrates tha t  this theorem does not hold the 
other way around. 

Example20. Let M be the EN system from Example 19 (Fig. 38). Figure 44 
shows a subsystem M3 of M that  is not sequential. It is straightforward to 
verify that  M3 has only trivial subsystems. 

We now define the notion of a decomposition of an EN system into subsys- 
tems, and in particular into sequential components. It is called a "covering" of 
the EN system (see, e.g., [Hac72] or Chapter  5 of [DesEsp95]). 
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Fig .  44. A subsystem Ma of M. 
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D e f i n i t i o n  52. Let M = (P, T, F, Cin) be an EN system. 
(1) A set {MI, .  • . ,  M~} of subsystems of M,  n _> 0, with M~ = (Si, Ti, Fi, (Cin)i) 

n S n n for 1 < i < n, is a covering of M if P = (Ji=l 4, T = Ui=l Ti, F = Ui=l Fi, and 
n C Gin = Ui=I( in)i. 

(2) M is covered by sequential components if there exists a covering { M x , . . . ,  M~}, 
n > 0, of M such that  Ms is a sequential component of M for every 1 < i < n. 

Since a subsystem can be identified with its set of places, it should be clear 
that  a set of subsystems of M is a covering of M if their union is the set of places 
of M. 

L e m m a  53. Let M = (P, T, F, Cin) be an EN system, and let, for every 1 <_ 
i < n (with n > 0), Mi = (Si,Ti, Fi, (Cin)i) be a subsystem of i .  Then 
{ M i , . . . ,  Mn} is a covering of M iff P = (Jinx Si. 

An EN system that  is covered by sequential components M 1 , . . . ,  Mn can 
intuitively be viewed as a system consisting of the communicating concurrent 
subsystems M I , . . . ,  Mn, where each subsystem Mi is sequential. The  commu- 
nication between components takes place through synchronization on shared 
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transitions. Components may also share places, meaning that the sets of places 
S1 , . . .  ,Sn of M1, . . . ,  Mn, respectively, need not be disjoint. If there is a token 
in place p E $1 • $2, then this means that both components M1 and M2 are in 
the same local state p. Hence a token in p represents all components to which 
p belongs. Note that, in general, an EN system can have several coverings by 
sequential components, i.e., several interpretations as a set of communicating 
components. 

Exaraple21. (1) The EN system M of Fig. 45 is covered by one sequential com- 
ponent, viz. M itself. The system itself is sequential. With Cin = {pl,p2} the 
system has no covering by sequential components. 

P3 

Pl t2 P2 

Fig. 45. A sequential EN system. 

(2) The only sequential component of the EN system of Fig. 37 is {p3,p5}, 
see Example 18(1). We already saw in that example that Lemma 47 can be used 
to conclude that Pl, P2, and p4 do not belong to any sequential component. It 
is often quicker to use Theorem 49 for that purpose: for example, if S is the set 
of places of a sequential component and P2 E S, then Pl E S and p3 E S by 
Theorem 49(3)(ii), and hence #(Cin N S) = 2, contradicting Theorem 49(2). 

(3) The EN system of Fig. 12 has a covering by two sequential components, 
viz. {Po, Pl, P2, P4, P6 } and {Po, Pl, P3, Ps, P6 }. Intuitively, these two components 
work on the same job in places po, pl, and P6, but work on different jobs when 
they are in places p2,1o4 and P3, P5, respectively. 

(4) The EN system of Fig. 2 is covered by three sequential components. In 
terms of the sets of places, the components are: { w l , c l , r l }  (component 1), 
{w2,c2,r2} (component 2), and {p, cl, c2} (the permission component). If we 
give the complete specification, then component 1 is the EN system (S, T, F, Cin) 
with S = ( w l , c l , r l } ,  T = { i n l , o u t l , d l } ,  F = { (w l , i n l ) ,  ( in l ,c l ) ,  (Cl,OUtl), 
(outl ,rl) ,  (r l ,dl) ,  (dl,wl)}, and C~n = {wl}; and analogously for compo- 
nent 2. The permission component is then the EN system (S, T, F, Cin) with 
S = {p, cl,c2}, T = { in l ,ou t l , in2 ,  out2}, g = {(p, inl) ,  ( inl ,Cl),  (Cl,OUtl), 
(outl,p), (p, in2), (in2,c2), (c2,0ut2), (out2,p)}, and Cin -- {p}. 
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(5) The EN system of Fig. 9 is not covered by sequential components. Both 
the producer ({Pl,P2}) and the consumer ({cl, c2}) are sequential components, 
but the buffer b belongs to no sequential component (see also Example 18(2)). 

(6) See Examples 19 and 20. M is the EN system in Fig. 38, and M1 and M3 
are the subsystems of M in Figs. 40 and 44, respectively. It should be clear that 
{M1,M3} is a covering of M. However, there does not exist a covering of M 
by sequential components, since each subsystem M' that contains/93 must also 
contain P2 and tl;  then ~(tl* n PM') _> 2, and so, by Theorem 49, M' is not a 
sequential component. M1 is covered by sequential components, but M3 is not. 

We will now show that for every EN system M there exists a configuration 
equivalent EN system M' that is covered by sequential components. 

T h e o r e m  54. For every EN system M there exists a reduced EN system M'  
that is configuration equivalent with M and that is covered by at most ~PM 
sequential components. 

In the remainder of this subsection we will prove this theorem. Note that 
according to Theorem 36 we may assume that M is reduced. The proof technique 
is based on the so-called complement construction. 

Defini t ion 55. Let M be an EN system and let p, q E PM. Then p and q are 
complementary, denoted by p coin q, if p* = *q and °p = q°. 

Example22. Let M be the EN system of Fig. 37. It is clear that P3 corn P5, and 
that there are no other complementary places. 

In general a place can have several complementary places. If the EN system 
is P-simple, then each place has at most one complementary place. 

The complement construction is based on the following property of two com- 
plementary places. 

Lernrna 56. Let M = (P, T, F, Cin) be a reduced EN system. For all p, q E P, 
{p, q} is a sequential component of M iff #(Cin O {p, q}) = 1 and p corn q. 

Proof. We use Theorem 49(3). It is easy to check that, for arbitrary p, q E P, 
p corn q iff S = {p, q} satisfies condition (ii) of Theorem 49(3) (where we use 
Definition 1(4): "t n t ° = ~ for all t E T). [] 

If, moreover, M is strongly reduced, then the condition #(Cin n {p, q}) = 1 
can be omitted from the statement of Lemma 56. Thus, for strongly reduced EN 
systems, the complementary places are exactly the sequential components of size 
two. 

By Lemma 56, in a reduced EN system two complementary places p and q 
(of which exactly one is in Gin) form a sequential component. That means that 
there is a token in q iff there is no token in p. Viewing p and q as booleans, q 
is the negation of p. The complement construction constructs a complement for 
those places that do not yet belong to a sequential component. We do this place 
by place, as follows. 
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T h e o r e m 5 7 .  Let M be a reduced E N  system and let po • PM. Then there exists 
a reduced E N  system M ~ that is configuration equivalent with M ,  such that: 
(1) PM' = PM U {q0} with qo ~ PM, 
(2) {Po, qo} is a sequential component of M ' ,  and 
(3) for every S C PM, 

S is a sequential component of M i1~ S is a sequential component of M ~. 

Proof. Let M = (P, T, F, Cin). We define M '  - (P' ,  T', F ' ,  C~n ) by setting 
P '  -- P U (q0}, where q0 is a new place (i.e., q0 ~ P U T), 
T'  = T, 
F'  -- F U  ((qo, t) l (t,po ) • F }  U ((t ,  qo) l (po,t) • F},  and 
C'  n -- Cin ifpo • Cin, and C' n = Ci~U (qo} ifpo • Cin. 

To prove that  M and M ~ are configuration equivalent, we define the function 
: CM -+ •(P')  by ~(C) -- C if po • C, and ~(C) -- C U (qo} ff po ~ C. Note 

that  (~ is injective (because ~(C) N P = C) and that  ~(Ci~) = C~n. According 
to Lemma 30 (with ~ the identity on T) it now suffices to prove that  for all 
C , D • C M  a n d t • T ,  

t conM, o~(C) implies t c o n u  C, and (*) 
C[t)MD implies c~(C)[t)M,C~(D). (**) 

Implication (*) follows from: (*t)M = ( ' t)M, n P,  (t*)M = (t°)M , n P,  and 
c~(C) O P = C. To prove (**) we distinguish three cases. 
Case 1: Po • (t°)M. Then (°t)M, = (°t)M U {qo} and (t°)M , = (t°)M. More- 
over P0 ¢ C and P0 • D, and so ~(C) = C u {qo} and (~(D) : D. Hence 
(~(C) - a(D) = (C - D) U {qo} and (~(D) - ~(C) = D - C. Thus C - D : (*t)M 
implies a ( C ) - a ( D )  -: (*t)M,, and D - C  = ( t ° )M implies ~ ( D ) - a ( C )  = (t°)M ,. 
By Lemma 7, this proves implication (**) for this case. 
Case 2 (Po • ( ' t )M)  and Case 3 (po ~ (°t)M U (t°)M) can be proved in a com- 
pletely analogous way. Hence, by Lemma 30, M and M'  are (c h ~)-configuration 
equivalent. By Definition 28, USeM, (T I) : T ,  and so M'  is reduced. 

It is clear that  (1) holds, (2) follows from Lemma 56, and (3) follows easily 
from Theorem 49(3). O 

Now, Theorem 54 follows directly from the repeated (at most # P M  times) 
application of Theorem 57. In this way, each place that  did not yet belong to 
a sequential component will be complemented and consequently, by Lemma 56, 
covered by a sequential component. 

Example 23. (1) The EN system of Fig. 46 is obtained from the one of Fig. 37 by 
complementing places Pl,/)2, and Pa. (2) The EN system of Fig. 47 is obtained 
from the EN system of Fig. 9 by complementing the buffer place b = b I. It is 
covered by three sequential components: the producer (Pl,P2}, the consumer 
(Cl,C2}, and the buffer {bf,be}. It should be clear that  this EN system still 
models the producer/consumer problem as discussed in Section 3.1. Rather than 
treating place b itself as the buffer (which is full iff it contains a token), we now 
represent the two possible states of the buffer by the two places b! (full buffer) 
and b~ (empty buffer). 
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Fig. 46. The result of complementing places Pl, P2, and p4 of the EN system of Fig. 37. 
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Fig. 47. The producer/consumer system with three sequential components. 

4.5 Contact - freeness  

In an EN system M,  an event t has concession in a configuration C if it has 
both input-concession (i.e., "t _C C) and output-concession (i.e., t* f3 C = ~). 
A transition that  has input-concession in C, need not have output-concession in 
C. This is called contact, and is illustrated in Fig. 48. As an example, transition 
f has contact in configuration {P2, b, cl} of the producer/consumer system in 
Fig. 9; it cannot be fired because the buffer is full. Note that  in the corresponding 
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configuration {P2, b f ,  cl } of the producer/consumer system of Fig. 47 transition 
f does not have input-concession. 

Fig.  48. Contact. 

°t 

In general, to decide whether t has concession in C, one has to check both the 
pre-conditions and the post-conditions of t. However, if there is never contact in 
M, then t has concession in C iff all the pre-conditions of t in C are satisfied: 
thus one does not have to check the post-conditions of t! 

For this reason EN systems without contact play an important  part  in the 
theory of the behaviour of EN systems. They are formally defined as follows. 

D e f i n i t i o n  58. Let M = (P, T, F, Cin) be an EN system. 
M is contact-free if for all t E T and C E CM, if "t C C then t ° I"1 C = o .  

Contact-free EN systems are also called safe EN systems. In fact, they are 
the same as the safe P / T  systems (assuming that  the nets of P / T  systems are 
defined as in Definition 1). 

Example 24. The EN system of Fig. 45 is contact-free (because it is sequential). 
With Cin = {Px,P2} it is not contact-free. 

We will now show that  for every EN system there exists a configuration 
equivalent reduced EN system that  is contact-free. Hence contact-free EN sys- 
tems are a normal form for EN systems. This is a simple corollary of the normal 
form from the previous subsection. 

T h e o r e m  59. If  a reduced EN system M is covered by sequential components, 
then M is contact-free. 
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Proof. Let M = (P, T,F,  Cin) and let C E CM- Let "t C_ C with t E T and 
assume that t ° A C ¢  ~.  Let p E t ° NC and let S C_ P be a sequential component 
o f M  w i t h p  E S. T h e n p  E t ° n S  and so # ( t  ° N S )  = 1 = # ( * t N S )  by 
Theorem 49(3). Hence there is a place q E *t N S C_ C M S. Thus # ( C  A S) >_ 2, 
contradicting Theorem 49(2). [3 

Theorems 54 and 59 imply that contact-freeness is a normal form. 

T h e o r e m  60. For every EN system there exists a configuration equivalent re- 
duced contact-free EN system. 

Theorem 59 does not hold the other way around! The EN system of Fig. 49 
has no sequential components, but it is contact-free. By (the proofs of) Theo- 
rems 3.15 and 3.18 of [DesEsp95] (see also Section 7.3 of [Rei82]), the converse 
of Theorem 59 does hold for the so-called T-systems (or marked graphs); in such 
systems both p° and °p contain exactly one transition, for every p E P. In fact, 
assuming the EN system to be strongly reduced, the converse of Theorem 59 
even holds for the (larger) class of EN systems that are free-choice (see the end 
of Section 3.5) and that have live transitions only (see Definition 8(6)); see Sec- 
tion 4.2 of [Hac72] or Theorem 5.6 of [DesEsp95] (the S-coverability Theorem). 
In these cases, the sequential components are even strongly connected. 

Theorem 59 also provides a method to deduce contact-freeness, as demon- 
strated by the following example. 

Example25. (1) The EN system M in Fig. 45, with Cin = {pl}, is sequential 
and hence contact-free according to Theorem 59. With Cin = {Pl,/92 } the system 
clearly is not contact-free and hence, according to Theorem 59, it is not covered 
by sequential components (see Example 21(1)). 

(2) The EN system M of Fig. 12 is covered by two sequential components 
(see Example 21(3)). Hence M is contact-free. 

(3) The EN system M of Fig. 2 is covered by three sequential components 
(see Example 21(4)) and is thus also contact-free. 

(4) The EN systems of Figs. 46 and 47 are covered by sequential components 
(see Example 23) and are thus contact-free. 

The notion of 'contact-freeness' should not be confused with the notion of 
'confiict-freeness' (see Definition 22). An example of an EN system that is both 
contact-free and conflict-free, is the producer/consumer system of Fig. 47. Such 
systems can be characterized as follows. 

T h e o r e m  61. Let M = (P, T, F, Cin) be an EN system. 
M is contact-free and conflict-free iff 
for all C E C.M and all U C_ T with U ~ 0,  if *U C_ C, then U con C. 

If two transitions of a contact-free EN system have an output-conflict, in 
some configuration, then they also have an input-conflict in that configuration 
(cf. (3) of Section 3.5). Using this it can be shown that there is no confusion in 
contact-free free-choice systems (see the end of Section 3.5). 
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Fig. 49. A contact-free EN system without sequential components. 

5 P r o c e s s e s  

The way in which we have formalized the concurrent behaviour of an EN system 
in Section 3.4 still has a sequential flavour. The only difference with the sequen- 
tial behaviour in Section 3.3 is tha t  at each step, i.e., during each global state 
transition, several transitions can be fired simultaneously. This may be viewed 
as a formalization of simultaneity rather  than concurrency. However, in general, 
actions do not occur simultaneously but they may overlap in time, in an arbi- 
t rary  fashion. Thus, one component of a system can execute six actions while, 
independently, another component executes two actions and par t  of a third. In 
this section we will define the notion of a "process" of an EN system, which 
formalizes a concurrent run of the system, taking into account this feature of 
concurrency. In order to abstract from the notion of time, as we did before, we 
will only formalize that  one action should be executed "before" another action, 
or, tha t  one action is one of the "causes" of another action (cf. (1) in Section 3.5). 
Such a notion of causality between the events that  occur during a run of the sys- 
tem, is, in general, a partial  order. It  will be represented by a special type of 
acyclic net, called "process net" (or causal net, or occurrence net). 

In Section 5.1 we recall a number of notions concerning partial orders, and 
in Section 5.2 we consider process nets and some of their formal properties. In 
Sections 5.3 and 5.4 we introduce and study the processes of an EN system. 

The  theory of process nets and processes originated in [Pet76], and is pre- 
sented in detail in [BesDev87, BesFer88] (for EN systems see in particular Sec- 
tion 4.4 of [BesFer88]). 

5.1 Part ial  Orders 

We start  this subsection with the usual definition of a (strict) partial order. 
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D e f i n i t i o n  62. Let A be a finite set. A binary relation p C_ A x A is a partial 
order on A if p is irreflexive and transitive; (A, p) is also called a partially ordered 
set. A subset B of A is linearly ordered if for all a, b E B: a p b or b p a or a = b. 

With every partial order p we can associate two important  relations lip and 
COp. 

D e f i n i t i o n  63. Let (A, p) be a partially ordered set. Then lip C_ A x A and 
cop C_ A × A are the binary relations such that ,  for every a, b E A, 

(1) a lip b i f f a  p b or b p a or a = b, and 
(2) a c o p  b i f f - ~ a p b a n d - ~ b p a .  

For a partially ordered set (A, p), lip is called the line relation of p and COp 
is called the concurrency relation of p. 

Note that  the irreflexivity of p implies tha t  a co a a for every a E A. Two 
distinct elements of A are either comparable (li) or incomparable (co). 

L e m m a  64. Let (A, p) be a partially ordered set. Then, for every a, b E A, 
(1) a lip b or a cop b, and 
(2) (a lip b and a cop b) iff a = b. 

The maximal cliques of lip and COp play an important  part  in what follows. 
Maximal cliques are now defined for arbi t rary reflexive symmetric relations (and 
note that  lip and COp are reflexive and symmetric).  

D e f i n i t i o n  65. Let A be a finite set, let a C_ A x A be a reflexive symmetric 
relation, and let B C_ A. B is a a-clique if a a b for all a,b E B, and B is a 
maximal a-clique if B is a a-clique and for every a E A - B there exists b E B 
such that  -~ a a b. 

L e m m a  66. Let A be a finite set and let a C_ A × A be a reflexive symmetric 
relation. For every a-clique B there exists a maximal a-clique C with B C_ C. 

Proof. If B is maximal then we are ready. Otherwise there exists al ~ B such 
that  al a b for all b E B. Then B1 = B U {al } is a a-clique. If B1 is maximal 
then we are ready. Otherwise there exists a2 ~ B1 such that  B2 = B1 U {a2} is 
a a-clique. We iterate this procedure. Since A is finite it must terminate with a 
maximal a-clique Bn. Clearly B C_ Bn. Q 

In particular, for every a E A there exists a maximal a-clique C with a E C 
(because every singleton {a} is a a-clique, by the reflexivity of a). 

For a partially ordered set ( A, p), a lip-clique is a linearly ordered subset of 
A, and a COp-clique is a set of mutually incomparable elements. 

D e f i n i t i o n  67. Let ( A, p) be a partially ordered set. A maximal lip-clique is a 
line of p and a maximal cop-clique is a cut of p. 
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Note that  if A = o (and thus p = 0) ,  then the empty set is both a line and 
a cut of p. If A # g ,  then lines and cuts are nonempty sets. 

It is clear from Lemma 64(2) that ,  for every line L and every cut C of p, 
# ( L  n C) < 1. This leads to the following definition (see [Pet76] and Section 2.3 
of [BesFer88], where it is called K-density). 

D e f i n i t i o n  68. Let (A, p) be a partially ordered set. The  ordering p is dense if 
every line and every cut of p have a nonempty intersection. 

The empty partially ordered set is clearly not dense. There also exist non- 
empty partially ordered sets that  are not dense. Consider, e.g., the N-shaped 
partially ordered set (A, p) with A = {a, b, c, d} and p = {(a, b), (c, b), (c, d)}. 
Then the line {c, b} and the cut {a, d} do not intersect. 

A cut divides a partially ordered set into two parts: the part  "before" (pre- 
ceding) the cut, and the part  "after" (following) the cut. This can be defined, 
for arbi t rary subsets of A instead of cuts, as follows. We also define the sets of 
minimal and maximal elements of (a subset of) A. 

D e f i n i t i o n  69. Let ( A, p) be a partially ordered set and let B C A. Then 
(-4B)p = {a e A I 3b e B :a p b or a = b}, 
(B-~)p = {a e A [ 3b E B :  b p a or b = a}, 
(°B)p = {b e B [ -~3b' E B :  b' p b}, and 
(B°)p -- {b e B I  3b' • B :  b p b'}. 

If p is clear from the context, then we will just write -~B, B ~ ,  °B, and B °'. 
Intuitively, -+B is the part  of A before B (including B), B -~ is the part  of A 
after B (including B), °B is the initial part  of B, and B ° is the final part  of B. 
In the literature, -~B and B -~ are often denoted SB and J'B, respectively. 

The following technical lemma shows that  every element of B is after its 
initial part  and before its final part.  

L e m m a  70. Let (A, p) be a partially ordered set and let B C A. 
Then B C_ (°B)-~ and B C -~(B°). 

Proof. To prove that  B C_ (°B)-~, we have to show that  for every b • B there 
exists m • °B such that  m p b or m = b. Let b • B. If b • °B then we are 
ready. Otherwise there exists bl • B with bl p b. If bl • °B then we are ready. 
Otherwise there exists b2 • B with b2 p bl and thus b2 p b. We iterate this 
procedure. Since B is finite it must terminate with a bn • °B such that  bn p b. 
Formally all this can be proved by induction on #{b '  • B I b' p b}. 

The proof of B C_ -* (B °) is "dual", i.e., follows from the above by considering 
the partially ordered set (A, p - l ) ,  with p-1 = {(a, b) I (b, a) • p}. I3 

Lemma 66 is a special case of (the second inclusion of) Lemma 70, for the 
partially ordered set (C, ~)  where C is the set of all a-cliques. 

The following elementary properties of cuts can easily be proved from the 
definitions, using Lemma 70. 
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T h e o r e m  71. Let (A, p) be a partially ordered set and let B be a cut of p. 
(1) °A  and A ° are cuts of p, 
(2) (°A)-~ = A , - ~ ( ° A )  = °A,  (A°) -+ = A °, and ~ ( A  °) = A,  
(3) -~B U B -~ = A and -*B N B -~ = B ,  
(,~) °(-*B) = °A,  (-~B) ° = B ,  °(B-*) = B ,  and (B-~) ° = A °. 

Proof. As an example we prove that  °A is a cut. From Definition 69 it is obvious 
that  °A is a co-clique. By Lemma 70, for every a 6 A - °A there exists m 6 °A 
such that  m p a. This shows that  °A is a maximal co-clique. [3 

We now present another result tha t  uses Lemma 70: every line intersects the 
initial and the final cut (hence a "partial" density). 

L e m m a  72. Let (A, p) be a partially ordered set with A ~ ~ and let L be a line 
of p. T h e n L M ° A  ~ a n d L M A  ° ¢e~ .  

Proof. By duality it suffices to prove that  L N °A ~ ~.  Since A is nonempty, 
L is nonempty. Then, by Lemma 70 (with B = L), °L is nonempty. Since L 
is a li-clique, °L consists of precisely one element, say a. By Lemma 70 (with 
B -- A) there exists m 6 °A with m p a or m = a. This implies tha t  L U {m} is 
a li-clique. Since L is maximal, m E L. Hence m 6 L N °A (and m -- a). U 

5.2 P r o c e s s  N e t s  

For the description of the concurrent runs of an EN system we will define so- 
called processes. In defining processes, nets of a special kind are used: process 
nets. These nets will be t reated in this subsection. 

D e f i n i t i o n  73. A net N = (P, T, F )  is a process net if: 
(1) N is acyclic, and 
(2) # ( ' p )  <_ 1 and # (p° )  < 1 for all p E P .  

Hence, process nets are nets without cycles and with "unbranching" places 
only. They are also called occurrence nets or causal nets. 

For every acyclic directed graph with edge relation F ,  the relation F + (which 
indicates the nonempty paths in the graphs) is a partial order on the set of nodes 
of the graph. Applying this to the directed graph GN corresponding to the net 
N (see Section 3.2) gives the next result. 

L e m m a  74. For every process net N ,  F + is a partial order on X N .  

The above result allows us to consider a process net N = (P, T, F )  as a par- 
tially ordered set (X, F+) .  In this way, all terminology and notations concerning 
partial orders introduced so far can be carried over to process nets. In particular, 
we write l ig  and CON instead of liE+ and COF+ and speak about  lines and cuts 
of N instead of lines and cuts o f F  +. Thus, for x , y  6 X ,  x CON y iff-~ x F + y 
a n d - - y F  + x, a n d x l i g y i f f x F  + y o r y F  + x o r x = y .  

We are especially interested in cuts of a process net tha t  consist of places 
only, i.e., that  are configurations of the process net. 
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D e f i n i t i o n  75. A slice of a process net N is a cut C of N such tha t  C C_ PN. 

L e m m a  76. Let N = (P, T, F)  be a process net and let C C_ P.  
C is a slice of N iff 
(1) for all p, q E C, p CON q, and 
(2) for every p E P - C there exists q E C such that -1 p CON q. 

Proof. I f  C is a slice of N ,  then (1) and (2) follow directly from the definition of 
a cut of N.  Now assume tha t  (1) and (2) hold. We have to prove tha t  C is a cut 
of N.  By (1), C is a CON-Clique. To show tha t  it is maximal ,  it suffices, by (2), 
to prove that  for every t E T there exists q E C such tha t  t F + q or q F + t. Let 
p E t °, i.e., t F p. I f  p E C, then we are ready. Now assume p ~t C. According 
to (2) there exists q E C, such tha t  p F + q or q F + p. I f p  F + q, then t F + q 
(since t F p). If  q F + p, then q F + t, because *p = {t}. This last fact is based 
on proper ty  (2) in the definition of a process net. D 

This lemma says tha t  a slice is the same as a maximal  clique of the relation 
CON restricted to the set P .  The next result then follows immediately  from 
Lemma 66. 

L e m m a  77. Let N = (P, T, F)  be a process net. For every CON-clique B C_ P 
there exists a slice C of N with B C C. 

From now on we write ° N  for ° X N  (the minimal elements of the net N) .  
Likewise we write N ° for X N  ° (the maximal  elements of N) .  By Theorem 71(1), 
° N  and N ° are cuts. They are even slices of N,  because, by Definition 1(3), 
*t ~ o and t ° ~ O, for every transit ion t. Note tha t  ° N  = {p E PN I °P = O} 
and N ° = {p E PN I P ° = 0} .  

In the sequel, we will view each process net N = (P, T, F)  as the EN system 
(P, T, F, °N) ,  i.e., with the initial slice ° N  as initial configuration. Proper ty  (2) 
of a process net (Definition 73) guarantees tha t  this EN system is conflict-free, 
see the discussion following Definition 22. 

If two process nets N and N '  are isomorphic via a bijection a : PN --+ PN', 
then, obviously, a ( ° N )  = °N ' .  In other words: then they are also isomorphic as 
EN systems (cf. Definition 27). 

Example 26. Fig. 50 shows an example of a process net N .  The  places in ° N  are 
marked with tokens. The  places marked with crosses show another  slice C of N.  
Note tha t  -~C is the pa r t  of N above (and including) the crossed places, whereas 
C -~ is the par t  below (and including) them. 

Here are some basic properties of co-cliques and slices of process nets. 

L e m m a  78. Let N = (P, T, F)  be a process net. 
(1) For every U C_ T ,  if  U is a co-clique, then *U and U* are co-cliques. In 

particular, "t and t ° are co-cliques for every t E T.  
(2) For every co-clique U C_ T there exists a slice C such that °U C_ C. 
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Fig. 50. A process net. 

,) 

,) 

3 

(3a) For every slice C and every t E T ,  i f  °t  C_ C,  then t ° O C = ¢J and 
D = (C - "t) U t ° is a slice such that ~ D  = -"C U {t} U t °. 

(3b) For every slice C and every t E T ,  i f  t ° C C,  then *t n C = o and 
D = (C - t °) U °t is a slice such that - ' D  = - ' C  - t ° - {t}. 

(4) For every slice C and every transition t, i f  t E - ' C ,  then nbh( t )  C_ ~ C .  
(5) For every slice C ~ ° N  there exists t E T such that t ° C_ C.  

Proof. (1) Let U be a co-clique. To show tha t  °U is a co-clique, let pl E °tl 
and P2 E °t2 with tx,t2 E U, and suppose tha t  pl F + P2. Since pl ° -- {tl} by 
Definition 73(2), tl  F + p2 and so tl  F + t2, contradicting the fact tha t  U is a 
co-clique. In the same way it can be shown that  U ° is a co-clique. 

(2) follows directly from (1) and Lemma 77. 
(3a) Let °t C C. Since C is a co-clique, t * n C  = ~ .  To prove that  D is a slice, 

we first show that  it is a co-clique. Since both C and t ° are co-cliques, it suffices 
to consider places p E C - *t and q E t ° such that  p F + q or q F + p. If p F + q, 
then, since °q -- {t}, there exists q~ E °t such that  p F + q~. If q F + p, then 
q~ F + p for any qe E °t. In both cases, since p, qt E C, this contradicts the fact 
that  C is a co-clique. Using Lemma 76, the maximality of D easily follows from 
the maximality of C. Thus, D is a slice. The proof of the remaining property of 
D is left to the reader. 

(3b) Here t "fires backwards" in C yielding D. The proof is similar to the 
proof of (3a). 
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(4) Let t E -~C. Thus, t F + q for some q E C. Obviously *t C_ -*C. Now 
consider p E t ° and suppose that  p ~ -~C. Then,  by Theorem 71(3), p E C -~ - C 
and so there exists q~ E C such tha t  q~ F + p. Hence q~ F + t, and so q~ F + q, 
contradicting the fact tha t  C is a co-clique. 

(5) Since C ~ °N,  T n -~C ~ 0 .  L e m m a  70 then implies tha t  (T M -+C) ° is 
also nonempty. Take a transit ion t tha t  is a maximal  element of T n ~ C .  We 
claim tha t  t ° C_ C. In fact, suppose tha t  there exists p E t ° such tha t  p @ C. 
Since, by (4), p E -~C, there exists a place q E C such tha t  p F + q. Hence there 
is a transit ion t I such tha t  p F t ~ F + q. Consequently t F + t f, which contradicts 
the maximal i ty  of t, because t '  E T n -~C. [3 

We will now show tha t  the reachable configurations of a process net N are 
exactly the slices of N.  

T h e o r e m  "/9. Let N = (P, T, F, °N)  be a process net and let C C P.  
C E CN iff C is a slice of N .  

Proof. (Only-if) By induction on C. The  base of the induction holds because 
° N  is a slice. The induction step follows directly from Lemma 78(3a). 

(If) By induction on # ( - ~ C  M T),  i.e., the number  of events before the slice 
C.  If  -*C fl T = O, then C = °N.  If  -~C M T ~ O, then C ~ ° N  and so, 
by Lemma  78(5), there is a t E T such tha t  t ° C C. Then, by Lemma 78(3b), 
°t f3 C = ~ and D = (C - t °) U °t is a slice. Also -~D --= -~C - t ° - (t} and hence 
# ( - ~ D  f3 T)  = # ( - ~ C  M T) - 1. Thus,  by the induction hypothesis, D E C.N. 
Obviously D[t)C and hence C E CN. 1"1 

Theorem 79 and Lemma 78(3a) imply tha t  every process net is contact-free. 
The conflict-freeness and contact-freeness of a process net can be expressed to- 
gether as follows (see Theorem 61). 

T h e o r e m  80. Let N be a process net, let C E C,N , and let U C_ TN with U ~ o .  
I f  °U C_ C, then U con  C. 

In general a process net is not strongly reduced, because it may  contain 
isolated places. However, as we will show now, a process net is always reduced. 
We also give a characterization of the concurrent steps of a process net (i.e., the 
sets of labels tha t  appear  in its configuration graph).  

T h e o r e m  81. Let N = (P, T, F, °N)  be a process net. 
(1) N is reduced. 
(2) For every U C_ T,  (3C e C.N : U c o n  C) iff U is a co-clique. 

Proof. (1) follows from (2), because for every t E T,  {t} is a co-clique. 
(2) If  U is a co-clique then, by L e m m a  78(2) and by Theorems 79 and 80, 

U c o n  C for a C E CN. The  other way around, if U c o n  C, then °U C_ C and 
hence *U is a co-clique by Theorem 79. To show tha t  U is a co-clique, suppose 
tha t  t l  F + t2 for tx, t2 E U. Then there exists P2 E °t2 such tha t  tl F + p2. Hence, 
by Definition 1(3), there exists Pl E °tl  such tha t  Pl F +  P2, contradict ing the 
fact tha t  °U is a co-clique. [] 
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Theorem 79 gives a characterization of the reachable configurations of a 
process net in terms of the partial order F +. We will now do the same for 
sequential components. Whereas reachable configurations correspond to slices, 
sequential components correspond to lines. 

L e m m a 8 2 .  Let N = ( P , T , F , ° N )  be a process net. 
(1) I f  L is a liN-clique, then L U n b h ( L  n P)  is a liN-clique. 
(~) If  L is a line of N ,  then for every t • T:  

" t n L  ~ o i f f t  • L iff t ° n L  ~ o .  

Proof. (1) Let L be a li-clique. We have to prove that  L U °(L n P )  u (L n P)* 
is a li-clique. Take x • L and t • (L n P ) ' ,  hence (p,t) • F for a p • L. If 
x F + p then x F + t, and i f p  F + x then t F* x (by Definition 73(2)). A similar 
reasoning holds for all other cases. 

(2) We will prove that  "t n L ¢ g iff t • L (the proof tha t  t • L iff t ° n L ¢ 
can be done in the same way). First let p • °t n L. Then t • (L n P)°  and 
hence L U {t} is a li-clique according to (1). Then t • L, because L is a line. 
Now, for the implication in the other direction, let us assume that  t • L and let 
Y = {x • L I x F + t}. Lemma 72 implies that  Y ~ o ,  and so, by Lemma 70, 
Y° ~ ~. Since L is a li-clique, y o  consists of one element, say xm. Since Xm F + t, 
there exists p • °t with Xm F* p. This implies that  L U {p} is a li-clique and 
hence that  p • L. Thus p • °t n L. [] 

T h e o r e m 8 3 .  Let N = ( P , T , F , ° N )  be a process net with P # ~.  
(1) If  M is a sequential component of N ,  then PM U TM is a line of N .  
(2) If L is a line of N ,  then (L O P, L n T, (L × L) n F, L o °N)  is a sequential 
component of N .  

Proof. (1) Let M be a sequential component of N and let S -- PM. Then TM = 
S ° (see Lemmas 46 and 47). We have to show that  S U S ° is a line of N.  We first 
show that  S is a li-clique. Let p, q E S and assume that  p ~ q and p co  q. Then, by 
Lemma 77, there is a slice C with p, q E C. Theorem 79 implies tha t  C E CN. But  
then # ( C A S )  > 2, contradicting Theorem 49(2) (which is applicable because, by 
Theorem 81(1), N is reduced). Hence S is a li-clique. Then,  by Lemma 82(1), 
S U S ° is a li-cfique. Now it remains to prove that  S U S ° is maximal. First 
consider p E P - S. By Lemma 77 and Theorem 79 there is a slice C E CAr 
with p E C. Since # ( C  n S) = 1, there exists q E S with q E C. Then, for this 
q E S U S °, p li q does not hold. Now consider t E T - S °. Then °t n S = ~ .  
Again there is a slice C E CN with *t C C (see also Lemma 78(1)) and again 
there exists q E C n S. From the fact tha t  p co q for every p E *t it follows that  
t li q does not hold for this q E S U S °. 

(2) Let L be a line and S = L A P .  It is easy to check that  M = (S, LAT,  (L x 
L) n F, L n °N)  is a subsystem of N (where condition (2) of Definition 45 follows 
from Lemma 82(1) and the fact tha t  L is a line). Now it remains to prove that  
M is sequential. By Theorem 49(2) and the fact that  M is determined by S, it 
suffices to prove that  # ( C  n S) = 1 for every slice C 6 CN. Since # ( L  n C) < 1 
and C c_ P ,  we only need to show that  L n C ~ o .  This is done by induction 
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on C. The base of the induction follows from Lemma 72 and the induction step 
from Lemma 82(2): if C[t)D and °t M L ~ o ,  then t ° M L ~ O. [] 

From Lemma 53, Theorem 83(2), and Lemma 66 (for a = li) it follows that  
every process net is not only contact-free (as shown after Theorem 79), but  is 
even covered by sequential components (cf. Theorem 59). As an example, the 
process net of Example 26 (Fig. 50) is covered by the three sequential compo- 
nents that  correspond to the four places in each vertical row. 

Also, Theorems 83(2), 79, and 49(2) imply that  L M C ~ g for every line L 
and every slice C. This is already close to density (see Definition 68). 

T h e o r e m  84. Every process net N = (P, T, F, °N), with P ~ 0,  is dense. 

Proof. Let L be a line and C be a cut of N.  It is not hard to prove (analogously 
to Lemma 78(3a)) that  C ~ = (C M P)  U (C M T) ° is a slice. By Theorems 83(2), 
79, and 49(2), L M C '  ~ 0. L e t p  E LMC' .  I f p  E C M P ,  t h e n p  E L M C .  If 
p E (C M T) °, then there is a t E C such that  p E t ° M L. Lemma 82(2) then 
implies that  t E L, and hence t E L N C. [] 

Hence, density is an abstract version of the fact that  in every reachable 
configuration every sequential component is in one particular state. 

5.3 P r o c e s s e s  

Process nets will be used in defining the notion of a process, which formalizes a 
concurrent run of a system. Informally speaking, a process of an EN system M 
describes a transformation of the initial configuration Ci,~ of M to a configuration 
C of M; it is a record of all occurrences of events that  lead from Cin to C, 
together with all conditions involved in these events. Two occurrences of events 
are (partially) ordered in this record if there is a condition that  starts to hold 
as a result of the first occurrence of an event, and ceases to hold as a result of 
the second (or if the first is connected to the second by a chain of occurrences of 
events related in this way). This partial order represents the causal connection 
between the occurrences of the events, cf. Fig. 16. Note that  the linear order of 
occurrences of events in a firing sequence also represents the fact that  they are 
observed by a sequential observer. 

Consider for example the (contact-free) EN system M = (P,T, F, Cin) of 
Fig. 51. We start  by recording the initial configuration {Pl, P2} (see Fig. 52). 
Next we record the occurrence of event tl (see Fig. 53). What  we obtain in this 
way, is a process (a record of a transformation) from the configuration Cin = 
{pl,p2} to the configuration C = {P3,P4}. We can continue by also recording 
the occurrence of (for example) the concurrent step {t2, t3} in configuration C, 
see Fig. 54. What  we obtain now, is a process (a record of a transformation) 
leading from the configuration Cin -= {pl,P2} to itself. By continuing one more 
step, we again record the occurrence of tl  and again obtain a process (a record 
of a transformation) from Cin to C (see Fig. 55). Finally we can (for example) 
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Fig. 51. An EN system M. 
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Fig. 52. A process of the EN system M of Fig. 51. 

P3 

P2 

P4 

Fig. 53. A process that extends the process of Fig. 52. 
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/)3 t2 Pl P l ~  
/)4 t3 P2 

Fig. 54. A process that extends the process of Fig. 53. 

P3 t2 Pl 
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/94 t3 /92 

Fig. 55. A process that extends the process of Fig. 54. 

record the occurrence of event t4 and thus obtain a process leading from Cin to 
the configuration {P4,P5} (see Fig. 56). 

Thus,  a process does not describe a complete run of the system (which can 
be infinite), but  ra ther  an initial finite par t  of it. 

Note tha t  our processes are themselves nets. These nets record the occur- 
rences of events together with the occurrences of the conditions that belong to 
these events. Moreover, processes are nets of a special kind, viz. process nets: 
(1) if an event occurs, a possible conflict is resolved, and (2) different occur- 
rences of the same condition and different occurrences of the same event are 
recorded by different copies of the corresponding condition and event, respec- 
tively. Therefore all places are unbranched and no cycles occur. The flow relation 
of the net represents the causal part ial  order between the events and conditions 
(see Lemma  74). 

I t  is impor tant  to note that  our processes only record that  conditions hold, 
not tha t  conditions do not hold. Hence a process faithfully describes a run of 
the system under consideration only if  this system is contact-free, i.e., we need 
not record which conditions do not hold when we record the occurrence of an 
event. This is the reason for restricting our a t tent ion to processes of contact-  
free EN systems. Fortunately, Theorem 60 says tha t  for every EN sys tem there 
exists a configuration equivalent contact-free EN system. Hence, wi thout  loss 
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Fig. 56. A process of the EN system M of Fig. 51, leading from {pl,p2} to {p4,ps}. 

of generality, we can assume contact-freeness in our study of the behaviour of 
EN systems. More specifically, when dealing with an EN system M that is not 
contact-free, if we want to study its behaviour through its processes, then we will 
study the processes of a contact-free EN system that is configuration equivalent 
with M (e.g., the system that is obtained by the complement construction in 
the proof of Theorem 57"). 

The above considerations lead to the formal notion of a process in a contact- 
free EN system. However, before giving the formal definition, we need a number 
of auxiliary notions. 

Defini t ion 85. Let •i and E2 be disjoint alphabets. A (~1, E~)-labelled net  is 
a 5-tuple N = (P, T, F, ¢1, ¢2), where 
(P, T, F) is a net (the underlying net of N ,  denoted by und(N)),  
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¢1 is a function from P to Z1 (the place labelling of N), and 
¢2 is a function from T to Z2 (the transition labelling of N). 

N is also called a labelled net, and, if u n d ( N )  is a process net, then N 
is also called a (Zl,~2)-labelled process net or simply a labelled process net. 
All notations and terminology concerning (process) nets carry over, through the 
underlying nets, to labelled (process) nets. We will also use the notation ¢IN, ¢2N 
for ¢1, ¢2, respectively. 

To compare labelled nets we need the following notion of isomorphism, which 
expresses the fact tha t  the identity of the places, the transitions, and the labels 
is irrelevant. 

l I I I Def in i t i onS6 .  Let N = (P,T,F,¢I,¢2) and N' = (P ' ,T  ,F  ,¢1,¢2) be two 
(Z1, Z2)-, respectively (Z~, Z~)-labelled nets. Then N and N'  are isomorphic, 
denoted by N - N' ,  if there exist bijections a : ~71 --+ Z~, /3 : Z2 -+ Z~, 
7 : P -+ P ' ,  and 6 : T -+ T t, such that:  
(1) u n d ( N )  =-~ u n d ( g ' ) ,  
(2) for all p E P,  ¢~ (7(P)) = c~(¢1 (p)), and 
(3) for all t e T, ¢~((~(t)) --/3(¢2(t)). 

For isomorphic N and N ~ as above, we also say that  N and N '  are (c~,/3)- 
isomorphic, denoted by N ~-~ N ~. 

Condition (1) above means that  the underlying nets are isomorphic, condi- 
tion (2) means that  corresponding places (via 3,) have corresponding labels (via 
c~), and condition (3) means that  corresponding transitions (via 5) also have 
corresponding labels (via 13). 

This notion of isomorphism between labelled nets can naturally be extended 
to isomorphism between sets of labelled nets in the following way. 

De f in i t i on87 .  Let 7) and 7 )' be two sets of (El,  Z2)-, respectively (Z~, E~)- 
labelled nets. Then 7) and 7 )' are isomorphic, denoted by 7) =- 7)', if there exist 
bijections c~ : Z1 --+ ~7~ and/3 : X2 --+ Z~, such that  
(1) for every N E 7) there exists N I E 7)~ such that  N -:~ N ~, and 
(2) for every N ~ E 7)' there exists N E 7) such that  N - ~  N I. 

For isomorphic 7) and 7)' as above, we also say that  7) and 7 ) '  are (a,/3)- 
isomorphic, denoted by 7) ---~ :P'. 

Condition (1) means that  every net in 7) is isomorphic with a net in 7 )' and 
condition (2) means that,  the other way around, every net in P~ is isomorphic 
with a net in 7). Note that  the isomorphisms from (1) and (2) always use the 
same, fixed a priori, bijections ~ and/3 between the alphabets. 

We now present the formal definition of the notion of a process. Recall from 
Section 2 that  ] r B denotes the restriction of function f : A --+ A' to the set 
B C_ A. The requirement that  f r B is injective thus means tha t  for all bl, b2 E B, 
if 51 ~ 52 then f(bl) ~ f(b2). 
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Defini t ion 88. Let N = (PN, TN, FN, 41,42) be a (El, X2)-labelled process net 
and let M = (P, T, F, Cin) be a contact-free EN system. 
Then N is a process of M if 
(1) E1 = P and E2 = use(T), 
(2) 41 [ °N is injective, 
(3) 41(°N) = Gin, 
(4) for every t e TN, 41 r *t is injective and 41 t t ° is injective, and 
(5) for every t e TN, 41(°t) = °(42($)) and 4t (t*) = (42(t)) °. 

From now on, for the sake of simplicity, we will also write 4 instead of 41 
and 42, when the subscript is clear from the context. 

For a contact-free EN system M, PROC(M) denotes the set of all processes 
of M. 

Requirement (1) above says that the places of the process net are labelled 
with the places of the system, and the transitions of the process net are labelled 
with the useful transitions of the system. Requirements (2) and (3) say that, 
via the labelling 4, the minimal places of the process net N are in one-to-one 
correspondence with the initial configuration of the system. The non-minimal 
places of N represent conditions that are set by the occurrence of some event. 
Thus, °N faithfully records the conditions that hold initially. Requirements (4) 
and (5) say that, via the labelling 4, the places in the input- and output-set 
of a transition s of the process net are in one-to-one correspondence with the 
places in the input- and output-set, respectively, of a transition t of the system. 
This means that s is indeed a faithful record of the occurrence of the event 
t = 4(s). Note that requirement (5) implies that for all x, y e XN, if x FN y 
then 4(x) F 4(Y). 

Example27. (1) Let M be the (contact-free) EN system of Fig. 47. A process 
N of M is drawn in Fig. 57 (the underlying process net is the one of Fig. 50). 
Note that the symbols next to the places and transitions of N axe labels, i.e., 
places and transitions of M (the identities of the places and transitions of N 
are not given in the figure). The process N leads from the initial configuration 
{Pl, bl, Cl } of M to the configuration {P2, be, c2 } of M. 

(2) A process of the EN system of Fig. 2 (mutual exclusion) is drawn in 
Fig. 58. It leads from the initial configuration {wl,p, w2} to the configuration 
{cl,w2}. 

We will now show that the firing of transitions in a process is mapped (by 
4) to the firing of transitions in the system. Hence, playing the token game in a 
process corresponds to playing the token game in the system. To prove this, we 
need the following lemma. 

L e m m a 8 9 .  Let M = (P,T,F, Cin) be a contact-free EN system and let N = 
(PN,TN, F N , 4 1 , ~ )  be a process of M. Let C ,D E CN and t 6 TN. 
I f  4 ~ C is injective, 4(C) e CM, and C[t)ND, then 4 r D is injective and 
4(C)[4(t))M4(D). 
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Fig. 57. A process of the producer/consumer system of Fig. 47. 

Proof. Prom °t C C it follows that  ¢(*t) C ¢(C) and hence, by requirement (5) of 
Definition 88, that  °¢(t) C_ ¢(C). Since M is contact-free, ¢(t) ° N ¢(C) = O and 
hence, again by requirement (5), ¢( t°)N¢(C) = ~. This, and the fact that  ¢ r t ° 
is injective (requirement (4)), implies that  ¢ r (C U D) is injective. Consequently 
¢ ( C - D )  = ¢ ( C ) - ¢ ( D )  and ¢ ( D - C )  = ¢ ( D ) - ¢ ( C ) .  By Lemma 7, °t = C - D  
and t ° = D - C. Hence °~b(t) = ~b(°t) = ~b(C - D) = ¢(C) - ¢(D) and similarly 
¢(t) ° = ¢(D) - ¢(C). Lemma 7 now implies that  ¢(C)[¢(t))MC(D). [] 

T h e o r e m g 0 .  Let M = (P,T,F, Cin) be a contact-free EN system and let N = 
(PN,Tlv,FN,¢I,¢2) be a process of M. 
(1) For every C e CN, ¢ r C is injective and ¢(C) e CM. 
(2) For every C,D e CN and t e TN, if C[t}gD then ¢(C)[¢(t))M¢(D). 

Proof. (1) can easily be proved by induction on C. The base of the induction 
(i.e., C = °N) directly follows from requirements (2) and (3) of Definition 88, 
and the induction step follows from Lemma 89. 

(2) directly follows from (1) and Lemma 89. [] 

T h e o r e m  91. Let M = (P, T, F, Cin) be a contact-free EN system and let N = 
(PN, TN, FN, ¢1, ¢2) be a process of M. 
(1) For every co-clique D of Xlv, ¢ r D is injective. 
(2) For every C, D e CN and U C_ TN, if C[U)ND then ¢(C)[¢(U))M¢(D). 
(3) For every co-clique U C_ TN there exist C, D E aM such that C[¢(U))MD. 
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Proof. (1) We have to show that  for every two distinct elements x and y of XN, 
if x CO y then ¢(x) ~ ¢(y). This is obvious if one of the two is a place and the 
other a transition. If {x, y} C PN, then by Lemma 77 there exists a slice C E CN 
with {x, y} _C C, and Theorem 90(1) then implies that  ¢ r {x, y} is injective. If 
{x, y} C TN, then Lemma 78(1) implies that  "x U "y is a co-clique. According 
to the previous case, ¢ I ( 'x  U °y) is injective. Definition 73(2) now implies that  
¢( 'x)  ~ ¢( 'y) .  Hence "¢(x) # "¢(y) and thus ¢(x) ~ ¢(y). 

(2) Assume that  C[U)ND. By Theorem 81(2), U is a co-clique. Then (1) 
implies that  ¢ [ U is injective. This means that  the set of orderings of the 
elements of ¢(V) equals { (¢ ( t l ) , . . . , ¢ ( tn ) )  I ( t l , . . . , t n )  is an ordering of the 
elements of U}. This, together with Theorems 20(2) and 90(2), implies that  
¢(C)[¢(U))M¢(D). 

(3) If U C TN is a co-clique, then there exists C 6 CN with U con  C by 
Theorem 81(2). Theorem 90(1) implies that  ¢(C) 6 CM. Now apply (2). Q 

There is a clear connection between the firing sequences of an EN system 
and the firing sequences of its processes. Theorem 90 implies that  every firing 
sequence of a process N (of an EN system M) is mapped to a firing sequence of M 
by ¢. We will now show that  this also holds the other way around: for every firing 
sequence of M there exists a firing sequence of a process N of M which is mapped 
to it by ¢; moreover, we can guarantee that  this is a "complete" firing sequence 
of N,  i.e., a firing sequence from °N to N ° (note that ,  by Theorem 79, every 
process net has such a complete firing sequence). This resembles the construction 
which we presented as an example at the beginning of this subsection (in Figs. 52 
to  56). 

T h e o r e m  92. Let M = (P, T, F, Cin) be a contact-free EN system, let t l , . . . ,  tn 
be transitions in T,  and let C C P. Then Cin[tl " " ' tn)MC iff there exists a 
process N = (PN, TN, FN, ¢1, ¢2) of M and there exist transitions s l , . . . ,  sn in 
TN such that 
( I )  ¢(s~) = t~ fo r  i < i < n, 
(2) ¢(Y °) = C, and 
(3) °N[S l - - -S , )NN °. 

Proof. (If) This follows from Definition 88(3) and Theorem 90(2). 
(Only-if) The proof is by induction on n. 
For n = 0 we have to show the existence of a process N with °N = N °. If 

Cin = {ql , . . - ,qm},  then such a process N is defined by: PN = {Pl, . . . ,pro},  
TN = 0,  FN = 0,  ~ = 0,  and ¢1 (Pi) = qi for 1 < i < rn. 

Now assume that  C~n[tl... tn)C[t>D and assume (the induction hypothesis) 
that  there exists a process N satisfying requirements (1-3). Let °t = {q l , . . . ,  qk} 
and t" = {q~,... ,q~}. Since C = ¢(N °) and "t C C, there are (unique) places 
Pl , . . . ,Pk  E N ° such that  ¢(pi) = qi for 1 < i < k. Now take an s ~ TN and 
P~,...  ,P~m ¢ PN. We extend N by adding transition s and places p~ , . . .  ,p~,  in 

I ! such a way that  "s = {Pl , . . .  ,Pk}, s* = {p~,...  ,Pro}, ¢(s) = t, and ¢(p~) --- qi 
for 1 < i < m. It is easy to see that  in this way a new process is obtained, and 
that  it satisfies requirements (1-3) for C~n[tl... tnt)D. D 
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It is also straightforward to prove that, for given firing sequence t l . . .  tn, 
the process N is unique (modulo isomorphism, i.e., modulo ~_~, where a is the 
identity on PM and/~ the identity on use(TM)). Since every process has a com- 
plete firing sequence, this implies that every process of M is obtained in this 
way from a firing sequence of M (cf. [BesDev87], Theorem 3.5.3 of [BesFer88], 
and Section 3 of [NieRozThi90]). Note, however, that different firing sequences 
tl . . .  tn can lead to the same process N. The resulting equivalence relation be- 
tween firing sequences is studied in Section 6.2. The uniqueness of N will also 
follow from later results (see the remark after Theorem 122). 

Note that Theorem 92 implies that, for every contact-free EN system M, 
PROC(M) ~ ~ (since ~ is always a firing sequence of M). 

Example 28. Consider the EN system M of Fig. 47 and the process N of M of 
Fig. 57. Examples of firing sequences of M that correspond to process N in the 
way indicated in Theorem 92 are: pefcep and ecpfpe. 

We now prove the converse of Theorem 90(2). 

T h e o r e m  93. Let M be a contact-free EN system. Let C, D • CM and t E TM. 
If C[t)MD, then there exists a process N of M and there exist C ~, D ~ • CN and 
s e TN, such that C'[S)ND', Cg(C') = C, CN(s) = t, and CN(D') = D. 

Proof. There is a firing sequence x such that Cin[X)MC. If we now apply The- 
orem 92 to Cin[Xt)MD, then we obtain a process N of M and a firing sequence 
ys (with y • T~v and s • TN) such that ¢(y) = x, ~b(s) = t, ¢(N °) = D, and 
°N[ys)NN ° (where ¢ = CY). Assume that °N[y)NC'[s)NN° and let D' = N °. 
By Theorem 90, ~)(°N)[~(y))M¢(C') holds, i.e., Cin[X)M¢(C'). Hence ¢(C') = 
C. [] 

Analogously the following converse of Theorem 91(2,3) can be proved. The 
details of the proof of (1) are left to the reader; (2) follows immediately from (1) 
and Theorem 81(2). 

T h e o r e m  94. Let M be a contact-free EN system. Let C, D E CM and let U C_ 
TM. If C[U)MD, then: 
(1) there exists a process N of M and there exist C ~, D ~ e CN and V C TN, 
such that C'[V}ND', ¢N(C') = C, CN(V) = U, and ¢g(D')  = D, 
(2) there exist a process N o f M  and a co-clique V C TN such that ¢N(V) = U. 

It would be natural to say that two EN systems are equivalent if they have 
isomorphic sets of processes (see Definition 87). The next result shows that two 
(reduced) EN systems are equivalent in this sense iff they are isomorphic. Thus, 
as discussed in the next subsection, this equivalence relation does not capture 
equivalent behaviour of EN systems. 

T h e o r e m  95. Let M and M ~ be two contact-free reduced EN systems. Then 
PROC(M) - PROC(M') iff M - M'.  
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T'  F '  C' ~ It is easy to see that  Proof. Let M = ( P , T , F ,  Cin) and M t = (P ' ,  , , inJ" 
if M ----~ M' ,  then PROC(M)  ---~ PROC(M' ) .  Now assume that  PROC(M)  -=~ 
PROC(M' ) .  Then a and/~ are bijections, a : P -* P '  and 1~ : T -+ T' .  It now 
suffices to show that  (1) a(Cin) -- C~n and tha t  (2) for every t E T, a ( ' t )  = °/~(t) 
and a ( t ' )  =/3( t )  °. 

(1) Consider a process N of M (this is possible because PROC(M)  # g )  
and consider a process N '  of M'  tha t  is (a,/~)-isomorphic with N.  Then °N 
corresponds to °N '  and hence oz(¢N(°N)) ---- CN,(°N').  Since CN(°N) = Gin 
and CN, (°N')  = C~,, this means that  a(Cin) = C~n. 

(2) Since M is reduced, there exist C, D e CM with C[t)MD. Then,  by 
Theorem 93, there exist a process N of M and an s E TN such that  Cg(s) = t. 
Let N ~ be a process of M t that  is (~,/~)-isomorphic with N and assume that  
8 t e TN, corresponds to s. Then CN' (St) = /~(t). Fhrthermore, "s corresponds 
to *(s') and s" to (d)  °, and hence c~(¢N(°S)) = CN,(°(St)) and OZ(~)N(8°)) = 
CN, ( ( s ' ) ' ) .  N o w  C N ( ' S )  = "¢N(s) = "t, CN, ( ' ( s ' ) )  = (s') = "•(t),  C N ( s ' )  = 
Cg(s)"  = t ' ,  and CN,((s ' ) ' )  = CN,(S') ° = /~(t)', and hence a( ' t )  = "t3(t) and 

= o 

5.4 P r u n e d  Contrac ted  Processes  

We can interpret the set PROC(M)  of processes of an EN system M as the be- 
haviour of M: it is the set of all concurrent runs of M. However, by Theorem 95, 
this definition of the behaviour of an EN system is too strong, since the system 
M is uniquely determined by PROC(M) ,  modulo isomorphism, which means 
that  the behaviour of the EN system would be identified with its structure! In 
this way it would be impossible to transform systems while preserving their be- 
haviour. The intuitive reason why Theorem 95 holds, is that  in a process both  
the events and the conditions are recorded: in that  way we are able to read the 
flow relation of the system from the flow relation of its processes and their la- 
bels (see Definition 88(4,5)). However, since we are more interested in the events 
than in the conditions of the system when defining behaviour (see Section 4.1), 
we will, in this subsection, remove the conditions from every process N.  In this 
way the set TN of recorded events remains, together with their causal order (the 
partial order F + ,  restricted to TN). This can be considered as a "labelled par- 
tially ordered set", with labels in TM (or, more precisely, in use(TM)).  Then we 
will define the behaviour of M as the set of all labelled partially ordered sets 
obtained in this way. With this definition of the behaviour of M, the system M is 
no longer uniquely determined, i.e., Theorem 95 no longer holds. Note that  such 
partially ordered sets of occurrences of events are similar to firing sequences, 
which are linearly ordered sets of occurrences of events. 

Modulo isomorphism, labelled partially ordered sets (with labels in an al- 
phabet  ~2) are also called partially ordered multisets (with elements in ~ )  or 
pom-sets, see, e.g., [Pra86]. Here, we model labelled partially ordered sets by 
node-labelled acyclic graphs, which are easier to compare to processes. There  is 
a clear connection between partial orders and acyclic graphs. A partially ordered 
set (A, p) with p c A x A is a (special kind of) acyclic directed graph. The other 
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way around it is clear that for every acyclic directed graph (V,F), (V, F +) is 
a partially ordered set (cf. Lemma 74). We will say that the graph (V, F) rep- 
resents the partially ordered set (V, F+). In general a partially ordered set can 
thus be represented by several acyclic graphs. 

To begin with, we recall several notions concerning node-labelled directed 
graphs which, for the sake of simplicity, we will simply call labelled graphs. Note 
that we have so far only considered (initialized) edge-labeUed graphs (in partic- 
ular configuration graphs). We have also considered labelled nets (in particular 
processes) in the previous section. When we view a net as a graph, labelled 
nets can be viewed as node-labelled graphs. The following definitions axe thus 
analogous to those for labelled nets. 

Defini t ion 96. Let `U be an alphabet. A (,U-)labelled graph is a quadruple G = 
(V, F, E, ~), where V is a finite set of nodes, F C V x V is a set of edges, and ¢ 
is a function from V to Z (the labelling of G). G is acyclic ff F + is irreflexive. 

The components of G are also indicated by Pc, FG, EG, and CG. 
To compare graphs labelled over distinct alphabets we need the following 

notion of isomorphism. 

Def in i t ion  97. Let ~ and Z ~ be two alphabets and let G = (V, F, E, ¢) and 
G * = (V', U,  E' ,  ¢') be two `U-, respectively `u'-labelled graphs. Then G and G' 
are isomorphic, denoted by G = G ~, if there exist bijections fl : E -~ E ~ and 

: V -+ V', such that 
(1) for all v, w • V, (v, w) • F iff ((i(v), 5(w)) • F ' ,  and 
(2) for all v • V, ¢'(5(v)) = ~(¢(v)). 

For isomorphic G and G' as above, we also say that G and G' are ~- 
isomorphic, denoted by G --f~ G'. 

The above notion of isomorphism between labelled graphs can naturally be 
extended to isomorphism between sets of labelled graphs in the following way. 

Definit ion 98. Let :P and P '  be two sets of E-, respectively E~-labelled graphs. 
Then • and :P' are isomorphic, denoted by :P = :P~, if there exists a bijection 

: 27 -~ `U', such that 
(1) for every G • P there exists G t • P~ such that G - ~  G', and 
(2) for every G' • 7 ~' there exists G • :P such that G - ~  GL 

For isomorphic 7 ) and P~ as above, we also say that 7 ) and 7 )~ are ~- 
isomorphic, denoted by :P ___~ 7 ~. Note that the isoraorphisms from (1) and 
(2) always use the same, fixed a priori, bijection ~ between the alphabets (cf. 
Definition 87). 

A labelled graph G = (V, F, Z, ¢) for which (V, F) is a partially ordered set is 
also called a labelled partially ordered set or, shorter, a labelled partial order. To 
every acyclic labelled graph such a labelled partial order is naturally associated. 

Defini t ion 99. Let G = (V, F, E, ¢) be an acyclic labelled graph. The transitive 
closure of G, denoted by tra(G), is the labelled graph (V, F +, ~7, ¢). We also say 
that G represents tra(G). 
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Note that tra(G) is a labelled partial order. In general a labelled partial order 
is represented by several labelled graphs. One of these graphs is the "smallest" 
(and is also known as the "Hasse diagram" of the partial order). 

Defini t ion 100. Let G = (V, F, S,  ¢) be an acyclic labelled graph. The pruned 
version of G, denoted by pru(G), is the labelled graph (V,/,1 E, ¢) wi th / , t  = 
{(v,w) E/ '1-~ 3u E V:  (v,u) • F + and (u,w) • F+}. 

This means that pru(G) is the graph that is obtained from G by removing 
all edges (v, w) such that there exists a path of length _> 2 from v to w in G, 
i.e., by removing the so-called transitive edges. 

Example 29. Figure 59 shows a graph with its transitive closure and its pruned 
version. The labels have been omitted. 

G tra(G) pru(G) 

Fig. 59. A graph with its transitive closure and its pruned version. 

We now recall the well-known fact that tra(G) is represented by pru(G), 
and that pru(G) is uniquely determined by tra(G). 

T h e o r e m  101. For every acyclic labelled graph G, 
tra(pru(G)) -- tra(G) and pru(tra(G)) = pru(G). 

Proof. Let G = (V, F, E, 0). We will prove the inclusion tra(G) C tra(pru(G));  
the other inclusions are immediate. We have to prove that, for all v,w E V, if 
there is a path from v to w, then there is a path from v to w that uses only non- 
transitive edges. This is done by induction on the length n(v, w) of the longest 
path from v to w. If n(v,w) = 1, then the longest path from v to w is the edge 
(v, w). Hence that edge is not transitive. Now take n(v, w) _ 2 and assume that 
the claim holds for all lengths < n(v, w). Consider the longest path from v to w 
and take a node u on that path that is distinct from v and w. Then the subpath 
from v to u is also the longest path from v to u, and hence n(v,u) < n(v,w). 
This implies that there is a path from v to u with non-transitive edges only. 
Likewise there is a path from u to w with non-transitive edges only. D 

This implies that two labelled partial orders are isomorphic iff their pruned 
versions are isomorphic. 
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Theorem 102. Let 27 and 27~ be alphabets. Let G and G ~ be two acyclic 27-, 
respectively E~-labelled graphs and let/~ : E --+ E' be a bijection. 
Then tra(G) =a tra(G')  iff pru(G) --~ pru(G') .  

Proof. It is clear that, for labelled graphs G1 and G2, if G1 - a  G2, then 
tra(Gx) ~a  tra(G2) and pru(G1) - a  pru(G2). Hence, if t ra(G) --a tra(G') ,  
then pru( t ra(G))  -=~ pru( t ra(G' ) )  and thus pru(G) =a pru(G') .  Likewise in 
the other direction. [] 

We now return to the processes of an EN system M. As observed before, we 
are interested in the labelled partial order (TN, F + N (TN x TN), TM, ~ N )  for a 
process N of M. There is an easy way to construct a labelled graph that repre- 
sents this labelled partial order: we remove the places from N and replace them 
by edges. When we then remove the transitive edges from this graph we obtain 
a unique representation of the labelled partial order. The precise formulation of 
this is given in the following definition, cf. Fig. 16. 

Definition 103. Let N = (P, T, F, ¢1, ¢2) be an acyclic (,U1,272)-labelled net. 
(1) The contracted version of N,  denoted by ctr(N),  is the labelled graph 

(T,1", Z2, ¢2) such that, for all s, t  E T, (s,t) e 1" iffs ° N*t ¢ ~. 
(2) The pruned contracted version of N is the labelled graph pru(c t r (N)) .  

It is easy to see that c t r (N)  indeed represents the labelled partial order 
(TN,F+N A (TN x TN),272,~N). Then, by Theorem 101, the same holds for 
pru(c t r (N)) .  

L e m m a  104. Let N = ( P, T, F, Cx, ¢2) be an acyclic (2:71, S2)-labelled net and 
let pru(c t r (N))  = (T, F, $2, ¢2)- Then, 
for all s, t ~ T, (s, t) e F + iff (s, t) ~ F +. 

If N is a process of an EN system M, then c t r (N)  is called a contracted 
process of M and pru(c t r (N))  a pruned contracted process of  M. For a contact- 
free EN system M we denote by LPO(M) the set of all pruned contracted 
processes of M (where LPO stands for Labelled Partial Orders). Hence 

LPO(M) = {pru(c t r (N))  I N  e PROC(M)}. 

Example30. (1) Let M be the EN system of Fig. 47 (the producer/consumer 
system) and let N be the process of M in Fig. 57. Then err(N) = pru(c t r (N))  
is given in Fig. 60. A larger pruned contracted process of M is drawn in Fig. 61. 

(2) Let M be the EN system of Fig. 2 (the mutual exclusion system) and let 
N be the process of M in Fig. 58. Then c t r (N)  and p ru (e t r (N) )  are given in 
Fig. 62. 

We can now call two EN systems equivalent if their sets of pruned contracted 
processes are isomorphic (see Definition 98). The behaviour of an EN system M 
is thus defined as LPO(M), modulo isomorphism. 
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Fig. 60. The (pruned) contracted version of the process of Fig. 57. 

Fig. 61. 
Fig. 47. 
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Another pruned contracted process of the producer/consumer system of 
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ctr(N) pru(ctr(N))  

Fig. 62. The contracted process and the pruned contracted process corresponding to 
the process of Fig. 58. 

Defini t ion 105. Two contact-free EN systems M and M'  are lpo-equivalent if 
L P O ( / )  _= LPO(M'). 

An intuitive way to view a concurrent system, is to see it as a system with its 
actions not linearly ordered but partially ordered, where a linear order can be 
interpreted as an ordering in time, whereas a partial order can be interpreted as 
showing the causal relationships between the actions. This means that the above 
definition of behaviour is intuitively attractive and perhaps the most natural one. 

We now show (as mentioned already in the introduction of this subsection) 
that, in contrast with ordinary processes (see Theorem 95), the set of pruned 
contracted processes does not uniquely determine an EN system (modulo iso- 
morphism). 

Theo rem 106. There exist reduced contact-free E N  systems M and M '  such 
that LPO(M)  =-- LPO(M' )  but M -- M '  does not hold. 

Proo]. The EN systems M and M' of Figs. 30 and 32 have isomorphic sets of 
contracted processes, and those contracted processes are already pruned, i.e., 
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contain no transitive edges. Hence LPO(M) - LPO(M'). Note that in this case 
the contracted processes correspond to FS(M) = FS(M') = {A, a, c, e, ab, cd, 
el, abd}, see Example 15. 

Another example of two lpo-equivalent EN systems M and M' that are not 
isomorphic is depicted in Fig. 63. The sets of contracted processes of M and M' 
are not isomorphic, but the sets of pruned contracted processes are. D 

a b c 

M =  

M ! 

Fig. 63. Two non-isomorphic lpo-equivalent EN systems. 

In the remainder of this subsection we will prove that the function p rue t r  : 
PROC(M) --+ LPO(M), defined by pruc t r (N)  -- pru(ctr(N)) ,  is a bijection 
(modulo isomorphism); i.e., though certain information is lost by the function 
pructr ,  it does not identify distinct processes. Hence LPO(M) is still a "faithful" 
modelling of the behaviour of M. This is formulated as follows. 

T h e o r e m  107. Let M be a contact-free EN system and let N, N r be two processes 
of M.  Let a be the identity on PM and ~3 the identity on use(TM). Then 
N ~ g '  iff pru(etr (N))  _~ pru(etr(N')) .  

This implies that if M and M' are lpo-equivalent EN systems, then there 
is a bijection f : PROC(M) --+ PROC(M') between their processes such that 
pru(etr(N))  _-_~ pru(e t r ( f (N)) )  for every process N of M. 

We now turn to the proof of Theorem 107. The Only-if direction of the proof 
is clear (both etr  and pru  preserve isomorphism). A simple proof of the impli- 
cation in the other direction will be given after Theorem 115. The proof that 
follows is, however, more transparent, because it shows how to reconstruct the 
process N directly from the pruned contracted process pru(etr(N)) ,  i.e., from 
(TN, F + N (TN x TN),TM, ¢2N). This technique will be useful in Theorem 149. 
To explain the construction we need two lemmas. 

L e m m a  108. Let N = ( P, T, F, ~1, ~ ) be a process o] a contact-free E N  system 
M and let ql, q2 E P.  
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(1) For all s l ,s2 E T,  
i] sl E °ql, s2 E (12", (81,82) • F +, and ¢(ql) = ¢(q2), then (ql,q2) • F*. 
(2} If*q1 = 0 and ¢(ql) = ¢(q2), then (ql,q2) • F*. 

Proof. (1) If qx # q2, then, by Theorem 91(1), qx co q2 does not hold. Hence 
ql li q2. Then (ql,q2) • F +, because (q2,ql) • F + implies that (s~,s l)  E F* 
and hence that N is cyclic. The proof of (2) is analogous. [] 

In the next lemma we show how the position of the places of N can be 
determined from the labelled partial order ( TN , F+iv n ( TN × TN ) , TM , ¢2N)- 

L e m m a  109. Let N = ( P, T, F, ¢1, ¢2) be a process of a contact-free E N  system 
M and let p E PM. 

(1) For all sl,  s2 • T:  
3q • P with sx E °q, s2 • q°, and ¢(q) = p  

iff 
¢(sl) • *p, ¢(s2) • p°, (s l , s2)  • F +, and 
-,3s • T : ¢(s) • p° and (sl, s) • F + and (s, s2) • F +. 

(2) For all s2 • T:  
3q • P with "q = ¢g, s2 • q°, and ¢(q) = p 

ill 
p • (Cin)M, ¢(s2) • p°, and 
-~3s e T : ¢(s) • p° and (s, s2) • F +. 

Proof. First note that the right-hand side of the equivalence in (1) means that 
s~ is minimal (with respect to the partial order F +) in the set of all s • T with 
¢(s) • p" and (sl, s) • F + (and, in fact, it is the minimum of that set). Similarly 
for (2), s2 is minimal in the set of all s • T with O(s) • p ' .  

(1) (Only-if) Obviously (s l , s2)  • F + and, by Definition 88(5), ¢(sl)  • "p 
and ¢(s2) • p°. Now assume that ¢(s)  • p ' ,  ( s l , s )  • F +, and (s, s2) • F +. 
By Definition 88(5) there exists q' • P with s • (q')° and ¢(q') = p. Hence, 
by Lemma 108(1), (q, q') • F*. Then, since q" = {s2}, also (s2, s) • F*. This 
contradicts the fact that N is acyclic. 

(If) Since ¢(sl)  • °p, there exists ql • P with sl • °ql and ¢(qi) = p. 
Likewise there exists q2 with s2 • q2 ° and ¢(q2) = p. We prove that ql = q2 
(which is then the required q). By Lemma 108(1), (ql,q2) • F*. Suppose that 
ql ~ q2. Then there is a transition s such that ql F s F + qz. Clearly ¢(s) • p°, 
(sl, s) • F +, and (s, s2) • F +, contradicting the assumption. 

(2) can be proved analogously, using Lemma 108(2) and Definition 88(3). [] 

We now prove the If-part of Theorem 107. Let M = (PM, use(TM), FM, Gin). 
To show that the function p r u c t r  : PROC(M) ~ LPO(M) is a bijection modulo 
isomorphism, it suffices to define a function p roc  : LPO(M) -+ PROC(M) such 
that 

(1) for all G, G' • LPO(M),  if G =~ G', then proc(G) =2 proc(G') ,  and 
(2) for all N • PROC(M),  p roc (p ruc t r (N) )  - ~  g .  
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It is straightforward to define the function proc, on the basis of Lemma 109, as 
follows. Let G = (T, F~ use(TM), ¢) be an element of LPO(M). Then proc(G) 
is the (PM,USe(TM))-labelled net (P ,T ,F ,  ¢1,¢), with P, ¢1, and F defined 
as follows. P consists of newly created places of two types: all places qp with 
p E (Cin)M, and all places qs,p with s E T and p E ¢(s) °. Their labels are 
defined by ¢1 (%) = ¢1 (qs,p) -- P. Intuitively, the places qp form the initial slice 
of proc(G), and the places qs,p form the post-set of the transition s in proc(G). 
With this in mind we define F A  (T x P) = ((s, qs,p) [ s E T ,p  e ¢(s)*}. The 
remaining part of F is defined on the basis of Lemma 109 (and Lemma 104): 
F M (P × T) consists of all pairs (q~l ,p, s~) such that 

¢(s2) E p°, (sl, s2) e F +, and 
-~3s E T : ~b(s) E p* and (sl, s) E F + and (s, s2) • F +, 

and all pairs (%, s2) such that 
¢(s2) • p" and 
-~3s • T : ¢(s) E p" and (s, s2) • F +. 

This ends the definition of the function proc. It should be clear that it satis- 
fies property (1) above. To show property (2), let N = (P, T, F, ¢1, ¢2). Then 
proc(pructr (N))  and N have the same transitions, with the same labels. Note 
now that, in N, the sets °N and all s °, s • T, form a partition of P. Thus, by De- 
finition 88, there is an obvious bijection between the places of proc(pruct r (N))  
and N: qp corresponds to the unique place in °N with label p, and qs,p cor- 
responds to the unique place in s ° with label p. It is straightforward to show 
from Lemmas 109 and 104 that this correspondence defines an isomorphism be- 
tween proc(pructr (N))  and N. Note that this also shows that proc(G) is in 
PROC(M), for every G • LPO(M). 

This ends the proof of Theorem 107. 

6 C o m p a r i s o n  o f  P a r t i a l  a n d  L i n e a r  O r d e r  

In this section we compare the partial order behaviour LPO(M) of an EN 
system M with its linear order behaviour FS(M). In the first subsection we 
show that lpo-equivalence and firing sequence equivalence are the same (cf. 
[Pom88, PomRozSim92]). The basic concepts used to prove this are the inde- 
pendency relation between the transitions of an EN system, and the dependency 
graph of a firing sequence. These concepts are at the basis of the so-called the- 
ory of traces (see, e.g., [AalRoz88] and [DieRoz95], in particular [Maz95] and 
[HooRoz95]). In the second subsection we show that LPO(M) can be viewed as 
the set of equivalence classes of a natural equivalence relation on FS(M) that 
models concurrency. This equivalence relation, called lpo-equivalence of firing 
sequences, is proved to be the same as the trace equivalence of firing sequences 
based on the independency relation (see [Maz95]). 

This section is largely based on Section 5 of [AalRoz88]. 
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6.1 LPO-Equivalence and Firing Sequence Equivalence 

To recapitulate, we now have in total three definitions of the behaviour of a 
contact-free EN system M: SCG(M) by configuration equivalence, FS(M) by fir- 
ing sequence equivalence, and LPO(M) by Ipo-equivalence, where firing sequence 
equivalence is weaker than configuration equivalence (Corollary 34). Though fir- 
ing sequence equivalence describes the sequential (linearly ordered) behaviour of 
M and lpo-equivalence the non-sequential (partially ordered) behaviour of M, 
we will prove in this subsection the rather surprising result that two contact-free 
EN systems are lpo-equivalent iff they are firing sequence equivalent. In one di- 
rection this result is as expected: if two EN systems are lpo-equivalent, then they 
are firing sequence equivalent. This intuitively holds because we can obtain the 
linear orders in FS(M) from the acyclic graphs in LPO(M) by ordering these 
graphs topologically. Topological order of acyclic graphs, as defined next, gives 
a fundamental connection between partial orders and linear orders. 

Defini t ion 110. A topological orderofan acyclic labelled graph G = (V, F, S ,  ¢) 
is a sequence ul .. "un E V*, with ui E V for 1 < i < n, and 
(1) all ui are distinct, 
(2) V = {u l , . . . ,  un}, and 
(3) for all 1 < i , j  <_ n, if (ui ,uj)  • F,  then i < j .  
A word of G is a word ¢ ( u l ) . ' . ¢ ( u n )  • ,U*, where Ul " " u n  is a topological 
order of G. 

For an acyclic labelled graph G = (V, /', S ,  ¢), the set of all topological 
orders of G is denoted by top(G). It is well known that every acyclic graph can 
be ordered topologically, i.e., top(G) ~ ~. Furthermore, words(G) denotes the 
set of all words of G, i.e., words(G) = {¢(Ul). . .  ¢(un) l u x " ' u n  e top(G)}. 

Two graphs G and G ~ that represent the same partial order have the same 
topological orders (and hence the same words). 

Lemma 111. Let G and G' be acyclic labelled graphs. 
l / t r a (G)  = tra(G') ,  then top(G) = top(G')  and words(G) = words(G'). 

Example 31. Consider the acyclic labelled graph G shown in Fig. 64, with VG = 
{ v l , . . . , v 6 }  and ~G = {p , f , e , c } .  Then, e.g., v3vlv4v~v6v5 and vlv2v3v4v5v6 
are topological orders of G, and pefcep and ecpfpe are the corresponding words 
of G. Sequences that are not topological orders of G are, e.g., vav4v6v4vl and 
V3V4VlV2V6V5. 

We want to show that for every contact-free EN system M, 

FS(M) = U{words (G)  I G e LPO(M)}, 

i.e., the firing sequences of M are the words of the pruned contracted processes 
of M. We know from Theorem 92 that there is a relationship between the firing 
sequences of M and the "complete" firing sequences of the processes of M. 
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P 

Fig. 64. An acyclic labelled graph. 

More precisely, FS(M) = {¢N(Sl) '"¢N(Sn) I ° N [ S l " ' s ~ ) N  ° for a process 
N of M}. Now it only remains to show that these complete firing sequences 
Sl . . . s n  of N are precisely the topological orders of the partially ordered set 
(TN, F+N N (TN x TN)). 

Theo rem 112. Let N = ( P , T , F )  be a process net and let t l , --- , tn E T. Then 
°g[t l  . . . t . ) Y  ° iZ 
(1) all ti are distinct, 
(2) T = { t l , . . . , t , } ,  and 
(3) for all 1 < i, j < n, if  (ti, t j)  e F +, then i < j .  

This theorem is an immediate consequence (using Theorem 71(2)) of the 
following lemma, which is a simple extension of Theorem 79. 

Lemma113 .  Let N = ( P , T , F , ° N )  be a process net, C C P,  a n d t x , . . . , t n  E T. 
Then °N[tl . " tn)C iff 
(1) all ti are distinct, 
(2) - ~ C N T  = { t x , . . . , t , } ,  
(3) for all 1 < i , j  < n, if ( t i , t j )  E F +, then i < j ,  and 
(4) C is a slice. 

Pro@ The proof is by induction on n, and is analogous to the proof of Theo- 
rem 79. The details are left to the reader. Note that if conditions (1-4) hold, then 
tn is a maximal element of - 'C  A T (with respect to F +) and hence tn* C_ C. D 

Theo rem 114. Let M be a contact-free E N  system. Then 
FS(M) = U{words(G) I G e LPO(M)} .  

Proof. By Theorem92, FS(M) = { ¢ N ( S l ) " ' ¢ N ( s n )  t 3N  E PROC(M) : 
° N [ s l ' "  sn)N°} .  For a process N = (P, T, F, ¢1, ¢2) of M, Theorem 112 now 
implies that ° N [ s l . . .  sn )N ° iff Sl.-- sn is a topological order of ctr(N), i.e., iff 
s l - . -  sn is a topological order of pru(ctr(N)) ,  see Theorem 101 and Lemma 111. 
Note that the labelling ¢ of pru(ctr(N))  is the restriction of CN to TN. This im- 
plies that FS(M) = {Ca(u1)'-" Ce(un) I U l . . . u n  is a topological order of G E 
LPO(M)} = (J{words(G) I G e LPO(M)}. D 
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Example 32. Let M be the EN system of Fig. 47 and N the process of M in 
Fig. 57, with pru(c t r (N))  shown in Fig. 60. The words of p ru(c t r (N) )  that 
are given in Example 31 (see Fig. 64) are the firing sequences of M given in 
Example 28. 

The next theorem now follows from Theorem 114 and the following simple 
fact: if G and G' are labelled graphs such that G -=~ G', and 5 is the correspond- 
ing bijection between VG and VG, (see Definition 97), then: 
(1) ul""Un e top(G) iff 6 (u l ) " "  6(Un) E top(G') ,  and 
(2) words (a ' )  =/3(words(G)).  

Theorem 115. Let M and M' be two contact-free EN systems and let ~ be a 
bijection from use(TM) to use(TM,). 
I/LeO(M) LPO(M') then ~(FS(M)) = FS(M'). 

Similar arguments can be used to give an alternative proof of Theorem 107, as 
follows. Let p ru(e t r (N))  - a  p ru(e t r (N ' ) )  where/~ is the identity on use(TM). 
Then, by the simple fact above, words(pru(e t r (N)) )  = words(pru(c t r (N ' ) ) ) .  
By Theorem 112, words(pru(c t r (N)) )  = {¢N(s l ) ' ' '  ¢/v(sn) [ °N[sl"'" sn)N °} 
and similarly for N'. From this and the uniqueness (modulo - ~ )  of the process 
in the statement of Theorem 92, it follows that N --~ N'. Note that, conse- 
quently, the function p roc  : LeO(M) -+ PROC(M) mentioned in the proof of 
Theorem 107 can simply be defined as follows: for G E LeO(M),  let t l - - - tn  
be any element of words(G); then proc(G) is the process N corresponding to 
tl . . .  tn as constructed in the proof of Theorem 92. 

We are now going to prove the, more surprising, converse of Theorem 115 
(see Theorem 125). More specifically, we will show that we can "break" the linear 
orders in FS(M) in such a way that partial orders in LeO(M) axe obtained. To 
this purpose we use the "independency relation" between the transitions of an 
EN system M, defined as follows. 

Defini t ion 116. Let 27 be an alphabet. A relation I C S x S is an independency 
relation (over S)  if I is irreflexive and symmetric. 

Defini t ion 117. Let M = (P,T, F, C~n) be an EN system. 
(1) The independency relation of M is the independency relation ind(M) 

over use(T) defined by 
ind(M) = {(s,t) E T x T I s ¢ t and 3C E CM : {s,t} con C}. 

(2) The dependency relation of M is the relation dep(M)  defined by 
dep(M)  = (use(T) x use(T)) - ind(M). 

Example 33. 
(e,p), (p, e), 
(e, e), (c, e)} 

Consider the EN system M of Fig. 47. Then ind(M) = {(p,e), 
(c,p), (f,c), (c,f)} and dep(M)  = {(p,f),  (f,p), (f,e), (e, f) ,  

U{(x,x) I x E {p, f , e, c} }. See also Examples 8 and 9, and Fig. 15. 

Usually (see [Maz95]), the independency relation of M is defined to be 
{(s,t) E TM XTM I S ~ t and disj({s,t})}. The above, stronger definition serves 
the same purposes (cf. [Hoo94]), and moreover it satisfies the next lemma. 
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We will show that,  using ind(M) ,  we can construct for every firing sequence 
tl --- tn of M a pruned contracted process G of M such that  tl . . .  tn is a word 
of G (without knowing the system M). First we show that  we can determine 
ind(M)  from FS(M) (without knowing M). 

L e m m a l l S .  Let M =  (P ,T ,F ,  Cin) be an E N  system. Then 
ind(M)  = {(s,t) e T x T i 3 x  • T*:  xst • FS (M)  and xts  • FS (M)} .  

Proof. If (s, t) • ind(M) ,  then there is a C • CM such that  {s, t} con  C. 
Hence, by Lemma 17, st con C and ts con C. Let x • T* with Cin[x)C. Then 
xs t  and xts  are firing sequences of M. The other way around, assume that  
xst,  x t s  • FS(M). Let C • CM with Ci,~[x)C. Then st con C and ts con  C. 
Lemma 19 then implies that  {s, t} con  C, and hence (s, t) • ind(M) .  [] 

We now "break" the linear order of every firing sequence of M,  i.e., for every 
firing sequence we construct an acyclic graph, and then show that  this graph is 
an element of LPO(M).  In the next definition we use a predetermined countable 
set of nodes {vl, v2, v3, . . .}.  This set is used to canonically construct graphs. For 
later usage we present the definition for an arbitrary independency relation, see 
[HooRoz95]. 

Def in i t ion  119. Let Z be an alphabet and I an independency relation over ~7. 
Let x = tl . . .  t,~ • Z*, with n > 0 and t l , . . . ,  tn • ~ .  

(1) The dependency graph o f x  (over I) ,  denoted by dep l (x) ,  is the labelled 
graph (V, F, Z ,  ¢), where V = { v l , . . . ,  vn}, ¢(vi) = ti for all 1 < i < n, and, for 
all 1 < i , j  < n, (vi,vj) E F iff i < j and ( t i , t j )  4 1 .  

(2) The pruned dependency graph of x (over I)  is p ru (dep l (x ) ) .  

Note that  vl . . .  vn is a topological order of dep1(x ), and hence x is a word 
of depl(x) .  

For an EN system M we write dePM(X ) instead of dePind(M ) (X). 

Example34. Take E = {p, f , e ,c}  and I = ind(M)  as in Example 33. Then 
dep1(ecpfpe ) is given in Fig. 65 and pru(depl (ecp fpe) )  in Fig. 66. Since the 
graphs in Figs. 64 and 66 are the same, pru(dep1(ecpfpe))  can thus also be 
found in Fig. 64. 

We now want to show that ,  for every contact-free EN system M,  LPO(M) - 
{pru(dePM(X)) I x • FS(M)}. First we show a simple connection between 
ind(M)  and the processes of an EN system M. 

L e m m a  120. Let N = ( P, T, F, ¢1, ¢2) be a process of a contact-free E N  system 
M and let s, t be distinct elements of T .  Then: 
(1)  i f  8 CO N t,  then (¢(s), ¢(t)) • i nd (M) ,  
(2) if s ° M °t ~ o ,  then (¢(s), ¢(t)) • dep(M) .  

Proof. (1) This follows directly from Theorem 91(3). 
(2) If s ° M °t ¢ O, then also ¢(s) ° ~ *¢(t) # ~.  [] 
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Fig. 65. A dependency graph. 

Fig. 66. A pruned dependency graph. 

In the next theorem we show the connection between a complete firing se- 
quence of a process N of M and the dependency graph of the corresponding 
firing sequence of M. To begin with, we prove the following lemma. 

Lemma 121. Let N = (P, T, F, ¢1, ¢2) be a process of a contact-free EN system 
M.  Let °Y[s l  . . .  sn )N ° with T : { S l , . . . ,  Sn}, and let G = dePM(¢(Sl) . . .  ¢(Sn)) 
Then for an I < i , j  < n: • f + iff (v ,vj) • r + .  

Proof. (Only-if) If s i*N *sj # Z, then, by Lemma 120(2), (¢(si) ,¢(sj))  E 
dep(M) and, by Theorem 112(3), i < j .  Hence (vi ,vj)  E T'G according to Defi- 
nition 119. 

(If) If (vi ,vj)  • -ra, then i < j and (¢(s i ) ,¢(s j ) )  • dep(M).  Then, by 
Lemma 120(1), si CON Sj does not hold. Hence (si, sj) • F + or (sj, si) • F +. 
Theorem 112(3) then implies that (si, sj) • F +. [:] 

T h e o r e m  122. Let N = (P, T, F, ¢1, ¢2) be a process of a contact-free E N  sys- 
tem M and let °N[Sl .-. sn)N °. Let/5 be the identity on use(TM). 
Then pru(e t r (N) )  --~ pru(dePM(¢(s  1)--- ¢(Sn))). 

Proof. Lemma 121 implies t ra (c t r (N))  --~ tra(dePM(¢(Sl)---¢(Sn)))  via the 
bijection 5 with 5(si) = v~ between the nodes of these labelled graphs. Now, by 
Theorem 102, the result holds. [2 

Thus, for every firing sequence tl ..- tn of the EN system M, its dependency 
graph d e P M ( t l . . ,  tn) represents the same labelled partial order as (the con- 
tracted version of) a process N of M corresponding to tl . . .  tn, as expressed 
in Theorem 92. Together with Theorem 107 this proves the uniqueness (modulo 
--~) of this process N, cf. the remark following Theorem 92. 
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Example 35. Let M be the EN system of Fig. 47 and N the process of M in 
Fig. 57. Then there is a firing sequence °N[s l . . .  sn)N ° with ¢(sl) .-o ¢(sn) -- 
ecp~pe (see Example 28). The graphs p ru (c t r (N) )  and pru(dePM(ecpfpe)) are 
drawn in Figs. 60 and 64, respectively. 

T h e o r e m  123. Let M be a contact-free EN system, and let fl be the identity on 
use(TM). Then LPO(M) =-~ {pru(dePM(X)) Ix  e FS(M)}. 

Proo]. Directly by Theorems 92 and 122. D 

We need one more lemma to show that firing sequence equivalence implies 
lpo-equivalence. 

L e m m a 1 2 4 .  Let M and M' be EN systems and let fl : use(TM) --+ use(TM,) 
be a bijection. I f  Z(FS(M)) = FS(M') then 
{pru(dePM(X)) Ix  • FS(M)} - ~  {pru(dePM,(X)) Ix  • FS(M')}. 

Proof. If/~(FS(M)) = FS(M') then, by Lemma 118, ind(M')  = {(fl(s),fl(t)) I 
(s, t) • ind(M)}. Then, for x E FS(M), pru(dePM(X)) ----~ pru(dePM,(fl(x)) ). 

[] 

We are now ready to prove the main result of this section. 

T h e o r e m  125. Let M and M' be two contact-free EN systems and let ~ be a 
bijection from use(TM) to use(TM,). 
I] fl(FS(M)) = FS(M') then LPO(M) =_~ LPO(M'). 

Proof. By Theorem 123 and Lemma 124. [] 

T h e o r e m  126. Two contact-free EN systems are Ipo-equivalent iff they are fir- 
ing sequence equivalent. 

Proof. By Theorems 115 and 125. [] 

The following two corollaries of this characterization are interesting. 

Corol la ry  127. If  two contact-free EN systems are configuration equivalent, 
then they are lpo-equivalent. 

Proof. Directly by Corollary 34 and Theorem 126. [] 

Corol lary  128. There is an algorithm that, for two arbitrary contact-free EN 
systems M and M r, decides whether or not M and M r are lpo-equivalent. 

Proof. According to Theorem 126 we have to check whether there exists a bijec- 
tion fl from use(TM) to use(TM,) such that fl(FS(M)) -- FS(M'). We first 
construct SCG(M) and SCG(M'). From these we can obtain use(TM) and 
use(TM,). Now we test all bijections ft. The languages FS(M), fl(FS(M)), and 
FS(M') are regular, and finite automata can easily be constructed for them (see 
Theorem 12). Since there is an algorithm to decide whether two finite automata 
are equivalent (see, e.g., [HopUl179]), we can now apply it to the automata for 
fl(FS(M)) and FS(M'). [] 
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For an arbitrary (not necessarily contact-free) EN system M, let PD(M) = 
{pru(depM(x)) [ x E FS(M)}: the set of pruned dependency graphs of M. 
Then Theorem 123 says that for every contact-free EN system M: LPO(M) -__.a 
PD(M), where fi is the identity on use(TM). Now note that PD(M) is also de- 
fined (and meaningful) for EN systems M that are not contact-free. Lemma 124 
implies that, for arbitrary EN systems M and M ~, if M ,~ M ~ then PD(M) - 
PD(M'). As we have observed already, for an EN system M that is not contact- 
free we consider the processes of a contact-free EN system M ~ that is configu- 
ration equivalent with M. Consequently, in such a case PD(M) - PD(M ~) =- 
LPO(M'); in other words PD(M) is isomorphic with LPO(M~). Hence we can 
view PD(M) as the behaviour of M, and we can thus meaningfully define lpo- 
equivalence for arbitrary EN systems M and M~: M and M ~ are lpo-equivalent 
if PD(M) = PD(M'). The above results can then easily be extended to arbitrary 
EN systems (e.g., Lemma 124 would then be the generalization of Theorem 125). 

6.2 Equivalence of Firing Sequences 

Another way to understand the concurrent behaviour of an EN system is by 
calling two firing sequences of an EN system equivalent if they correspond to 
two distinct sequential observations of the same run of the system. This notion 
of equivalence can be formulated as follows. 

Definition 129. Let M be a contact-free EN system and let x , x  ~ E FS(M). 
Then x and x ~ are lpo-equivalent, denoted by x "~lpo x*, if there exist a process 

N of M and two firing sequences y ,y '  E T~ such that °N[y)N °, CN(Y) = x, 
°N[y ' )N °, and CN(Y') = X'. 

Note that the process N is unique modulo =2 (cf. the remarks following 
Theorems 92 and 122). Note also that, by Theorem 112, x ~lpo x~ iff x, x ~ E 
words(G) for some G E LPO(M). 

Example 36. The two firing sequences pefcep and ecpfpe given in Example 28 are 
lpo-equivalent, i.e., pefcep "~ lpo ecpfpe. 

Due to the relationship between pruned contracted processes and dependency 
graphs of firing sequences discussed in the previous subsection, lpo-equivalence 
can be characterized in terms of dependency graphs as follows (and for non- 
contact-free EN systems we can take this as the definition of lpo-equivalence). 
This characterization is a part of Theorem 3.12 of [NieRozThi90]. 

Theorem 130. Let M be a contact-free EN  system and let x, x s E FS(M).  Then 
x "~lpo x' iff pru(depM(x)) =a pru(depM(x')) ,  where fl is the identity on 
use(TM). 

Proof. (Only-if) If x ~'lpo x', then there exist a process N of M and two firing se- 

quences y, y* of N with °N[y)N °, CN (Y) = x, °N[y~)N °, and CN (Y~) = x J. Hence, 



105 

by Theorem 122, p ru (c t r (N) )  -=2 pru(dePM(¢~v(Y))) and p r u ( c t r ( N ) )  ---2 
pru(  dePM( ¢N(y')  ) ). 

(If) By Theorem 123 there exists a process N of M such that  p r u ( e t r ( N ) )  - ~  
pru(dePM(X)).  Since v l . .  "vn is a topological order of pru(dePM(X)) (where 
n = ]xl) , there is a topological order y of p r u ( c t r ( N ) )  with the same la- 
bels, i.e., CJv(y) = x. Then, by Theorem 112, °N[y )N  °. Since p r u ( c t r ( N ) )  -;~ 
pru(dePM(X')) ,  analogously there exists y' with CN(y') = x' and °N[y ' )N  °. D 

We will now show a very simple characterization of isomorphism of depen- 
dency graphs, in terms of the independency relation ind (M)  induced by the EN 
system M. This characterization can be proved very generally, without reference 
to EN systems; it is part of the theory of traces, see [HooRoz95]. 

For a given independency relation we define an associated equivalence relation 
on words as follows. 

De f in i t i on  131. Let I be an independency relation over Z.  
The relation --I C ~* × ~'* is defined as follows: for x , y  • Z*, 
x - x  Y iff there exist a, b • S and xl ,  x2 • S*, such that  
x = xlabx2, y = xlbax2, and (a,b) • I. 
The relation ~ t  C_ S* x E* is then defined as the smallest equivalence relation 
that  contains --'~. If x ~ I  Y then x and y are trace equivalent (over I).  

Thus, two words are trace equivalent if one can be obtained from the other 
by interchanging independent symbols, repeatedly. 

L e m m a  132. Let I be an independency relation over Z ,  and let x, y • 27*. 
(1) x ~ !  y iff there exist n >_ 0 and xo , . . . ,Xn  • Z* such that Xo = x, 

Xn = y, and xi-1 - I  xi for all 1 < i < n. 
(e) x ~I  Y implies Ixl = lyl. 

Intuitively the definition of trace equivalence is based on the following prop- 
erty of firing sequences of an EN system M = (P ,T ,F ,  Cin): for x , y  E T* and 
s, t e T, if xsty • FS(M) and (s, t) • ind(M) ,  then xtsy  • FS(M).  The proof 
of this property is easy: If (s,t) • i nd (M)  then disj({s, t}).  Let Cin[x)C[st)D. 
Then st con C and disj({s, t}).  This implies that  {s, t} con  C and thus (by 
Lemma 17) that  C[ts)D. Hence xtsy  • FS(M).  In other words, transitions in 
ind (M)  are interchangeable in a firing sequence, because they actually occur con- 
currently. Thus, FS(M) is closed under ~ind(M): i fx  E FS(M) and x ~ind(M) Y, 
then y • FS(M). A similar argument shows that ,  for x , y  • FS(M),  x "~ind(M) Y 
iff X ~ I  Y, where I = {(s, t) • TM × TM I s ~ t, disj({s, t})} (the "usual" 
independency relation, cf. the remark following Definition 117). 

Example3Z Again, let 27 = { p , f , e , c }  and I = {(p,e), (e,p), (p,c), (c,p), ( f ,c ) ,  
(c, f)}.  Then I is an independency relation, pefc "-I epfc "-z epcf , pefc ~ I  epcf, 
and [pefc]i = {pefc, pecf , epfc, epcf , ecpf }. 



106 

For an independency relation I over 27 and an x • 27*, [x]I denotes the 
equivalence class of ~z  that  contains x. An equivalence class of ~ is called a 
trace over I;  intuitively it is the set of all sequential observations of one run 
of some system. In Example 37 ~oefc]i is a trace over I .  We will prove that  
Ix]1 = w o r d s ( d e p l  (x)). To this purpose we use the following well-known result 
from graph theory (where the labelling of the graph is irrelevant). 

L e m m a  133. Let G = (V, F, 27, ¢) be an acyclie graph. Let J c V x V be the 
independency relation (of G) defined as follows: for all u, w • V,  
( u , w ) • J  i f f u # w ,  ( u , w ) ¢ F ,  a n d ( w , u ) ~ F .  
Then, for every topological order u l . . .  u~ of G, 
t op (G)  = {wl " " w n  • V* l u l " " U n  ~ j  wl " ' W n } .  

Proof. (1) It is clear tha t  { w l " " W n  E V* I Ul ' ' 'Un "~'J Wl ' '"  Wn} C t op (G)  
for every u l " " U n  • top(G) .  

(2) Now it remains to show that  t op (G)  c { W l " ' w n  • V* I U l ' " u n  ~ j  
wi "'" Wn}. Let wl " " w n  E t op (G) .  We prove by induction on k that  for every 
k, 1 < k < n + 1, there exists a topological order t x ' "  tn of G such that  
t l ' " t n  -~j w l . . . w n  and t~ = ui for all 1 < i < k -  1. For k = 1 we 
take t l - - .  tn  -" W l ' " W n .  For the induction step, assume that  the statement 
holds for k, and consider the topological order t l . . .  tn which satisfies the re- 
quirements for k. There exists m, k < m g n, such that  Uk = tin. Then 
t k , . . . , t m - 1  succeed uk in the topological order U l ' " u n .  Hence there are no 
edges (tk, t i n ) , . . . ,  (tin-x, tra) in T' (and of course no edges in the other direction 
because tl .. "tn is a topological order). Thus ( t k , t m ) , . . . ,  ( tm-x , tm)  • J. This 
implies that  t l . . . t ~  ~ j  t l . .  "tk-ltrntk" " ' tm- l tm+l ' "  "tn. And this is a topo- 
logical order (according to (1)) tha t  satisfies the requirements for k + 1. [] 

For I = i nd (M) ,  the next result is a refinement of Theorem 114, as can be 
seen from Theorem 123. 

T h e o r e m  134. Let I be an independency relation over 27, and x • E*. Then 
[x]l = w o r d s ( d e P i  (x)). 

Proof. Let J be the independency relation of the graph G = d e p l ( x ) ,  as defined 
in Lemma 133. Then it is easy to check that ,  for u ,w  E V a ,  (u,w) E J iff 
(¢(u), ¢(w)) E I.  Hence, for all y • E*, x ~y y iff there is a Wl . .  "Wn • V~ with 
V l ' " v n  ~ j  wl " " w n  and y = ¢ ( W l ) ' " ¢ ( w n ) .  Now v l " " V n  is a topological 
order of d e p l ( x ) .  Hence, according to Lemma 133, Vl " " v n  ~ r  wl ""Wn iff 
wx'" "Wn is a topological order. Thus, for all y • ~7", x ~ I  Y iff there exists a 
topological order W l ' " w n  of d e p i ( x  ) such that  y = ¢ ( w ] ) ' "  ¢(Wn). [] 

This implies tha t  two words are trace equivalent iff they have isomorphic 
dependency graphs. 

Theorem 135. Let I be an independency relation over S ,  and let x, y E 27*. 
Then the following/our statements are equivalent. 
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(1) z ~ l  y, 
(2) [x]i = [y]. 
(3) depi(x) -a depI(y), and 
(4) pru(dePi(X))  -z~ p ru (dep / (y ) ) ,  
where ~ is the identity on S .  

Proof. (1) implies (3): Assume x = xlabx2 and y = xlbax2, with x l , x2  E E* 
and (a, b) E I .  Then it is easy to see that  dep i (x  ) and dePi (y )  are isomorphic: 
if Ixll = i - 1, then take the bijection 5 : {vl , . . . ,Vn} -+ ( v l , . . . , v n }  such that  
5(vi) = vi+l, 5(vi+l) = vi, and 5(vj) = vj for j ~ i, i + 1. 

(3) implies (2): This follows from Theorem 134, because d e p t ( x  ) and dept(y ) 
have corresponding topological orders with the same labels. Likewise (4) implies 
(2), because p ru (dep i (x ) )  has the same topological orders as depl (x) .  [3 

Note that  Theorems 134 and 135 do not refer to EN systems. The equality of 
lpo-equivalence and trace equivalence of firing sequences of EN systems is now 
a direct consequence of Theorems 130 and 135. 

T h e o r e m  136. Let M be a contact-~ree E N  system and x, x ~ E FS(M) .  Then 
X "~'lpo xl  i f f  X ~ind(M) xt" 

A trace language (over an independency relation I) is a set of equivalence 
classes of ~z. Now the behaviour of an EN system M can also be defined as 
the trace language TR(M) = {[x] ind(M ) I X E FS(M)},  i.e., the language 
FS(M) in which trace equivalent words are grouped together. According to 
Theorems 123 and 135 the function p r u d e p  : TR(M) -~ LPO(M),  defined by 
prudep([x])  = pru(dePM(X)),  is a bijection between TR(M) and LPO(M),  
modulo isomorphism (and note that,  by Theorem 134, w o r d s  is its inverse). 
Thus, TR(M) can also be seen as a formalization of the set of runs of the 
system M (see Theorem 107). Theorems 130 and 136 (i.e., Theorem 3.12 of 
[NieRozThi90]) show that  the mapping that  assigns a process with each fir- 
ing sequence, as defined in Theorem 92, is a bijection between TR(M)  and 
PROC(M),  modulo isomorphism. We can define two EN systems M and M 1 
to be trace equivalent if there exists a bijection fl : use(TM) -+ use(TM,) such 
that  ~(TR(M)) = TR(M') ,  where ~(TR(M))  is defined in the obvious way. 
Then, clearly, trace equivalence is the same as lpo-equivalence. 

7 Branching Processes 

To obtain a more complete picture of the relationship between different runs of 
a system that  is not conflict-free, we will consider "branching runs" (also called 
"unfoldings"). Intuitively, a branching run combines several conflicting runs of 
the system, with an indication of where the conflicts occur. At each point of 
conflict, one may view the system as splitting into several "parallel" copies of 
itself, one for each resolution of the conflict (just as a splitting universe in science- 
fiction). In this section we model these branching runs by "branching processes", 
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which are a natural extension of the processes that we have considered in the 
previous sections. 

The theory of branching processes or unfolding s was initiated in [NiePloWin81], 
and developed in, e.g., [Win87, NieRozThi90, RozThi91, Eng91, NieRozThi95, 
WinNie95a, WinNie95b]. In [McM93, McM95, Esp94, EspRSmVog96] branch- 
ing processes are used to develop an efficient model checker for contact-free EN 
systems, i.e., an algorithm that verifies logical properties of such systems (for 
a fragment of so-called branching time temporal logic in [Esp94]). Most papers 
consider the unique maximal unfolding of the EN system, which is a (usually infi- 
nite) branching run containing all runs of the system. Here we consider arbitrary 
(finite) branching runs, as in [Eng91]. 

Just as processes are based on process nets, branching processes are based 
on branching process nets. A branching process net is like a process net, except 
that its places may have arbitrary output-sets. A conflict is modelled by a place 
with more than one transition in its output-set. Whenever a conflict occurs, the 
conflicting parts of the branching run should be separated after the conflict. This 
is formalized by requiring the following "conflict relation" to be irreflexive. 

Def ini t ion 137. Let N = (P, T, F) be a net. The conflict relation of N is the 
binary relation ® C_ XN x XN defined as follows: for all xl,x2 E XN, xl ® x2 
if there exist distinct transitions tl, t2 E T such that °tl N or2 ~ O and ti F* xi 
f o r / =  1,2. 

The conflict relation of a net N will also be denoted by ®N. Note that it is a 
symmetric relation. We now use it to define branching process nets, introduced 
in [NiePloWinS1] (where they are called occurrence nets). 

Defini t ion 138. A net N = (P, T, F) is a branching process net, abbreviated 
b-process net, if: 
(1) N is acyclic, 
(2) #(°p) < 1 for all p E P, and 
(3) ®N is irreflexive. 

Note that the irreflexivity of ®N can also be expressed as follows: for all 
distinct transitions tl,  t 2 e T, if *tl N *t2 ¢ g,  then {x E XN [ t~ F* x} N {x E 
XN I t2 F* x} -- O. Intuitively this means that conflicting transitions tl and t2 
have disjoint futures. 

As for process nets, we will view a b-process net N as an EN system with 
initial configuration °N. Every process net is a b-process net, because @N is 
empty for a process net N. 

Example 38. The EN systems in Figs. 22, 23, 24, and 25 are b-process nets. This 
shows that confusion can be present in b-process nets. The acyclic EN system 
in Fig. 30 is not a b-process net because #(*p3) -- 2. The EN system of Fig. 34 
satisfies (1) and (2) above but it is not a b-process net, because t3 ® t3. In fact, 
*tl M *t2 ~ ~ and both tl F* t3 and t2 F* t3. Thus, t~ is in the conflict relation 
with itself and so ® is not irreflexive. 
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In a b-process net N we define the notion of a slice in the same way as for 
a process net, but  we additionally require that  its places are not in the conflict 
relation ®N. We will denote the complement of ®g  by @g; note that  it is a 
reflexive symmetric relation (cfo Definition 65). 

D e f i n i t i o n  139. A slice of a b-process net N is a maximal (CO N n @N)-Clique 
C of N such that  C C_ PN. 

Example 39. Consider the b-process net N of Fig. 23. Its conflict relation is 
®N = { (x, y), (y, x) I x e {t3,/94 }, Y e {tl,  Ph, t2, P3 }- The slices of N are {Pl, P~ }, 
{P4}, {Ph,P2}, {Pl,P3}, and {Ph,P3}. Note that  {P4} and {Ph,B3} are not cuts. 

If one systematically considers the relation CON N @g instead of the re- 
lation CON, then Lemmas 76, 77, and 78, and Theorems 79 and 81, also hold 
for b-process nets. The details of the proofs are left to the reader. Thus, by 
Lemma 78 and Theorem 81, b-process nets are contact-free and reduced. In the 
next theorem we state the generalization of Theorem 79: the slices of a b-process 
net are exactly its reachable configurations. 

T h e o r e m  140. Let N = (19, T, F, °N) be a b-process net and let C C P. 
C E CN iff C is a slice of N.  

Based on b-process nets, we now define branching processes of an EN system, 
see [Eng91]. They  can be viewed as records of all events that  occur during a 
branching run of the system. 

D e f i n i t i o n  141. Let N = (PN, TN, FN, ¢1, ¢2) be a (Z1, Z2)-labelled b-process 
net and let M = (P,T,F,  Cin) be a contact-free EN system. 
Then N is a branching process of M, abbreviated b-process, if 
(1)-(5) of Definition 88 hold, and 
(6) for all s, t  e TN, if *s = *t and ¢2(s) --- ¢2(t), then s = t. 

For a contact-free EN system M, we denote the set of all b-processes of M 
by BPROC(M) .  

Condition (6) above says that  a conflict is always between two distinct tran- 
sitions of M. This is a natural  requirement that  prevents the same run to appear 
twice in the record of a branching run. However, many properties of b-processes 
also hold without the requirement. 

Example$O. (1) Let M be the (contact-free) EN system of Fig. 51. A branching 
process N of M is drawn in Fig. 67. Note that  the process of M that  is given 
in Fig. 56 is "part" of N,  i.e., it is one of the runs of M that  is combined in the 
branching run corresponding to N. 

(2) A b-process of the EN system of Fig. 2 (mutual exclusion) is drawn in 
Fig. 68. Intuitively, it is a combination of four possible runs of the system: com- 
ponent i gets permission to access its critical section, and then component j gets 
permission, for every combination of i , j  E {1,2}. This can be compared with 
the process in Fig. 58, corresponding to one run during which components 1,2,1, 
and 1 get permission, respectively. 
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Fig. 67. A branching process of the EN system of Fig. 51. 

It can be proved that Lemma 89 and Theorems 90 and 91 are also true for 
b-processes (again with CON N ~N instead of CON). In fact, they are even true 
when condition (6) is dropped from the definition of b-process (Definition 141); 
this will be needed in the proof of Theorem 149. 

As for processes, to compare the behaviour of two different EN systems we 
are mainly interested in the events, and their relationships, rather than in the 
conditions of a branching process. Thus, we will remove the conditions and con- 
sider pruned contracted b-processes (see Section 5.4). In the case of branching 
processes we are not only interested in the causal relationship between events 
but also in their conflict relation. However, since the conflicts in a b-process are 
modelled by places with more than one transition in their output-set, the conflict 
relation is lost when the places are removed. Consequently, in pruned contracted 
b-processes, we have to model the conflict relation explicitly. 

Just as a pruned contracted process represents a labelled partial order, a 
pruned contracted b-process will represent a labelled partial order together with 
a conflict relation. Such a partial order with conflict relation is called an "event 
structure", introduced in [NiePloWinS1] (see also, e.g., [Win87, WinNie95a]). 

Definit ion 142. An event structure is a triple (A, p, ®) where 
(1) (A, p) is a partially ordered set, 
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Fig. 68. A b-process of the mutual exclusion system of Fig. 2. 

(2) ® C__ A × A is an irreflexive symmetric relation, and 
(3) for all a,b,a',b I E A, i f a ® b ,  a p a', and b p b', then a ' ®b I. 

Condition (3) relates the causal relation p to the conflict relation ®. It ex- 
presses the fact that  p inherits ®, in the sense that  a conflict between a and b is 
inherited by all p-descendants of a and b (as in a vendetta).  

It is easy to see that  for every b-process net N,  (XN, F + ,  ®g)  is an event 
structure (cf. Lemma 74). For a b-process N of an EN system M,  we will be 
interested in the "labelled event structure" 

(Tlv, F + R (TN x TN), ®g N (TN X TN), TM, ¢2N). 

As in the case of processes and labelled partial orders, we will represent such a 
labelled event structure by an acyclic labelled graph, with an additional relation 
that  models conflict. We will call this a "labelled branching graph",  defined as 
follows. 

D e f i n i t i o n  143. Let Z be an alphabet.  A (Z-)labelled b-graph is a quintuple 
G = (V, F, ®, Z ,  ¢), where (V, F, Z ,  ¢) is an acyctic Z-labelled graph, and 
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® C_ V x V is the conflict relation of G, such that 
-~3vl,v2,v • V : vl ®v2, vl F* v, and v2 F* v. 

It is left to the reader to define the appropriate notion of isomorphism of 
labelled b-graphs and sets of labelled b-graphs (cf. Definitions 97 and 98). Note 
that a labelled b-graph G can be viewed as a graph with two types of edges: 
directed edges in FG, and undirected edges in ®G. 

Example$l. Figure 69 shows an example of a labelled b-graph G. The conflict 
relation of G is indicated by undirected dashed lines. The nodes of G are labeled 

in1 ~.-- .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -::: 
" 4  

7¢J" "". 
in. 

in2 

~n2 

Fig. 69. A labelled b-graph. 

out2 

by the transitions of the mutual exclusion system of Fig. 2. We will see later 
that G is in fact a contracted b-process of that EN system. 

We now define the labelled event structure that is represented by a labelled 
b-graph, cf. Definition 99. 

Defini t ion 144. Let G = (V, F, ®, ~ ,  ¢) be a labelled b-graph. The transitive 
closure of G, denoted by tra(G), is the labelled b-graph (V, F +,tra(®),  ~ ,  ¢), 
where tra(®) = {(Vl,V2) I Bv~,v~ • Y : v~ ® v~2 and v~ F*vi for i = 1,2}. We 
also say that G represents tra(G). 

It should be clear that (V, F +, tra(@)) is an event structure, and so tra(G) 
is a labelled event structure. The pruned version of a labelled b-graph is defined 
next, cf. Definition 100. 

Defini t ion 145. Let G = (V, F, ®, S,  ¢) be a labelled b-graph. The pruned ver- 
sion of G, denoted by pru(G), is the labelled b-graph (V, F ' ,  ®', E, ¢) with 
F '  = {(v,w) E F [ -~ 3u e V : (v,u) • F + a n d ( u , w )  • F +} and ®' = 
{(vx,v2) • ®[ -~3(V~l,V~) • ®: (v~,v~) • (vl,v2) and v~ F* vi for i = 1,2}. 

It is not difficult to show that Theorems 101 and 102 still hold for labelled 
b-graphs. 



113 

in11 ....................................... I in2 

out~ out2 

in1 in2 

Fig. 70. The pruned version of the labelled b-graph of Fig. 69. 

Example 42. Figure 70 shows the pruned version pru(G) of the labelled b-graph 
G of Fig. 69. 

After discussing labelled b-graphs, we return to b-processes and show how 
to contract and prune them, cf. Definition 103. 

Defini t ion 146. Let N = (P, T, F, ¢1, ¢2) be a b-process of an EN system M. 
(1) The contracted version of N, denoted by ct r (N),  is the labelled b-graph 

(T,/', ®, TM, ¢2) such that, for all s, t E T, 
(s,t) E F iff s" n ' t  ~ o ,  and (s,t) E ® iff "s M "t ~ o .  

(2) The pruned contracted version of N is the labelled b-graph pru(c t r (N)) .  

Example43. Let N be the b-process given in Fig. 68. Its contracted version 
c t r (N)  and pruned contracted version pru(c t r (N))  are shown in Figs. 69 and 70, 
respectively. They can be compared with the contracted and pruned contracted 
process of Fig. 62. 

It is easy to see (using the analogue of Lemma 104 for err(N))  that, for 
c t r (N)  -= (TN, 1", ®, use(TM), ¢2), tra(®) ---- ®N M (TN X TN). This implies that 
c t r (N)  is indeed a labelled b-graph, and that both c t r (N)  and pru(c t r (N))  rep- 
resent the labelled event structure ( TN , F + V]( TN × TN ), @ Nf"I( TN × TN ), TM , ¢2N). 
We note here that, by condition (6) of Definition 141, this labelled event struc- 
ture is deterministic in the sense of [Vaa91]. 

For a contact-free EN system M we denote by LES(M) the set of all pruned 
contracted b-processes of M (where LES stands for Labelled Event Structures). 
Hence 

LES(M) = {pru(ctr (Y))  I N  E BPROC(M)}. 

Defini t ion 147. Two contact-free EN systems M and M p are les-equivalent if 
LES(M) ~_ LES(M'). 

Obviously, for every contact-free EN system M, LPO(M) = {G E LES(M) [ 
®e -- g}. This implies that if two EN systems are les-equivalent, then they 
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are lpo-equivalent. To show that this also holds the other way around, we need 
the concept of a "configuration" of an event structure. We define it for labelled 
b-graphs. Intuitively, a configuration of a branching run is one of the conflict-free 
runs that the branching run consists of. 

Defini t ion 148. Let G = (V, F, ®, 2Y, ¢) be a labelled b-graph. 
A configuration of G is a subset R of V such that 
(1) VVl,V2 E R:-~ vl ®v2, and 
(2) Vvi,v2 E V: if v2 E R and vl F v2, then vl E R. 
For a configuration R of G, the (non-branching) labelled graph induced by R, 
denoted GIRl, is (R, F M (R x R), ~ ,  ¢ I R). 

It is well known that configurations of unfoldings of an EN system corre- 
spond to processes of the system (cf. Theorem 4.6 of [NieRozThi90] and the 
discussion at the end of that paper). In the next theorem we show that, due to 
this correspondence, LES(M) can be recovered from LPO(M) without knowing 
M. 

T h e o r e m  149. Let M be a contact-free EN system, and let G = i T, F, ®, E, ¢) 
be a labelled b-graph with E = use(TM). 
Then, G e LES(M) i~ 
(1) pr . (V)  = v ,  
(2) G[R] e LPO(M) for every configuration R of G, and 
(3) VSl,S2 e T: i f s l  ® s2, then (¢(Sl),¢(s2)) e dep(M) and ¢(sl) ~ ¢(s2). 

Proof. (Only-if) This direction of the proof consists of verifying a number of 
rather obvious properties of pruned contracted b-processes. Let G = pru(ctr(N))  
for a b-process N -- (P,T,F,¢I ,¢)  of M. Property (1) is obvious. For a config- 
uration R C_ T, let N[R] be the labelled net (P',T', F' ,¢~,¢ ' )  with T' = R, 
P '  = °N U nbh(R), and F' ,  ¢~, ¢' are the restrictions of F, ¢1, ¢ to P '  and T'. It 
is straightforward to show that N[R] is a process of M with pru(ctr(N[RD) -- 
G[R]. This proves property (2). To show property (3), let sl, s2 E T with Sl ®s2. 
Then Sl ~ s2 by Definition 143, and *sl n *s2 ¢ ~ by Definition 146. This im- 
plies that "¢(Sl)n °¢(s2) ¢ 0,  and so (¢(Sl), ¢(s2)) E dep(M). Now we assume 
that ¢(Sl) = ¢(s2) and derive a contradiction. Since Sl # s2, condition (6) of 
Definition 141 implies that °sl ~ °s2. Thus, there exist distinct places ql E °sl 
and q2 E °s2 with the same label. Hence, by the b-analogue of Theorem 91(1), 
either ql liN q2 or ql ®N q2. In both cases it is easy to see that there exist transi- 

! F *  I ! tions s 1' , s 2' such that "s~ N *s~ # g,  s i si for i = 1, 2, and (Sl, s2) # (Sl, s2). 
Since G is pruned, this contradicts the fact that Sl ® s2. 

(If) This direction of the proof is based on Lemma 109 and on the proof 
of Theorem 107. Let G = (T, F, ®, 2:, ¢) satisfy properties (1-3). We have to 
show the existence of a b-process N of M such that pru(ctr(N))  = G. The 
construction of N is exactly the same as the construction of proe(G) (for G e 
LPO(M)) in the proof of the If-part of Theorem 107, at the end of Section 5. 
Thus, we define N to be the (PM, use(TM))-labelled net (P, T, F, ¢1, ¢), where 
P, ¢1, and F are defined in exactly the same way as for proc(G). In what follows 
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we prove that  N is a b-process of M such that  p ru (c t r (N) )  = G. As usual, we 
will drop the subscript of ¢1. 

Conditions (1)-(5) of Definition 141 (see Definition 88) are all obvious, except 
that  we have to show that  for every s E T, ¢(°s) = *(¢(s)) and ¢ r °s is 
injective. For a given s, let Rs = {s' e T 1 st F* s}. It is easy to see that  R~ 
is a configuration of G, and so G[Rs] E LPO(M).  From the definitions of N 
and proc(G[Rs]), it should be clear tha t  *s contains the same places in N and 
in proc(G[Rs]), with the same labels. Since proc(G[Rs]) is a process of M,  it 
satisfies the above two requirements. 

Next we claim that  

fors ,  s ' E T ,  s ' F  + s i f f s ' F  + s. (1) 

In the Only-if direction this follows directly from the definition of N. In the 
If direction it follows from an argument about proc(G[Rs]) similar to the one 
above, using the fact that  the partial order on the transitions of proe(G[Rs]) is 
represented by G[Rs], see Lemma 104. Equivalence (1) implies that  N is acyclic, 
which is condition (1) of a b-process net, cf. Definition 138. 

Similarly, for the conflict relations we claim that  

for sl, s2 E T, sl ®N s~ iff (sl, s2) E tra(@), (2) 

where ® is the conflict relation of G. 
We first show the Only-if direction of equivalence (2). By equivalence (1), it 

suffices to prove this for the case that  *sl f3 "s2 ~ 0.  Suppose that  (sl, s2) 
t ra(®).  Then R = {s E T I s F* sl or s F* s2} is a configuration of G, and so 
G[R] is in LPO(M).  Again, this implies that  also °sl A *s2 ~ 0 in proc(G[R]), 
contradicting the fact that  this is a process of M. From this Only-if direction, and 
the fact that  t ra(®) is irreflexive, it follows that  ®N is irreflexive (condition (3) 
of a b-process net, cf. Definition 138). Since condition (2) of a b-process net is 
immediate from the definition of N,  this shows that  N is a b-process net. Thus, 
we have almost proved that  N is a b-process: only condition (6) of Definition 141 
is still missing. 

Next we show the If direction of equivalence (2). By equivalence (1), it suf- 
fices to prove this for the case that  sl ® s~. This implies, by property (3), that  
(¢(sl), ¢(s2)) E dep(M).  Assume that  -- sl ®N s2. If sl liN S2, then, by equiv- 
alence (1), sl F* s2 or s2 F* sl,  which contradicts the irreflexivity of t ra(®).  If 
sl CON s2, then (sl,s2) is in the relation CON N @N- Thus, by the b-analogue 
of Theorem 91(3) (which is also valid without condition (6) of Definition 141), 
there exists C E CM such that  {¢(sl),¢(s2)} con  C. This contradicts the fact 
that  (¢(sl), ¢(s2)) E dep(M).  

Equivalences (1) and (2) show that  p r u ( c t r ( N ) )  and G represent the same 
labelled event structure. Hence, because they are both pruned, they are the same 
(see Theorem 101). Note that  we have applied c t r  to N without knowing whether 
condition (6) of Definition 141 is satisfied; it should be clear that  Definition 146 
can also be used in this case. 
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It remains to show condition (6) of Definition 141. Consider distinct transi- 
tions sx, s2 E T with "st = "s~. It is straightforward to show that (Sl, s2) is in 
the conflict relation of pru(c t r (N)) .  Thus, since p ru(c t r (N) )  = G, Sl ® sz. It 
now follows from property (3) that ¢(81) ~ ¢(s2). D 

We note here that the condition ¢(st) ¢ ¢(s2) in property (3) of Theorem 149 
corresponds precisely to condition (6) of Definition 141. Theorem 149 is still true 
when both conditions are dropped. 

Theorem 149 allows us to show that lpo-equivalence implies les-equivalence. 
This result can also be deduced from the results in [NieRozThi90, Eng91] to- 
gether with Lemma 5.3 of [Vaa91]. 

T h e o r e m  150.  Let M and M' be two contact-free EN systems and let fl be a 
bijection from use(TM) to use(TM,). 
I f  LPO(M) =~ LPO(M'), then LES(M) =fl LES(M'). 

Proof. By Theorem 115, fl(FS(M)) = FS(M'). Hence, by Lemma 118, ind(M')  = 
{(~(s),~(t)) I (s,t) e ind(M)} (as in the proof of Lemma 124). It now follows 
from Theorem 149 that LES(M) - ~  LES(M'). D 

Together with the remark after Definition 147 this shows that les-equivalence 
is the same as lpo-equivalence (and hence the same as firing sequence equivalence 
by Theorem 126). 

T h e o r e m  151. Two contact-free EN systems are les-equivalent iff they are lpo- 
equivalent. 

The analogue of Theorem 107 also holds for b-processes, i.e., the function 
p r u c t r  is a bijection between BPROC(M) and LES(M); the proof is by Lem- 
mas 108 and 109, which also hold for b-processes (even when the conflict rela- 
tions are dropped from the pruned contracted b-processes, because in this case 
the system M is known). 

It is shown in, e.g., [RozThi91, WinNie95a] that there is a general relationship 
between tracelanguages and event structures, similar to the relationship between 
traces and dependency graphs considered in Section 6.2. Possibly, this could be 
used to give an alternative proof of Theorem 151 that is similar to the one of 
Theorem 126 in Section 6.1. 

8 C o n c l u s i o n  

In this chapter we have presented a comprehensive introduction to the theory 
of Elementary Net systems. We have discussed here both the structural and the 
behavioural aspects of the theory. 

However, the behavioural aspects are prevalent in developing the theory of 
EN systems, because even such structural issues like reduction and decomposi- 
tion make sense only modulo some behavioural equivalence of the systems. For 
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example, if a normal form for EN systems is proved, then it is proved with re- 
spect to a specific equivalence. Thus typically we say: "For every EN system 
there exists an equivalent EN system that satisfies the conditions of the normal 
form". In this sense, the study of (behavioural) equivalences is central to the 
theory of EN systems. 

We have studied a number of equivalence relations between contact-free EN 
systems and the relationships between them: isomorphism, which implies config- 
uration equivalence, which in its turn implies firing sequence equivalence, which 
equals lpo-equivalence, weak configuration equivalence, trace equivalence, and 
les-equivalence. This leaves us with one notion of equivalent structure of EN 
systems (isomorphism), and essentially two notions of equivalent behaviour of 
EN systems, one stronger than the other: configuration equivalence, for which 
we require the two systems to have the same state space, and firing sequence 
equivalence (or lpo-equivalence), for which we require the two systems to have 
the same runs (i.e., "paths" in the state space). These are the two notions of 
behaviour that play an important role in system theory in general. 
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M, 

Fig. 71. Two labelled EN systems M and M' that are lpo-equivalent but not weakly 
configuration equivalent. 

Finally we make a general remark concerning Theorem 126 which says that 
lpo-equivalence and firing sequence equivalence are the same. A technical reason 
for this surprising result is that all our considerations have been centered around 
the transitions: we compare (by means of equivalences) only EN systems with 
essentially the same transitions (where 'essentially' means: modulo bijections). 
In a more general approach, also EN systems with distinct transitions could be 
compared. To indicate that distinct transitions actually perform the same task 
we give them the same label (where the label thus in fact represents the task) 
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Fig. 72. Two labelled EN systems M and M ~ that are configuration equivalent but 
not lpo-equivalent. 

from a given alphabet. Then, in all definitions of behaviour, the labels of the 
transitions are used instead of the transitions themselves. Hence, instead of firing 
sequences we take the sequences of labels corresponding with the firing sequences, 
and the labelled partial orders are not labelled with transitions of the system, 
but with their labels. Note that this may drastically change the properties of 
the behaviour of EN systems. For example, even such a fundamental property 
that a transition cannot fire twice consecutively (cf. the discussion following 
Theorem 12), does not hold for labelled EN systems: the same label can occur 
twice consecutively in a firing sequence (take any two transitions that fire one 
after the other, and give them the same label). 

Under this approach Theorem 126 most certainly no longer holds, i.e., the 
new lpo-equivalence still implies the new firing sequence equivalence, but not the 
other way around. Similarly, Theorem 33 is no longer true: the new weak config- 
uration equivalence still implies the new firing sequence equivalence, but not the 
other way around. More precisely, the new lpo-equivalence is incomparable with 
the new (weak) configuration equivalence; see Figs. 71 and 72 for two well-known 
counter-examples (where a, b, and c are the labels of the transitions rather than 
the transitions themselves). The relationships between various equivalences of 
labelled EN systems are presented in [PomRozSim92]. 

Note that each (old) equivalence relation implies the corresponding new one. 
Thus all normal forms discussed in Section 4 also hold for the new equivalences. 
As an example, Theorem 54 implies that for every EN system there is an lpo- 
equivalent (in the new sense) reduced EN system that is covered by sequential 
components; this is because configuration equivalence implies lpo-equivalence 
which, in its turn, implies lpo-equivalence in the new sense. 
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