
Elementary Net Systems

Grzegorz Rozenberg and Joost Engelfriet

Department of Computer Science, Leiden University
P.O.Box 9512, 2300 RA Leiden, The Netherlands

e-maih {rozenber I engelfri}~wi.leidenuniv.nl

1 I n t r o d u c t i o n

The area of Petri Nets was initiated by C.A.Petri in the early sixties ([Pet62]).
Since then this area has been developed tremendously in both the theory and the
applications. Although many other models of concurrent and distributed systems
have been developed in the meantime, the Petri net model is still a central model
for such systems. It is also often used as a yardstick for other models.

One of the main attractions of Petri nets is the way in which the basic aspects
of concurrent systems are identified both conceptually and mathematically. The
ease of conceptual modelling (based also on a natural graphical notation) makes
Petri nets the model of choice in many applications. The natural way in which
Petri nets allow to formally capture many of the basic notions and issues of
concurrent systems contributed greatly to the development of a rich theory of
concurrent systems based on Petri nets.

Petri nets is actually a generic name for a whole class of net-based models
which can be divided into three main layers. The first layer is the most funda-
mental and is especially well suited for a thorough investigation of foundational
issues of concurrent systems. The basic model here is that of Elementary Net
Systems, or EN systems (introduced in [RozThi86, Thi87, Roz87]). This model
is not suitable for practical applications because the size of the model explodes
even for simple but nontrivial applications. The second layer is an "intermediate"
model where one folds some repetitive features of EN systems in order to get more
compact representations. The basic model here is Place/Transition Systems, or
P / T systems (see for example [Pet81, Rei82]). Finally, the third layer is that
of high-level nets, where one uses essentially algebraic and logical tools to yield
"compact nets" that are suited to real-life applications. Predicate/Transition
Nets (see, e.g., [Gen87]) and Coloured Petri Nets (see, e.g., [Jen92]) are the best
known high-level models.

In the framework of EN systems a concurrent system is seen as consisting
of local states, local transitions (between local states), and the neighbourhood
relationship between the local transitions and the local states. The global state
of a system (its configuration) is simply the collection of all local states that
(con)currently hold. The extent of change caused by a (local) transition is fixed
and is restricted to the neighbourhood of the transition; it does not depend on
the part of the global state that is outside that neighbourhood. This simple and
elegant setup lends itself to a nice graphical representation of both the static
structure of the system and its dynamic behaviour.

13

The EN system model has resulted from a number of modifications of the
basic system model called Condit ion/Event Systems, or C / E systems, introduced
by Petri (see, e.g., [Rei82, Thi87]). Perhaps the most significant difference is
that in C /E systems transitions can also be reversed, recovering in this way the
history of the system. An EN system can also be viewed as a special case of a
P / T system.

In this chapter we present a comprehensive introduction to the theory of EN
systems, covering both their structure and behaviour. The chapter is organized as
follows. It consists of eight sections, of which this is the first. The second section
recalls some standard mathematical notions needed in this chapter. Section 3 is
a basic introduction to EN systems, both informally and formally. It begins with
an informal introduction of EN systems. This is followed by the formalization of
the notion of a net which represents the structure of an EN system. It consists
of places (i.e., local states) and transitions (i.e., local transitions), connected
by the neighbourhood relation. Then the dynamic execution of a net in both a
sequential and a concurrent setting is discussed. An EN system is a net with
an initial state, where all its executions begin. The sequential executions of the
system that start from the initial state are called its firing sequences. Considering
all states that are reachable by such a firing sequence leads to the state space of
an EN system, formalized by the notion of a sequential configuration graph. The
sequential configuration graph is extended to the (full) configuration graph of
the system, in which also concurrent execution steps are represented. It is shown
that the full configuration graph of an EN system is completely determined
by its sequential configuration graph. Finally we demonstrate how fundamental
situations of concurrent systems can be naturally expressed in the model of EN
systems.

Section 4 discusses a number of structural and /or behavioural normal forms
for EN systems. This is done in the framework of several fundamental behav-
ioural equivalence relations for EN systems, based on their state spaces. A first,
basic, normal form is tha t for every EN system an equivalent EN system can
be constructed that has no redundant transitions or places. For such "reduced"
EN systems, a structural characterization is given for the behavioural notion of
a sequential EN system, i.e., an EN system of which every global state consists
of one local state only. After formalizing the notion of a sequential component
of an EN system (i.e., a subsystem that , on its own, is a sequential EN system),
a second, more involved, normal form is shown: for every EN system an equiv-
alent EN system can be constructed that can be viewed as a concurrent set of
communicating sequential components. Such systems are conceptually easier to
understand.

In the last three sections we turn to the partial order view of concurrent
behaviour, where the partial order represents the causal dependencies between
the events in a run of the EN system. In Section 5 the notion of a concurrent
run of an EN system is formalized; as usual in Petri net theory, it is called a
"process". It is one of the nice features of Petri net theory that such a process
is in fact itself an EN system, called a process net (or causal net); it consists

14

moreover of a mapping that labels the places and transitions of the process net
with those of the given EN system. Through this mapping, the firing sequences
of the processes correspond to a partition of the set of firing sequences of the
EN system. Since a process net is acyclic, the transitions of a process naturally
represent a partial order that is labelled by the transitions of the EN system.
There is a one-to-one correspondence between the processes of an EN system
and the corresponding labelled partial orders. EN systems with the same set of
labelled partial orders are said to be lpo-equivalent; this is a natural concurrent
behavioural equivalence of EN systems.

In Section 6.1 it is demonstrated that two EN systems are lpo-equivalent
if and only if they have the same firing sequences. This shows that all var-
ious notions of behaviour considered in this chapter actually amount to two
equivalences: configuration equivalence (where two EN systems have the same
sequential configuration graph) and firing sequence equivalence (where two EN
systems have the same firing sequences). It is remarkable that these two equiv-
alences formalize the sequential behaviour of EN systems. This means that the
concurrent behaviour of an EN system (as, e.g., formalized by lpo-equivalence)
can be derived from its sequential behaviour. In Section 6.2 it is demonstrated
that the above partition of the set of firing sequences of an EN system corre-
sponds to the so-called trace-equivalence relation on firing sequences: two firing
sequences are trace-equivalent if the one can be obtained from the other by the
interchange of causally independent transitions.

Section 7 discusses the notion of a branching process of an EN system, which
formalizes the combination of a finite number of concurrent runs of the system,
showing where these runs are in conflict and, thus, have to branch. The theory of
branching processes (or unfoldings) of EN systems is very similar to the theory
of processes, with the notion of partial order replaced by the notion of event
structure, which is a partial order with a conflict relation. Finally, Section 8
contains a conclusion.

We note here that we only consider the finite behaviour of an EN system,
i.e., we only formalize finite executions or runs of the system. Thus, infinite
executions or runs of the systems should be understood through their finite
initial parts.

This chapter is based on [Rei82, RozThi86, ThiS7, Roz87] and on the lecture
notes for the lecture "Theory of Concurrency I" given for several years already
at the Department of Computer Science of Leiden University, The Netherlands.

2 P r e l i m i n a r i e s

In this section we recall some well-known concepts and notation concerning sets
and words.

The sets of non-negative and positive integers are denoted by N -- {0, 1, 2, . . .}
and N+ = {1, 2,3, . . .}, respectively.

For a set A, P(A) is the set of all subsets of A, and #A denotes the number
of elements of A. We consider total functions only, i.e., if] : A -> A ~, then f(a) is

15

defined (and in A') for every a E A. If] : A --+ A' and B C A, then f r B denotes
the restriction of f to B, i.e., the function B ~ A' defined by (f r B)(b) = f (b) .
A function f : A -~ A' is injective if] (a l) ¢ f (a2) whenever al i~ a2,] is
surjective if for every a ~ E A' there exists an a E A such that f (a) = a r, and f
is a bijection (between A and A ~) if f is injective and surjective.

For a binary relation R C_ A x A, the transitive (and reflexive) closure of R is
denoted by R + (R*, respectively). Hence, (a, b) E R + iff there exist a l , . . . , an E
A, with n _> 1, such that al = a, an = b and (ai, a i+l) E R for all 1 < i < n - l ,
and (a, b) e R* iff (a, b) E R + or a -- b.

For an alphabet E , Z* is the set of all words over E , and A is the empty
word. The length of a word x e ~* is denoted by [x[; thus, [A[= 0. A word y is
a prefix of a word x if there exists a word z such that x = yz . A language over
E is a subset of Z*. We note that any finite set can be viewed as an alphabet.

Let E and A be alphabets and let h : E --+ A. We extend h to a function
from Z* to A* in the following way: h(A) = A and, for a word x = al - . - an ,
with n > 0 and ai E ,U for all 1 < i < n, h (x) = h (a l) . . , h(an) . Furthermore,
for a language L C_ ,U* we define h(L) = {h(x) I x e L}. In formal language
theory, h is called a letter-to-letter homomorphism.

3 E N S y s t e m s

3.1 I n f o r m a l I n t r o d u c t i o n

Elementary net systems form the most fundamental class of Petri nets. Like
most of the models that fall under the generic name Petri nets, elementary net
systems are a net-based model. The basic intuition behind net-based models is
that such a model consists of a net, and of the rules of a token game played on
the net. The net describes the static s tructure of a concurrent system, and the
rules describe the dynamic behaviour of the concurrent system. Different classes
of Petri nets differ by the sort of underlying nets and /o r rules of the dynamic
token game.

In this section we introduce the notion of a net for elementary net systems
and the rules for playing the token game on such a net. These rules tell us how
to get from one global state of the (elementary net) system to another global
state. They give thus a potential state space of the system. In order to get the
actual state space one has to specify the initial global state of the system: the
actual state space is then obtained by starting from this initial global state and
using the rules of the game. Hence a specific elementary net system is given by
a net and an initial global state. The rules of the token game are the same for
all elementary net systems.

A characteristic property of Petri nets is tha t the global state is a set (or
multiset) of local states and that the transition from a global state to another
global state is given by one or more local transitions, where local transitions act
on local states. More precisely, a local transition replaces a subset of the local
states of a global state by another such subset. Thus, Petri nets can be viewed

16

as set transition systems or set replacement systems (as opposed to the string
rewriting systems of formal language theory).

The local states of an elementary net system are also called places, and the
local transitions are just called transitions. The net is a finite directed graph;
its nodes are the potential places and transitions of the system, and its edges
assign input and output places to each transition. Thus the net defines for each
transition which local states are replaced by which other local states. The actual
global state is indicated by putting tokens on the places that are the actual local
states, and the token game is played by moving the tokens around, according to
the transitions that are executed.

Thus, in elementary net systems there are only finitely many potential local
states, and a global state is a finite set of local states. An important consequence
of this setup is that the state space of an elementary net system is finite. This
means that elementary net systems are a model of finite-state concurrent systems
(just as finite automata model finite-state sequential systems).

This section discusses the basic notions of a net, the token game played on the
net, and the state space of an elementary net system. However, before turning
to the formal definitions, we wish to give the reader some intuitive feeling for
the net-based approach to concurrent systems, through two easy and well-known
examples.

Very often, a concurrent system consists of several communicating concur-
rent components, each of which is sequential (i.e., executes its actions one after
the other). Concurrency of the components means that one component can per-
form (some of) its actions independently of (and thus simultaneously with) the
actions of another component. From time to time the components communicate
with each other, which means that they have to wait for each other and inter-
act by synchronizing their actions. In modelling such a concurrent system by
an elementary net system, a local state is a state of a component, and a local
transition is either an action of one component that is independent of the other
components, or consists of a synchronized action shared by several communicat-
ing components.

The producer/consumer problem Fig. 1 shows an elementary net system
that models the well-known producer/consumer problem. Places (i.e., local states)
are indicated by circles, and transitions by rectangles. For each transition, the
local states with an edge to the transition (the input places) are replaced by the
local states with an edge from the transition (the output places).

The system can be viewed as consisting of three components: the producer,
the consumer, and the buffer. The producer puts "production units" in the buffer
(which can contain only one such unit), and the consumer takes units from the
buffer.

The producer is always in exactly one of its local states Pl or P2. If it is in
state pl, it can execute transition p (i.e., produce a unit) and go into state p2
(which means that the token is moved from Pl to P2). Then it can synchronize
with the buffer component through the execution of the shared transition f

17

producer consumer

Fig. 1. The producer/consumer problem.

(i.e., fill the buffer). The producer then returns to state Pl, and the buffer place
b now also contains a token, to indicate that the buffer is full. The buffer can
be emptied again by the shared transition e (i.e., empty the buffer) in which
the consumer and the buffer synchronize, and the consumer moves to its local
state c2. Then the consumer can execute transition c (i.e., consume the unit) and
return to its local state cl. In the meantime the producer may have executed
transition p independently, and may have executed transition f as soon as the
buffer was empty.

Note that the producer and the consumer never communicate directly, i.e.,
never perform shared actions. However, they cooperate asynchronously via the
buffer.

The mutual exclusion problem Fig. 2 shows an elementary net system that
models the well-known mutual exclusion problem. The system consists of three
components: component 1, component 2, and the "permission" component. Com-
ponents 1 and 2 compete for access to the same shared resource (such as a
printer). At any moment of time at most one of these components can use the
resource. It is the task of the permission component to schedule access to the
resource. The availability of the resource is represented by a "permission" in
place p; this permission is indicated by the presence of a token in place p.

A "critical section" is a part of a component which uses the shared resource
and hence needs protection against a possible "disturbance" by the other com-
ponent. The critical section of component 1 is represented by place cl and that
of component 2 by place c2. The noncritical part of component i (for i -- 1, 2) is
represented by places ri (the remainder) and wi (wait). Thus, component i has
local states ci, ri, and wi. Component i can perform the actions ini , outi , and di
(entering the critical section, exiting the critical section, and an action outside
the critical section). To enter or exit the critical section it has to synchronize
with the permission component, which has local states p (the resource is not

18

Wl w 2

e l

component 1 component 2

Fig. 2. The mutual exclusion problem.

used), cl (the resource is used by component 1), and c2 (the resource is used by
component 1), and can perform the actions ini and out~, i = 1,2.

In the global state given in Fig. 2, components 1 and 2 compete for permis-
sion. Clearly, only one of the transitions in1 or in2 can be executed, permitting
either component 1 or component 2 (respectively) to access the resource. When
component i has obtained permission and has finished using the resource, it re-
turns the permission to place p through transition outi. Note that components 1
and 2 never communicate directly, i.e., never perform shared actions. However,
they solve their conflict by communicating with the permission component. Note
also that the permission component has places in common with the other two
components. Thus, place cl represents both a local state of component 1 and a
local state of the permission component.

3.2 Nets

The main part of an elementary net system is its net, which is defined as follows.

Defini t ion 1. A net is a triple N = (P, T, F), where:
(1) P and T are finite sets with P N T = 0,
(2) F C (P x T) U (T x P),
(3) for every t E T there exist p,q E P such that (p,t), (t,q) E F, and
(4) for every t E T and p,q E P, if (p,t),(t,q) E F, then p # q.

19

Elements of P are called places, elements of T are called transitions, elements
of X = P U T are called elements (of N), and F is called the flow relation (of
N). We will also use the notations PN, TN, XN, and FN for P , T, X, and F ,
respectively. Note that N can be the empty net, i.e., N = (0 , 0 , 0) .

For each x E X, °x = {y • X t (Y,X) • F} is the input-set (or pre-set)
of x and x ° = {y e X t (x, y) • F} is the output-set (or post-set) of x; the
set °x O x* is called the neighbourhood of x, denoted by nbh(x) . Whenever we
want to indicate the net under consideration, the notations (°x)g, (X')N, and
n b h g (x) will be used. For Y c_ X, we write °Y = U~EY "x, Y° = U ~ e r x*,
and nbh(Y) = °Y U Y° and the terminology is carried over correspondingly.
Note that the flow relation F is completely determined if °t and t ° are known
for every transition t E T.

Conditions (3) and (4) of Definition 1 can now also be formulated as follows.
For each transition t: *t ~ 0 , t* # o , and °t n t ° = 0 . These requirements do
not always appear in the literature, but we use them for two reasons. Firstly
because they are quite natural, and secondly because they allow us to avoid
many unnecessary technicalities. In the sequel, we will now and then indicate
where these conditions are used.

It is clear tha t a net N = (P, T, F) can in fact be seen as a directed graph
GN: the nodes of GN are the elements of X and there is an edge from x to y
iff (x,y) • F. Thus, the reflexive and transitive closure F* and the transitive
closure F + indicate the paths in GN: (x, y) • F* iff there is a (possibly empty)
directed path from x to y, and (x, y) • F + iff there is a nonempty directed path
from x to y.

Note that in fact GN is a bipartite graph since {P, T} is a partit ion of X and
an edge leads either from P to T or from T to P . A difference between a net and
an arbitrary bipartite graph is that the part i t ion is explicitly given and that an
explicit distinction is made between the two sets P and T of the partition, by
the order in which they appear in the tuple (P, T, F) .

Since nets are graphs, the standard conventions for drawing graphs can be
applied to nets. In a drawing of a net, places are represented by circles and
transitions by rectangles.

Example1. Let N = (P,T,F) be the net with P = {pl,P2,P3}, T --- {tl,t2,t3},
and F : {(pl, t2), (Pl, t3), (p2, t2), (p2, t3), (p3, t l) , (t l ,P l) , (t2,P3), (t3,P3)}. N is
drawn in Fig. 3.

Since every net N corresponds in a natural way to a graph GN, one can
classify nets by "structural", i.e., graph-theoretic properties. In particular, the
following notions will be used in the sequel.

D e f i n i t i o n 2. A net N = (P, T, F)
(1) is acyclic if, for every x e X, (x,x) ~ F +,
(2) is P-simple if, for all p, q e P, (°p = °q and p° = q°) implies p = q,
(3) is T-simple if, for all s, t E T, (*s = °t and s ° = t °) implies s = t, and
(4) has no isolated places if, for all p • P , nbh(p) ~ O.

20

Fig. 3. A net.

3 1

P3

Note that, due to condition (3) in Definition 1, transitions are never isolated.

Example 2. The net N from Example 1 (Fig. 3) is cyclic since, e.g., (Pl ,Pl) E F +.
N is P-simple, but not T-simple because °t2 = *t3 and t2* : t3*. N has no
isolated places. The net in Fig. 4 is P-simple and T-simple. It has an isolated
place and is cyclic.

E

C

Fig. 4. A net that is P-simple and T-simple.

E

)

)

In considerations concerning the structure of a net, the concrete elements
of the net are not important. To express this, we use the following notion of
isomorphism. Note that , in the definition, the order of P and T in the tuple
(P, T, F) is taken into account; this is the way in which places and transitions
are distinguished formally (cf. Example 3(1)).

D e f i n i t i o n 3 . Two nets N = (P,T,F) and N ' = (P ' , T', F') are isomorphic,
denoted by N =- N' , if there exist two bijections a : P --~ P ' and ~ : T -~ T',
such that for every p E P and t E T,
(p, t) e F iff (~(p), ~(t)) e F ' and
(t,p) e F iff (~(t),a(p)) e F'.

21

If we want to be more specific, we can say in the above situation that N and
N ' are ((~, ~)-isomorphic, denoted by N - ~ N '. The ordered pair (a,/~) is called
an isomorphism between N and N'.

The conditions for c~ and fl in Definition 3 can also be formulated as follows:
for every t e T, */~(t) = c~(*t) and ~(t) ° = ~(t*), where, clearly, °/~(t) stands for
('~(t))N,, °t stands for ('t)N, and likewise for the output-sets.

Example 3. (1) Let N and N ' be the two nets in Figs. 5 and 6, respectively. It is
clear tha t N = N ' does not hold; in fact, in N the output-set of every transition
is a singleton but in N ' there are transitions with an output-set of cardinality
2. However, the graphs GN and GN, are isomorphic graphs: there is a graph
isomorphism 7 between GN and GN,, viz. 7 defined by "/(tl) = P2, 7(t2) = pl ,
7(t3) = P3 , 7 (P l) ---- t3, 7(P2) = tl and ")/(/)3) = t2). This isomorphism does not
preserve the two sorts of the bipartition of the nets because it maps transitions
into places, and places into transitions!

Fig. 5. A net N.

~ P2

t3

t l ~ p3

Fig. 6. A net N', not isomorphic with the net N of Fig. 5.

(2) Let N " be the net in Fig. 7. Let c~ and ~ be the bijections from PN
to PN" and from TN to TN,, defined by a(p l) = Ps, a(p2) = Ps, ~(Pa) = Pl,

22

f ~ (t l) ---- t s , f~(t2) = t3, and f~(t3) = t4. Now N and N " are (a, f~)-isomorphic, and
so N - ~ N" . The isomorphism (a, f~) does preserve the sorts: it maps transitions
into transitions, and places into places.

t3

t
ts

Pl

Fig. 7. A net NIf, isomorphic with the net N of Fig. 5.

3.3 The Firing of Transit ions

A global state of a concurrent system consists of (is a set of) local states, where
a local state can often be viewed as the state of a component of the system. A
global state transition consists of local transitions. During a local transition a
"small" number of local states change, for instance as the result of a commu-
nication between some components of the system. Thus, the global states are
"distributed", and so are the global state transitions.

When modelling a concurrent system by a net, the local states of the system
are represented by the places of the net and its local transitions are represented
by the transitions of the net, together with the flow relation. A global state of
the system is thus represented by a set of places; such a set of places will be
called a configuration.

D e f i n i t i o n 4. A configuration of a net N = (P, T, F) is a subset of P .

Graphically, a configuration C C P is represented by placing a "token" (i.e., a
fat dot, or a thumbtack when we use transparencies) in every circle corresponding
to a place in C. Hence a single token represents a local state of the system, often
corresponding tO the state of a component of the system. Since we mark the net
with tokens, a configuration is also called a marking of the net.

We are now ready to define the most fundamental Petri Net model, the
"elementary net system". It is a net together with the initial configuration of
the system.

Def in i t ion 5. An elementary net system, EN system for short, is a quadruple
M = (P,T,F, Cin), where:

23

(1) (P, T, F) is a net and
(2) Cin C_ P is the initial configuration.

For an EN system M = (P,T,F, Cin), we denote by u n d (M) , PM, TM,
FM, and (Cin)M the net (P,T, F), P , T, F , and Cin, respectively. Furthermore,
we will call u n d (M) the underlying net of M, the places will also be called
conditions, and the transitions will also be called events (in the literature, when
places are called conditions, a configuration is often called a case). Finally, the
terminology and notations concerning nets carry over to EN systems through
their underlying nets. Note that M can be the empty EN system, i.e., M --

We represent an EN system M graphically by representing u n d (M) graphi-
cally and marking the initial configuration (Cin)M by tokens.

Example4. Let N = (P,T,F) be the net in Fig. 8. Then M = (P,T,F, Cin),
with Cin -- {Pl, b, cl }, is an EN system with underlying net N. The EN system
M is drawn in Fig. 9. Note that M is the producer/consumer system of Fig. 1,
with a full buffer.

pl Cl

Fig. 8. The underlying net of the EN system of Fig. 9

Until now we have considered nets and EN systems only as static objects.
We now turn to the definition of the dynamic behaviour of EN systems. This,
however, is not as easy as it is for sequential systems (such as finite-state au-
tomata) . In fact, it is hard to express in a mathematical, convincing way that
certain events, such as the local state transitions of a concurrent system, occur
independently, "at the same time". For this reason we will consider several de-
finitions of the behaviour of an EN system, in which the concurrency of events
is captured in different ways (without going into philosophical discussions about
the concept of time). We start with the simplest case, where we consider how a
configuration of an EN system is transformed by the execution of one transition

Fig. 9. An EN system.

24

Pt C1

of the system. Hence, in this case we do not yet consider concurrent events. In
other words, we star t by defining the sequential behaviour of the EN system.

A local transition of a concurrent system replaces a subset of the local states
of a global state by another such subset. In the corresponding EN system, when
the input-set of the transition is a subset of the current configuration, execution
of the transition consists of replacing the input-set by the output-set of the
transition. This is also called a firing of the transition.

D e f i n i t i o n 6 . Let M = (P,T,F, Cin) be an EN system and let t E T.
(1) Let C C P be a configuration. Then t has concession in C (or t can be

fired in C, or t is enabled in C) if °t c C and t ° M C = O, written as t con C.
(2) Let C, D ___ P. Then t fires from C to D if t c o n C and D = (C - °t) Ut °,

written as C[t)D; t is also called a sequential step from C to D.

When it is necessary to indicate the EN system M under consideration, the
index M is used: we then write t COnM C and C[t)MD instead of t c o n C and
C[t)D. In the li terature C[t) is often written instead of t c o n C.

Note that a transition t can only be fired if it has both input-concession (i.e.,
"t c_ C) and output-concession (i.e., t ° n C = 0) . Note also that , though we
write C[t)D, the new configuration D is uniquely determined by C and t, i.e., if
C[t)D1 and C[t)D2, then D1 = D2.

The firing of a transition t is also called the occurrence of transition t, or
the occurrence of event t. To represent the firing of a transition graphically, we
play the so-called "token game" as follows. If, in a given configuration (token
marking) C, there exists a transition (rectangle) t such that every circle that
corresponds to an element of the input-set of t contains a token, and every circle
that corresponds to an element of the output-set of t does not contain a token,
then t can be fired (i.e., t has concession). The firing of t consists of removing
a token from every circle that corresponds to an element of the input-set of t
and placing a token in every circle tha t corresponds to an element of the output-
set of t, cf. Fig. 10. In this way, the token marking tha t corresponds to the

o o

it) t [

before

Fig. 10. Firing of transition t.

25

after

configuration (C - *t) U t ° is obtained. Note that this configuration can also be
written as (C U t °) - °t, since for arbi trary sets A, B and C the following holds
i f A a n d B are disjoint: (C - A) U B = (C U B) - A (a n d ' t N t ° = ~ due to
Definition 1(4)).

Example 5. Let M be the EN system from Example 4 (Fig. 9). Then transitions
p and e have concession in Cin, i.e., p con Cin and e c o n Cin; transitions f and
c do not have concession in Cin. Both Cin [p){p:, b, Cl} and Cin [e){pl, c2 } hold.
The configuration {pl,c2} is drawn in Fig. 11. Also, e.g., {p2, b, Cl}[e){p2, c2},
{p2, c2 }[f) {pl , b, e2}, and {Px, b, c2 }[c)Cin hold.

Fig. 11. The EN system of Fig. 9 after firing transition e.

We can also view the occurrence of event t as a change of the values of certain
conditions (= places). The idea behind the definition of concession (Definition 6)

26

is tha t the result of the occurrence of an event must be observable in each
component of the system that is involved in this event. Hence the event t can only
occur if all pre-conditions hold (i.e., *t C C_ C) and all post-conditions do not hold
(i.e., t ° NC = 0) . After the event has occurred, the post-conditions hold and the
pre-conditions no longer hold. Hence, viewing places as booleans, the occurrence
of t can be intuitively described by the execution of the following conditional
statement, in which all booleans in *t = {Pl ,Pro} and t* = {ql ,qn}
change their value:

i f pl a n d --. a n d Pm a n d (n o t ql) a n d --- a n d (n o t qn)

t h e n b e g i n Pl := false ; . . . ; Pm := false ;

ql : : t rue ; . . . ; qn := true

end .

It must be observed that the execution of this statement is an atomic, indi-
visible, action and that the execution only takes place if the boolean condition
(between the i f and the t h e n) is satisfied. Also note that the order of the as-
signments is irrelevant.

The next result shows that there is an alternative, symmetric, way of defining
the firing of a transition.

L e m m a 7. Let M = (P, T, F, Cin) be an E N system. Let t E T and let C, D c_ P.
Then C[t)D iff C - D = "t and D - C = t ' .

Proof. For arbitrary sets A, B, C, D, the following two statements are equivalent:
(1) A C_ C, B N C = g , and D = (C - A) U B , (2) C - D = A and D - C = B. []

Let M = (P,T, F, Cin) be an EN system. Assume that an event t takes place
in a configuration C and leads to configuration D (C[t)D in our notation). Then
the amount of change of the configuration tha t is caused by t, can be given by the
pair (C - D , D - C) : the conditions in C - D stop being valid and the conditions
in D - C start being valid. From Lemma 7 now follows that the amount of change
caused by an occurrence of an event is determined only by the event itself, i.e.,
it is independent of the configuration in which it takes place. Thus we have:

(Vt E T)(VC1,D1,C2,D2 c P) : if CI[t)D1 and C2[t)D2, then
C 1 - D I = C 2 - D 2 a n d D 1 - C I = D 2 - C 2 .

This holds because, according to Lemma 7, C1 - D1 = "t = C~ - D2 and
D1 - C1 = t* -- D2 - C2. Thus, each event t determines unambiguously the
amount of change it causes (when it occurs); this amount of change is given
by its characteristic pair cp(t) = (*t,t*). However, there can be two distinct
events tl and t2 tha t cause the same amount of change, i.e., they have the same
characteristic pair: °tl = ° t2 and tl ° = t2 °. This cannot happen in a T-simple
EN system, because in such a system a transition t is completely determined by
its characteristic pair. Consequently, a T-simple EN system satisfies the following
principle of extensionality:

27

(Vtl,t2 E T)(VC1,D1,C2,D2 C_ P) : if CI[tl)D1 and C2[t~)D2, then
tl = t2 iffC1 - D I = C2 - D2 and D1 - C1 = D2 - C2.

This means that , in a T-simple EN system, distinct transitions cause different
amounts of change in all configurations.

For a given EN system we are only interested in those configurations that can
be reached from the initial configuration by the repeated firing of transitions,
and in the (sequences of) transitions tha t lead to these configurations. Knowing
the effect of firing a single transition allows us to define the effect of several
transitions that fire one after the other. Such a sequence of transitions can also
be considered as an observation of the system by a sequential observer (i.e., an
observer tha t can observe only one event at a time). Formally, a sequence of
transitions is a word over the alphabet T, i.e., an element of T*.

D e f i n i t i o n 8. Let M = (P, T, F, C~n) be an EN system.
(1) Let t l . . . t n E T*, with n :> 0 and t l , . . . , t n E T. Let C,D C P. Then

t l . . . tn fires from C to D if there exist configurations Co, C 1 , . . . , Cn C_ P with
Co ---- C, Cn = D and Ci-l[ti)C~ for all 1 < i < n, written as C[t l . . . t n)D.

(2) Let x E T* and C c P . Then x has concession in C (or x can be fired
in C, or x is enabled in C) if there exists a D C P such that C[x)D, written as
X C O n C .

(3) x e T* is a firing sequence of M if x c o n Cin. The set of all firing
sequences of M is denoted by FS(M).

(4) C C_ P is a reachable configuration of M if there exists an x e FS(M)
with Cin[x)C. The set of all reachable configurations of M is denoted by CM.

(5) t E T is a useful transition of M if there exists a reachable configuration
C of M such that t con C. The set of useful transitions of M is denoted by
useM(T) , or just use(T) when M is clear from the context.

(6) t E T is a live transition of M if for each C E CM there exists an x E T*
with xt c o n C.

Note that a configuration C is reachable (i.e., C E CM) if there exist tran-
sitions t l , . . . , t n E T (with n >_ 0) and configurations C 1 , . . . , C a such that
Cn -- C and Ci,~[tl)Cl[t2)C~.." [tn)Cn. Hence, CM can also be defined as the
smallest set of configurations for which the following holds: (1) Cin E CM and
(2) if C E CM and C[t)D for some t E T, then D E CM. Properties of reachable
configurations can thus be proved by induction in the following way. Let P(C)
be a property of (reachable) configurations C of M. Assume that it has been
proved that (1) P(Vin) and (2) if C[t)D and P(C), then P(D). Then P(C)
holds for all C E CM. We call this a proof by induction on C of the s tatement
VC e CM : P(C).

Intuitively, a transition is useful when it can eventually be fired start ing from
the initial configuration, and it is live when it can eventually be fired start ing
from any reachable configuration. Thus every live transition is useful.

Example6. Let M = (P,T,F, Cin) be the EN system of Example 4 (Fig. 9).
From the discussion in Example 5 it follows that the sequence of transitions

28

pe.f e T* fires from (PI, b, cl } to (PI, b, c2 }, and so {Pl, b, cl } [pe]) {Pt, b, c2 }. Con-
sequently, pe.f has concession in Cin = (Pl, b, Cl }, written as pe.f con (Pl, b, cl },
and per is a firing sequence of M, written as pe]: E FS(M). The configura-
tions (Pl, b, cl }, {P2, b, ct }, {P2, c2 }, and (Pl, b, c2) that are "encountered" dur-
ing the firing of pe.f are thus reachable configurations of M, written as {Pl, b, cl },
(p2,b, Cl}, (p2, c2}, {pl,b, c2} E CM. Since c con {pl,b, c2}, all transitions of M
are useful. In the comments following Example 7 we observe that all transitions
of M are even live. The transitions of the EN system of Fig. 12 are all useful,
but none is live: from the (reachable) configuration {P6} no other configuration
can be reached, and so no transition can be fired anymore.

Po

Pl

P3() P6

~P4 ()P5

Fig. 12. An EN system of which all transitions are useful, but none is live.

When analyzing the (sequential) behaviour of an EN system M, its (sequen-
tial) configuration graph is often useful. It directly represents the way in which
the set CM is constructed from Cin by firing transitions.

29

Before presenting its formal definition, we first recall the notion of a (di-
rected) edge-labelled graph. Here we want such a graph to be "initialized", i.e.,
to have an "initial node". Also, we allow an edge to have a set of labels rather
than a single label, because this will be needed when we consider concurrent
configuration graphs. In the literature, initialized edge-labelled graphs are also
known as transition systems.

Def in i t i on 9. An (initialized) edge-labelled graph is a quadruple (V, F, E, vin),
where V is a finite set of nodes, vin is the initial node, ~ is a finite set of (edge-)
labels, and F C V x 7:'(£7) × V is a set of (labelled) edges.

For an edge e = (v,U,w) E F of such a graph G = (V,F,E,v~n), U C_ E is
the set o] labels o]e. If U is a singleton, U = {a}, then we also write the edge e
as (v, a, w) rather than (v, {a}, w).

Isomorphism of edge-labelled graphs is defined in the following way. Note
that this notion of isomorphism also allows the labels to change.

Def in i t i on 10. Let G1 = (V1, ['1, El , vl) and G~ = (V2,/"2, Z2, v2) be two edge-
labelled graphs. Then G1 and G2 are isomorphic, denoted by G1 - G2, if there
exist two bijections a : V1 --+ V2 and/3 : E1 ~ E2 such that a(vl) = v2 and, for
all v, w e V1 and all Y C El , (v, U, w) e F1 iff ((~(v),/3(V), a(w)) e F2.

Here, as usual,/~(U) = {/~(a)] a E U}. If we want to be more specific, then
we say that G1 and G2 are (a,/~)-isomorphic, written as G1 - ~ G2.

The (sequential) configuration graph of an EN system is now formally defined
as follows; here each edge has exactly one label, i.e., T' c_ V × E × V. In the
literature it is often called the sequential case graph, or the transition system of
the EN system.

Def in i t i on 11. Let M be an EN system. The sequential configuration graph of
M, denoted by SCG(M), is the edge-labelled graph (V,F,E, vin), where V =
CM, Vin : (C i n) M , E = use(TM), and F = {(C, t ,D) [C,D e aM, t E
T , , C[t) M P }.

Example 7. For the EN system M from Example 4 (Fig. 9), SCG(M) is given in
Fig. 13. The "wriggly" arrow indicates its initial node (i.e., the initial configura-
tion of M). To simplify notation, we use a la2" "an for the set {al, a2 , . . . , an}.

Note that the useful transitions of an EN system M are precisely the labels
that actually occur on the edges of the sequential configuration graph of M.
Also the liveness of a transition t of an EN system M can easily be decided by
analyzing the sequential configuration graph of M: from each node of SCG(M)
there must exist a path to a node with an outgoing edge labelled by t. Thus, for
the EN system M of Fig. 9, SCG(M) of Fig. 13 shows that all transitions of M
are live.

30

pl bCl "

p2bcl pl c2 ~

p2c2 pl cl]

\ Y" c f /
Pl bc2 P2 ~1 /

- - p2bc2

Fig. 13. A sequential configuration graph.

The class of transition sytems corresponding to EN systems (i.e., the class
of all sequential configuration graphs SCG(M)) is characterized and studied in
[EhrRoz90, NieRozThi92a, NieRozThi92b, NieRozThi95].

The sequential configuration graph SCG(M) can be considered as the (se-
quential) "state space" of the EN system M. Since M has only finitely many
configurations, its state space is finite. Thus, an elementary net system M is a
model of a finite-state concurrent system, and SCG(M) models its sequential
behaviour. Since finite automata model finite-state sequential systems, there is
a clear relationship between elementary net systems and finite automata. In
fact, to the reader familiar with formal language theory (see, e.g., [I-IopUl179])
it should be clear that the sequential configuration graph SCG(M) can be seen
as a finite automaton with initial state Cin (and all states being final states). A
firing sequence of M is a word in T~I that forms the concatenation of the labels
of a path in SCG(M) that starts in Cin. Hence, the firing sequences of M are
precisely the words that are accepted by the finite automaton SCG(M). This
gives the following result.

Theorem 12. For every EN system M, FS(M) is a regular language.

Pro@ Let M = (P,T,F, Cin). Consider the (deterministic) finite automaton
,4 with input alphabet use(T), set of states CM, initial state Cin, set of final
states CM (thus each state is a final state), and set of state transitions {(C, t, D) I
C[t)MD}. Then FS(M) is the language accepted by A. 13

Note that the language FS(M) is prefix-closed, i.e., if a word x is contained
in FS(M), then also each prefix of x is contained in FS(M). This follows directly
from the definition of a firing sequence (Definition 8) and explains why all states
of the automaton .4 are taken as final states in the above proof. Hence not

31

every regular language is the set of firing sequences of an EN system (e.g., the
language {ab}, with a, b E ~U, is regular but not prefix-closed). Also, not every
prefix-closed regular language is the set of firing sequences of an EN system;
e.g., {~, t, tt} with t E ~ is such a language, because no transition can fire twice
consecutively (if C[t)D, then °t N D = O, and hence t does not have concession
in D).

3.4 C o n c u r r e n c y

Intuitively it is not so difficult to get an idea of a "run" of an EN system in
which transitions can fire concurrently, i.e., independently of each other. In fact,
in everyday life, people can be viewed as communicating concurrent components
of a large system. However, to formalize this intuition is not so easy. We will now
give a first a t tempt to capture the concurrent firing of transitions in a formal
definition. The second, more sophisticated, a t tempt is presented in Section 5. In
this first at tempt, we still view the behaviour of an EN system in terms of global
state transitions that are made in a step-wise fashion. However, as opposed to
Definition 6(2), we now allow several transitions to fire in one such step.

Intuitively, two transitions such tha t each of them has concession in a given
configuration, can be fired concurrently provided they are disjoint, i.e., have no
common places. Also, it is intuitively clear how the configuration is transformed
by firing both transitions. We will now formalize these intuitions; we do this
right away for an arbitrary number of transitions (rather than two).

D e f i n i t i o n 13. Let M = (P,T,F, Cin) be an EN system.
(1) Let U C_ T. U is a disjoint set of transitions if U ~ O and for every

two distinct transitions tl ,t2 E U: n b h (t l) N nbh(t2) = o ; this is denoted by
disj(U).

(2) Let U C_ T and let C C P. Then U has concession in C (or U can be fired
in C, or U is enabled in C) if disj(U), *U C_ C, and U ° N C = o ; this is denoted
by U c o n C.

(3) Let U C_ T and let C, D C P . Then U]ires from C to D, written as
C[U)D, if U con C and D -- (C - °U) U U °. If # U _> 2, then we also say that
U is a concurrent step from C to D.

The firing of a disjoint set of transitions U can be seen as a global state
transition of the system M, consisting of local state transitions (namely the
transitions in U). Thus, states and state transitions are now treated in a similar
way: global states (configurations) are sets of local states (places) and global
state transitions (concurrent steps) are sets of local state transitions (sequential
steps).

Analogous to Lemma 7 we obtain the following lemma.

L e m m a 14. Let M = (P, T, F, Cin) be an EN system. Let U c T and let C, D C_
P. Then C[U)D holds iff disj (U), C - D = °U, and D - C = U' .

32

The amount of change caused by a set of transitions is thus cumulative, i.e., it
equals the sum of the changes caused by the separate transitions. As in the case of
single transitions this means that the amount of change caused by the occurrence
of several disjoint events is determined only by these events themselves, not by
the configuration in which they occur. However, in a T-simple EN system the
principle of extensionality does not necessarily hold for concurrent steps. For
example, it is easy to construct an EN system with three transitions t l , t2, t3 for
which "ta = °{tl , t2} and ts ° -- {tl, t2} °.

Example 8. Let M be once again the EN system of Example 4 (Fig. 9). Then
{p, e} is a disjoint set of transitions (thus disj({p, e})), but {f, e} is not. The
only disjoint sets U with # U >_ 2 are {p, e}, {p, c} and {f, c}. The set {p, e} has
concession in Cin (thus {p, e} con {pl, b, cl}), and {Pl, b, Cl}[{p, e}){p2, c2}.

The concession of a set U of transitions (in a given configuration) can be ex-
pressed through the concessions of the transitions in U, together with a simplified
disjointness condition, as follows.

L e m m a 15. Let M = (P, T, F, Cin) be an EN system. Let C C_ P and let U C_ T
with U ~ 0. Then U c o n C iff
(1) t con C for all t E U, and
(2) for all tl,t2 E U with tl ~ t2, *tl N °t2 = O and tl* N t2* = O.

Proof. Obviously, °U C_ C and U ° n C = O if and only if t con C for all t E U.
Moreover, if t l con C and t2 c o n C , then °tl N t2 ° ---- O and tl* N *t2 = O. []

For a concurrent step U from configuration C to configuration D, each split-
ting of U into nonempty sets U1 and U2 yields two (concurrent or sequential)
steps U1, U2 which, when executed sequentially in arbitrary order (first U1 then
Uu, or first U2 then U1), lead to the same configuration, i.e., fire from C to D.
This is formally expressed as follows.

L e m m a 16. Let M = (P, T, F, Cin) be an EN system, let C, D C_ P, and let
U C T. Let {U1, U2} be a partition of U, i.e., U = U1 U U2, U1 N U2 = o and
U1, U2 ~ 0. ff C[U)D, then there exists a configuration E C_ P such that C[U1)E
and E[U2) D.

Proof. It is intuitively clear that E is the configuration that is obtained by firing
U1, i.e., E = (C - *U1) U UI*. The formal proof is as follows.

To begin with, disj(U1) and disj(U2) follow from disj(U). From Lemma 14 it
follows that C n D , °U, and U ° are mutually disjoint sets with C = (CND)U*U
and D = (C n D)U U*. From disj(U) and the fact that {U l, U2 } is a partition of
U it then follows that CN D, *U1, °U2, U1 °, and U2 ° are mutually disjoint sets,
with "U = °U1 (3 °U2 and U ° = UI* t9 U2 °. Hence C = (C N D) U *U1 t3 °U2 and
D --- (Cf~D)UUI°UU2 °. Now consider the configuration E = (CND)UUI°U°U2
(i.e., E - (C - "U1) t3 UI°). Then C - E = °U1 and E - C = U1 °, and thus
C[U1)E according to Lemma 14. Likewise E - D = *U2 and D - E - U2 °, and
thus E[U2)D according to Lemma 14. [3

33

This lemma expresses a so-called diamond property: if C[U)D and {U1,U2}
is a partition of U, then there exist two configurations E1 and E2 such that
C[U1)EI[U2)D and C[U2)E2[U1)D. A drawing (in Fig. 14) of the four steps
C[U1)E1, EI[U2)D, C[U2)E2, and E2[U1)D gives a "diamond"; the step C[U)D
is then a diagonal of this diamond. More general diamond properties are studied
in [HooRozgl].

C

Fig. 14. h diamond.

It follows directly from Lemma 16 that a concurrent step can be realized by
the firing of its elements in an arbitrary order. Such a realization of a concurrent
step intuitively corresponds to a possible way in which a sequential observer
sees the step as a sequence of sequential steps. This is expressed by the following
lemma.

L e m m a 17. Let M = (P, T, F, Cin) be an E N system, let C, D C_ P and let U C_
T. If C[U) D , then C[tl . . . tn) D /or each ordering (tl , . . . , tn) of the elements o/
U.

Proof. By induction on #U. The induction step follows directly from Lemma 16.
[]

This thus means that by allowing concurrent steps no new reachable config-
urations are obtained (and no new useful transitions). Adding all steps (C, U, D)
with # U _> 2 to the sequential configuration graph leads only to new edges
labelled by sets of transitions.

34

D e f i n i t i o n 18. Let M be an EN system. The configuration graph of M, denoted
by CG(M), is the edge-labelled graph (V,/', ~ , vin), where V = CM, vin =
(Gin)M, z~ = use(TM), and F = {(C,U,D) I C,D E CM, U C_ TM, G[U)MD}.

Note that if C[U)MD and C E CM, then U C_ use(TM), according to
Lemma 15.

Example 9. Let M be the EN system from Example 4 (Fig. 9). The configura-
tion graph CG(M) is drawn in Fig. 15. Compare CG(M) with the sequential
configuration graph SCG(M) of Fig. 13. Also note tha t CG(M) contains sev-
eral "diamonds" (see Fig. 14) such as, e.g., the diamond at the concurrent step
{Pl, b, el }[(p, e}){p2, c2}.

1 c2 \

plbC2 p2,Cl /

p2bc2

Fig. 15. A configuration graph.

Rather surprisingly, Lemma 17 also holds the other way around. To prove
this (in Theorem 20) we use the following diamond property, which shows tha t
a diamond exists whenever three of its sides are given, cf. [HooRozgl].

L e m m a 19. Let M = (P, T, F, Cin) be an EN system, let C c_ P and let s, t E T.
I f st c o n C and t c o n C, then {s, t} c o n C.

Proof. Since st c o n C, s c o n C certainly holds. Since t c o n C also holds, it
suffices according to Lemma 15 to show that "s O "t = O and s ° n t ° = 0 . Let
C[s)D. Then °s n D = ~ and s ° C D. Since t c o n D, "t C_ D and t ° n D = 0 .
Hence "s n °t = o and s ° n t ° = 0 . [3

Now we prove the so-called sequentialization property.

35

T h e o r e m 20. Let M = (P, T, F, Ci~) be an EN system, let C, D C P and let
U C T with U ~ o. Then

(1) U c o n C ifftl . . . tn con C for every ordering (t l , . . . ,tn) of the elements
of U, and

(2) C[U)D iff C[tl . . . tn)D]or every ordering (t l , . . . , tn) of the elements of
U.

Proo]. (Only-if) The only-if-part of (2) is Lemma 17. From this the only-if-part
of (1) directly follows.

(If) We first prove the if-part of (1). For each t E U there exists an or-
dering (t l , . . . , t n) of U with tl = t. This implies that t con C for all t E U.
What remains to be proved (see Lemma 15), is disj({s,t}) for every two dis-
tinct elements s and t of U. To this aim, we use Lemma 19. We already know
that t con C. If we now consider an ordering of U of the form (s,t, t3,. . . ,tn),
then, by assumption, stt3.., tn con C. Hence st con C, and so, by Lemma 19,
{s, t} con C. Thus disj({s, t}).

The if-part of (2) can now easily be deduced from the if-part of (1) and the
only-if-part of (2). []

According to this theorem, the concession and the effect of a concurrent
step are completely determined by the concession and the effect of sequences of
sequential steps. Hence we can use the properties of firing sequences of transitions
when reasoning about concurrent steps. In particular, it follows from Theorem 20
that we can construct the configuration graph CG(M) of an EN system M from
its sequential configuration graph SCG(M), even if we do not know M itself
(see Section 4 of [HooRoz91]). Thus, the sequential configuration graph contains
already all the information about concurrency! This is formally expressed in the
next theorem.

T h e o r e m 21. For EN systems M and M',
SCG(M) = SCG(M') ii1 Ca(M) - CG(M').

Proof. (If) It follows directly from the definitions that if CG(M) -__~ CG(M'),
then SCG(M) -y-~ SCG(M').

(Only-if) Assume that SCG(M) -=~ SCG(M'). This means that for all C, D E
CM and t E use(TM), C[t)MD iff a(C)[/~(t))M,a(D). It is now easy to prove,
by induction on Ix], that for all C,D E aM and x e use(TM)*, C[x)MD iff
c~(C)[/3(X))M,a(D); note that, for x = t l - - - tn , /~(z) ---/~(tl)---/3(tn) according
to Section 2. From this and Theorem 20 it follows that for all C, D E CM and
U C_ use(TM), C[U)MD iff a(e)[/~(U))M,a(D). Thus CG(M) --~ CG(M'). [-]

It is shown in [HooRoz91] that this result (and in particular its If direction)
is still true if the isomorphism between the configuration graphs disregards the
fact that the edges are labelled by sets, viewing them as abstract symbols (i.e., if
in Definition 10, ~ is taken as a partial injective function from P(Z1) to P(~2)).

36

3.5 F u n d a m e n t a l S i tuat ions

An attractive feature of Petri Net models is that important notions concerning
concurrent systems can be formulated in terms of, e.g., EN systems in a very nat-
ural way. To illustrate this aspect of EN systems, we discuss several fundamental
situations that may occur in the dynamic behaviour of (concurrent systems that
can be modelled by) EN systems. In what follows, we assume that an EN system
M "- (P, T, F, Gin) is given.

There are three fundamental relationships that may hold between two events
tl and t2 in a given configuration C: causality, concurrency, and conflict.

(1) C a u s a l i t y (of events tl and t2 in configuration C).
This notion is illustrated in Figs. 16 and 17:t2 con C does not hold, but

tit2 con C does hold. Thus, tl needs to occur to grant concession to t2 (input-
concession in Fig. 16, and output-concession in Fig. 17). In other words, t l is
one of the causes of t2. An equivalent formal definition is: tit2 con C holds, but
tl ° n°t~ ~ ~ or*tx Nt2 ° ~ ~.

Fig. 16. Causality: tl ° CI "t2 ~ O.

Fig. 17. Causality: "tl f3 t2* ~ 0.

37

(2) C o n c u r r e n c y (of events tl and t2 in configuration C).
This notion is illustrated in Fig. 18: {tl,t2} con C. Figure 19 shows a more

complete picture of the situation: it gives a representation of C and P - C, and
it shows how "tl , "t2 and tl °, t2 ° fit into C and P - C, respectively.

Fig. 18. Concurrency.

u;Z

C P

P - C

Fig. 19. Concurrency, the complete picture.

Hence if tit2 has concession in C, then tl and t2 a r e related by either causality

38

or concurrency: if t2 con C does not hold, then there is causality, and if t2 con C
does hold, then (by Lemma 19) there is concurrency.

(3) Conf l ic t (between events tl and t2 in configuration C).
This notion is illustrated in Figs. 20 and 21: both t l con C and t2 con C

hold, but {tl,t2} con C does not hold. Consequently, by Lemma 15, *tl N ' t2
O or tl ° (3 t2* ¢ O. If the former holds, then we have an input-conflict (rep-
resented in Fig. 20), and if the latter holds, then we have an output-conflict
(represented in Fig. 21). Obviously, input-conflict and output-conflict can also
both be present.

Fig. 20. Input-conflict.

Hence if tl and t2 both have concession in configuration C, then there is either
conflict or concurrency. In the case of concurrency tl and t~ are independent,
whereas in the case of a conflict they are not independent. That is why a conflict
intuitively leads to a nondeterministic choice between the transitions (either
tl occurs, or t2 occurs). Clearly there is no need for choice if tl and t2 are
concurrent. EN systems in which no choice is made are particularly easy to
understand; they are the concurrent equivalent of deterministic finite automata
in the sequential case.

D e f i n i t i o n 22. An EN system M = (P, T, F, C~n) is conflict-free if for every C E
CM and all transitions tl , t2 E T: if tl con C and t2 con C, then {tl, t2} con C.

39

Fig. 21. Output-conflict.

Since in a conflict-free EN system choices are never made, it has only one
run. The EN system of Fig. 1 is conflict-free, for "structural reasons": both
p° and °p contain at most one transition, for every p E P; such systems are
clearly conflict-free: {tl, t2) con C follows from "tl N "t2 = O and tl ° N t2" = O,
by Lemma 15. In the literature (see, e.g., [LanRob78]) conflict-free systems are
usually called persistent, in which case the term 'conflict-free' is reserved for a
structural subclass such as the one above.

The interplay between concurrency and conflict may be quite intricate, and in
particular it can lead to confusion - a phenomenon that seems to be fundamen-
tally present in nature and appears in various disguises, depending on the chosen
level and way of description of a concurrent system. Here we discuss confusion
in the framework of EN systems.

(4) Confusion.
Consider the EN system in Fig. 22, hence Cin = {pl,P2,pa}. Let C =

{P4,Ps}; thus Cin[{tl, t2})C. Different sequential realizations (tit2 and t2tl) of
this concurrent step have drastically different properties. Since sequential real-
izations of a concurrent step correspond to observations of the step by sequential
observers, assume that we have two honest sequential observers O1 (correspond-
ing to t i t2) and 02 (corresponding to t2tl). They will report their observations
as follows:
O1: "tl occurred first without having been in conflict with another event; then
t2 occurred", and
O2:"t2 occurred first; this resulted in a conflict between tl and t3 which was
resolved in favour of t l , and so tl occurred".

40

~ P2

Fig. 22. A conflict-increasing confusion.

This is therefore a confusing situation, which resulted from the interplay be-
tween concurrency (between tl and t2) and conflict (between tl and t3). Systems
where confusion occurs are in general difficult to analyze. This is due to the fact
that the intermediate configurations determined by the different sequential re-
alizations of a concurrent step can differ drastically from each other, as we have
seen in the example above. Consequently, in general one may have to analyze all
possible sequentializations of the step rather than just one. The theory of Petri
Nets suggests that it is not the combination of concurrency and conflict as such
that causes difficulties. Only those combinations of concurrency and conflict that
result in confusion create problems. Unfortunately it is not always possible to
avoid confusion. Even the rather simple "mutual exclusion problem" discussed
in Section 3.1 contains confusion (in configuration {Wl, p, r2 }).

We now turn to a formal discussion of confusion.

D e f i n i t i o n 2 3 . Let M = (P,T,F, Cin) be an EN system, let C E CM, and let
t E T be such that t con C. The conflict set of t in C, denoted by cfl(t, C), is
the set (t ' e T t t ' con C and -, {t, t '} con C}.

Hence the conflict set of an event t in a configuration C is the set of all events
that are in conflict with t in C. Note that t is in conflict in C only if t itself has
concession in C.

D e f i n i t i o n 2 4 . Let M = (P,T,F, Cin) be an EN system, let C 6 CM, and
let tl,t2 ~ T. The triple (C, tl,t2) is called a confusion (in C) if t l ¢ t2,
{tl,t2} con C, and cf l (t l ,C) ~ cf l (t l ,D) , where C[t2)D. Then M is confused
in C if there is a confusion in C.

Hence a triple (C, tx,t2) is a confusion if {tl,t2} is a step in C and the
occurrence of t2 in C changes the conflict set of tl.

41

Example 10. Consider the EN system M depicted in Fig. 22. For the config-
uration C = {pl,p2,p3} = Cin, cf l (t l ,C) --- ~. Hence (C, tl,t2) is a confu-
sion, because {tl,t2} con C and cf l (t l ,C) = O ~ {t3} ---- c f l (t l ,D) , where
D = {PI,P3,P4}.

It is natural to distinguish the following two types of confusion.

D e f i n i t i o n 25. Let M = (P, T, F, C~n) be an EN system, let C E CM, let t l , t2 E
T, let 7 = (C, t l , t2) be a confusion, and let C[t2)D.

(1) 7 is a conflict-increasing confusion, ci confusion for short, if cfl(t l , D)
cfl(tl, C).

(2) ~/is a conflict-decreasing confusion, cd confusion for short, if eft(t1, D)
eft(t1, C).

Example 11. (1) Consider the EN system M and the confusion (C, t l , t2) from
Example 10 (Fig. 22). Since cfl(tx, D) ~ eft(t1, C), (C, tl, t2) is a ci confusion.

(2) Consider the EN system in Fig. 23. For C = Cin = {pl,p2}, (C, tl,t2)
is a confusion because {tl,t2} con C and cf l (t l ,C) = {t3} # 0 = cfl(t l , D),
where D = {Pl,P3}. Furthermore, since cfl(t l , D) ~ cfl(tl , C), (C, tl, t2) is a cd
confusion.

Fig. 23. A conflict-decreasing confusion.

(3) Consider the EN system in Fig. 24. For C = Ci , = {pl,p2,p4}, (C, tl , t2)
is a confusion because e t t (t l ,C) = {t3} # {t4} = cf l (t l ,D) , where D =
{Pl,P3,P4}. Note that (C, tl,t2) is neither a ci confusion nor a cd confusion.

As we have seen in the above example, the classification of confusions into ci
confusions and cd confusions is not exhaustive: there exist confusions tha t are
neither ci nor cd.

If (C, t l , t2) is a confusion, then the occurrence of t2 in C has a rather strong
impact on the occurrence of tl in C: it changes the conflict set of t l . Hence the
fact tha t (C, tl , t2) is a confusion shows an influence of t2 on tl (in C). In order
to better understand the mutual dependency between tl and t2 it is important to
know whether tl has the same sort of influence on t2 (in C). This consideration
leads to the notion of symmetric confusion.

42

t2

V-]

Fig. 24. A confusion that is neither conflict-increasing nor conflict-decreasing.

Def in i t i on 26. Let M = (P, T, F, C~n) be an EN system, let C E CM, let tl , t2 E
T and let 7 = (C, tl,t2) be a confusion. Then 7 is symmetric if (C, t2,tl) is also
a confusion, otherwise 7 is asymmetric.

Example 12. (1) Consider the EN system M and the confusion (C, t l , t2) from
Example 10 (Fig. 22). Since (C, t2, tl) is not a confusion, (C, t l , t2) is a ci confu-
sion that is asymmetric (see also Example 11(1)).

(2) Consider the EN system in Fig. 25. For C = Cin = {pl,p3}, (C, tl,t2) is
a ci confusion and (C, t2 , t l) is a ci confusion. Hence (C, tl,t2) is a ci confusion
that is symmetric.

(

E

(

t3

Fig. 25. A symmetric confusion.

~P3

B t2

(3) The confusion (C, t l , t~) from Example 11(2) (Fig. 23) is a symmetric cd
confusion.

43

(4) The confusion (C, tl , t2) from Example 11(3) (Fig. 24) is a symmetric
confusion that is neither a ci confusion nor a cd confusion.

The above example shows that the division into ci and cd confusions is rather
independent from the division into symmetric and asymmetric confusions. We
will not consider the topic of confusion in more detail here, however we would
like to mention that the only nontrivial relation between these dividing lines is
tha t cd confusions are always symmetric (in fact, if (C, tl, t~) is a cd confusion,
then there is a transition t such that t c o n C and t is in conflict with both tl
and t2).

An EN system is said to be firee-choice if, for all transitions t l and t2,
°tt ¢q °t# # ~ implies "tl = °t2. This is a structural restriction on EN systems
that guarantees the absence of confusion as far as input-conflicts are concerned.
Requiring additionally that the system is contact-free (see Section 4.5), it is not
difficult to show that there is no confusion. The class of free-choice EN (and P / T)
systems is a large class with many interesting properties, see [Hac72, DesEsp95].

4 Equiva lences and N o r m a l Forms

When we wish to express in a formal, mathematical, way that two systems "are
similar to each other" or that they "behave in the same way", then we have to
define an equivalence relation on the class of all systems, such that the systems
that "are similar to each other" or "behave in the same way" form an equiva-
lence class. Such equivalence relations are particularly useful when one wants to
transform or optimize a system without changing its "behaviour", i.e., transform
a system into a "better", equivalent system. If R is a property of EN systems
such that for each EN system there is an equivalent one satisfying R, then we say
that R is a "normal form" for the class of EN systems. In this section we consider
several notions of equivalence and normal forms for EN systems. In particular,
we formalize the notion of a component of an EN system and show that every EN
system is equivalent with one that can be viewed as consisting of communicat-
ing concurrent components (where each of the components is sequential). Such
decompositions of Petri nets are studied, e.g., in [Hac72, DesEsp95]. A survey of
various notions of equivalence for EN systems is presented in [PomRozSim92].

4.1 E q u i v a l e n c e

The simplest (and least interesting) definition of equivalence is isomorphism.
Two EN systems are isomorphic if their underlying nets are isomorphic in such
a way that the initial configurations correspond to each other.

D e f i n i t i o n 27. Two EN systems M = (P, T, F, Cin) and M' --- (P', T' , F', C~n)
a r e isomorphic, denoted by M -: M ~, if there exist two bijections a : P -+ P~
and/3 : T -+ T ' such that u n d (M) - ~ u n d (M ') and c~(Cin) = C~n.

44

Thus, isomorphic EN systems have the same static structure. Now we will
try to capture the dynamic "behaviour" of EN systems through an equivalence
relation, as discussed above. For EN systems there are many possibilities to
define such a notion of equivalence, some weaker than others. If two systems are
isomorphic, then they will be equivalent for any of these notions. The underlying
idea for all the notions of equivalence that we will consider, is that "behaviour"
is mainly concerned with the actions (transitions) that occur during a run of the
system and not so much with the distribution of the global state of the system
Cover the places).

Our first notion of dynamic equivalence defines two EN systems to be equiv-
alent if there exist one-to-one correpondences between the transitions and the
configurations (not the places!), such that the correspondence between config-
urations is preserved by firing corresponding transitions. This means that the
systems "simulate each other's behaviour".

Defini t ion28. Let M -- (P,T,F, Cin) and M' = (P',T',F',C~n) be two EN
systems. Then M and M ~ are configuration equivalent, denoted by M ~ M ~, if
there exist two bijections a : CM -'~ CM' and/3 : useM(T) --~ useM,(T ~) such
that
(1) a(Cin) = C~ and
(2) for all C,D e CM and t e useM(T), C[t)MD iff ~(C)[[3Ct))M, aCD).

If we want to be more specific, then we say that M and M ~ are (a,/~)-
configuration equivalent, denoted by M ~ M ~.

It can directly be seen that ~ is indeed an equivalence relation on the class of
EN systems. In fact, configuration equivalence is strongly related to the configu-
ration graphs. It immediately follows from the definitions that two EN systems
are configuration equivalent iff their sequential configuration graphs are isomor-
phic. Hence here the behaviour of an EN system is identified with (represented
by) its sequential configuration graph, modulo isomorphism. According to The-
orem 21 this notion of behaviour covers also the concurrent behaviour of the
system.

T h e o r e m 29. Let M and M ~ be two EN systems.
Then M ~ M' iff SCG(M) =_ SCG(M') iff CG(M) - CG(M').

It is easy to see that M -= M ~ implies M ~ M ~, i.e., isomorphic EN systems
are configuration equivalent. On the other hand there exist configuration equiv-
alent EN systems that are not isomorphic (see the next example). Configuration
equivalence is thus weaker than isomorphism of EN systems.

Example 13. Let M be the EN system of Fig. 26 and M t the EN system of
Fig. 27. M and M' are not isomorphic. It is clear that C M = {{Pl}, {P3,P4},
{P2,P4}, {P5}, {Ps}} and C M ' = {{Pl}, {P2}, {P3}, {P4}, {Ps}}. All transitions
are useful. Let a : C M --~ C M ' and/3 : TM --~ TM, be the bijections defined as
fo l lows: = { p l } , = { p 2 } , = {p3} , = (p 4 } ,
a({p6}) = {Ps}, and/3(ti) = ti for all 1 < i < 6. Now it should be clear that

45

M ~ M'. The sequential configuration graphs SCG(M) and SCG(M ~) are
given in Figs. 28 and 29. It is easy to see that SCG(M) - 2 SCG(M~)" Note
that for both M and M' the configuration graph is the same as the sequential
configuration graph.

Pl

Fig. 26. An EN system M.

t6

The following technical lemma is often useful in proofs of configuration equiv-
alence.

L e m m a 3 0 . Let M = (P,T,F, Cin) and M t = (P',TI,F',C~n) be two EN sys-
tems. I ra is an injective function, (~ : C.M --+ 79(P'), and fl is a bijective function,

: USeM(T) ~ T' , such that

(1) = Gin and
(2) for all C,D e CM and t E useM(T),

C[t)MD implies ~(C)[Z(t))M,a(D), and
~(t) eonM, ~(C) implies t conM C,

then M ..~ M'.

Proof. We first prove the if-part of Definition 28(2). Let a(C)[fl(t))M,~(D).
Then]~(t) eonM, ~(C) and thus t conM C. Let C[t)ME. Then ~(C)[~(t))M, a(E).
Hence aCE) = a(D). Since c~ is injective, E -- D and thus C[t)MD.

To prove that a is a bijection between CM and CM, we first show that
(~(C) E CM, for every C E CM. This is done by induction on C. For C =
Cin, a(Cin) = C~n E C.M' by (1). Now assume (as induction hypothesis) that

Pl

3

)p2 p4(

lt t£

46

Fig. 27. An EN system M' configuration equivalent with the EN system M of Fig. 26.

f P3P4

/1,,
tl | P2P4

tI5 t6

P6

Fig. 28. The configuration graph of the EN system M of Fig. 26.

ol(C) e CM' and let C[t)MD. We have to prove that a (D) E CM,. From C[t)MD
and (2) it follows that o~(C)[/~(t))M,O~(D). Since a(C) e CM,, we obtain that
a(D) E CM,. Next we show that a is surjective, i.e., tha t for every C' E CM,
there exists C E CM with ct(C) = C'. This is done in the same way, by induction
on C'. For C' = C~n, according to (1), we can take C = Cin. Now assume that
a (C) = C' for C E CM and let Cl[tl)M, DP. Since /~ is a bijection, there is a
t e use (T) with ~(t) = t'. Hence ~(t) c o n a(C) and thus t c o n C according
to (2). Let C[t)MD. Hence D E CM. Then ct(C)[/3(t))M,a(D); in other words

47

P2 1I !;
t4 l
t514 t6

P5

Fig. 29. The configuration graph of the EN system M ~ of Fig. 27.

C'[t')M,~(D), and thus (~(D) -- D'.
We still have to prove that ~ is a bijection from useM(T) to USeM, (TI), i.e.,

that ~(t) • useM,(T') for every t • useM(T). If t • useM(T), then there exist
C,D E CM such that C[t)MD. Hence ~(C)[~(t))M,~(D). Since a(C) • CM,,
j3(t) • useM,(T') . []

A similar, but less stringent, definition of equivalence is obtained by no longer
requiring the correspondence (~ between configurations to be a bijection, but just
a relation. In that way the systems can still simulate each other's behaviour "step
by step", but the configuration graphs no longer need to be isomorphic. Again,
the correspondence between the transitions is a bijection because we are mainly
interested in the transitions (modulo their identity) of a system.

Def in i t i on 31. Let M = (P, T, F, Cin) and M ' -- (P ' , T' , F ' , C~,~) be two EN
systems. M and M t are weakly configuration equivalent, denoted by M ~--w M *,
if there exists a relation (~ C CM x CM, and a bijection ~ : use(T) -~ use(T~),
such that
(1) (Cin, Gin) E c~,
(2) for all C,D e CM, C' • CM', and t • use(T): if C[t)MD and (C,C') • ~,
then there is a D ~ • CM, such that Ct[/3(t))M,D ' and (D,D ~) • ~, and
(3) for all C',D' • CM,, C e CM, and t' E use(T') : if C'[t')M,D' and (C,C') •
~, then there is a D • EM such that C[~-l(t'))M D and (D,D') • ~.

In the literature the relation a is often called a bisimulation, and weak con-
figuration equivalence is then called bisimilarity or observation equivalence (see,
e.g., [Mil89]).

Condition (1) means that both systems start in corresponding configurations.
Condition (2) means the following: if both systems are in corresponding config-
urations and M takes a step by firing transition t, then M ~ can simulate that

48

step by firing the corresponding transition]~(t), after which M and M ~ are in
corresponding configurations again. Condition (3) says the same as condition
(2), with the roles of M and M I reversed.

As in the case of configuration equivalence, it can be shown also here (using
Theorem 20) that conditions (2) and (3) also hold for concurrent steps C[U)MD
and CI[]~(U))M , 0 I.

It is clear that configuration equivalent EN systems are also weakly configu-
ration equivalent. On the other hand there exist weakly configuration equivalent
EN systems that are not configuration equivalent (see the next example). Hence
weak configuration equivalence is weaker than configuration equivalence (as the
name already suggests!).

Example I~. Let M and M' be the EN systems in Figs. 30 and 32, respectively;
their (sequential) configuration graphs are given in Figs. 31 and 33, respectively.
Since SCG(M) has less nodes than SCG(M'), SCG(M) and SCG(M') are not
isomorphic, and so M and M ~ are not configuration equivalent. They are however
weakly configuration equivalent, with the bisimulation a that consists of the fol-
lowing pairs: ((Pl}, {Pl}), ((P2}, {P2}), ((P3}, {P3}), ({P3}, {P3, q}), ((P4}, (Pa}),
((Pa}, (P4, q}), ({P5}, (Ps, q}), and ((Ps}, (Ps}). For fl we take the identity.

a P2 b

--@

5

Fig. 30. An EN system M, weakly equivalent with the EN system M' of Fig. 32.

An even less stringent definition of equivalence is obtained by requiring only
that the firing sequences of two equivalent EN systems (bijectively) correspond
to each other, with no requirement at all on the configurations of the two EN
systems. Thus here the behaviour of an EN system M is defined as (represented
by) its set FS(M) of firing sequences, modulo the identity of the transitions. In
this way we abstract completely from the global states of the system.

Note that if fl : use(TM) --+ use(TM,), where M and M ~ are EN systems,
then fl(FS(M)) C_ use(TM,)*, see Section 2.

49

a j p2 " ~

Pl / c P3 d ~ p4

o\
P5 --f-.- P6

Fig. 31. The configuration graph of the EN system M of Fig. 30.

a P2 b

p3 d P4

P5

Fig. 32. An EN system M ~, weakly equivalent with the EN system M of Fig. 30.

De f in i t i on 32. Let M and M ' be two EN systems. M and M' are f ir ing sequence
equivalent, denoted by M ~fs M' , if there exists a bijection /~ : use(TM) --~

use(TM,) such that /~(FS(M)) = FS(M') .

Example 15. The (weakly configuration equivalent) EN systems M and M ' of
Example 14 (Figs. 30 and 32) are firing sequence equivalent because FS(M) =
FS(M') = {)~, a, c, e, ab, cd, el , abd}.

Even though firing sequence equivalence abstracts completely from the con-
figurations, it turns out to be the same as weak configuration equivalence! This

P2 b . P3 . d . p4

,~ -~Pl P3q d P4q

Psq f P6

Fig. 33. The configuration graph ofthe ENsys temM' of Fig. 32.

50

is essentially due to the fact that firing a transition leads from a configuration
to a unique next configuration (see [Eng85, Mi189, PomRozSim92]).

T h e o r e m 33. Two EN systems are firing sequence equivalent iff they are weakly
configuration equivalent.

Proof. Let M and M' be two EN systems.
First assume that M ~w M', with bisimulation ~ and bijection 8. It suf-

fices to prove that /~(FS(M)) C_ FS(M'): by symmetry this also proves that
/3-1(FS(M')) C_ FS(M).

It follows directly from the definition of weak configuration equivalence that
each event t of M can be simulated by event ~(t) of M' in such a way that the
relation a between the (old and new) configurations continues to hold. Hence
each firing sequence x of M can be simulated in such a way by the sequence ~(x)
of M'. This implies that 8(x) is a firing sequence of M'. Formally, we use the
following extension of Definition 31(2), which can easily be proved by induction
on Ixl: for all C,D E CM, C t • CM', and x • use(TM)*:

if C[x)MD and (C, C') • a, then there exists D' E CM, such that
C'[8(X))M,D' and (D,D') • a.

Taking C = Cin and C' = C~n, this shows, by Definition 31(1), that ifx • FS(M)
then 8(x) • FS(M').

Now assume that M = (P, T, F, Cin) and M' = (P', T', F', C~n) are firing
sequence equivalent, with bijection 8- Hence, if x is a firing sequence of M,
then 8(x) is a firing sequence of M', and vice versa. This leads to the following
definition of the relation a C_ CM X CM, :

(C,C') • a iff 3x • T* : Cin[x)MC and C~nLS(X))M,C'.

It is straightforward to verify that ct is a bisimulation, i.e., that a and/3 sat-
isfy the three conditions in Definition 31. For condition (1) take x =)~. For
condition (2), assume that Cin[X)MC and Ctin[8(~))M,C t, and that C[t)MD.
Then Cin[xt)MD. Thus xt is a firing sequence of M, and so 8(xt) is a firing
sequence of Mq Hence there exists D' • EM, such that C~n[8(xt))M, Dq Clearly
(D,D') • a. It remains to prove that C'[8(t))M,D'. Since 8(xt) = 8(x)8(t),
there exists E' • CM, such that C~n[8(X))M,E' and E'[8(t))M,D'. Since the
firing of 8(x) leads from C~n to a unique configuration, E' = C' and thus indeed
C'[8(t))M,D I. Condition (3) can be proved analogously. 12

Since configuration equivalence implies weak configuration equivalence, the
following corollary is obtained from the above theorem.

Corol la ry 34. I f two EN systems are configuration equivalent, then they are
also firing sequence equivalent.

This corollary can also be seen directly: if two EN systems M and M' are
configuration equivalent, then they have isomorphic configuration graphs and
hence FS(M) and FS(M') are recognized by isomorphic finite automata (see
Theorem 12).

51

To recapitulate, in this subsection we have introduced four equivalence rela-
tions for EN systems, of which one is static (isomorphism) and the other three
are dynamic, depending on the intuitive notion of "behaviour". The following
relationships hold between these four equivalences: isomorphism implies config-
uration equivalence, which in turn implies firing sequence equivalence, which
equals weak configuration equivalence. Thus in formal notation we have, for EN
systems M and M ~,

M =- M ' =~ M .~ M ~ ~ M ~'fs M t ¢~ M ,.~w M t.

4.2 R e d u c t i o n

We now turn to normal forms for EN systems.
It is intuitively natural to assume that an EN system contains no "super-

fluous" transitions and places, hence in particular no useless transitions and no
isolated places. Such transitions and places clearly play no part in the behaviour
of the system. We will formalize this intuition by showing that for every F,N
system M there exists an equivalent EN system M ~ containing useful transi-
tions and nonisolated places only. This holds for the strongest dynamic notion
of equivalence from the previous subsection, viz. configuration equivalence.

De f in i t i on 35. An EN system M is reduced if all transitions of M are useful.
M is strongly reduced if M is reduced and has no isolated places.

Our first normal form result is the following.

T h e o r e m 36. For every E N system M there exists a reduced E N system M ~
such that M ~ M ~.

Proo]. Let M = (P, T, F, Cin). We construct M t by simply removing all useless
transitions. Let M' be the EN system (P, T r, F ', Ciu) with T' = useM(T) and
F' = F M ((P x T ') U (T' × P)). It is clear that M and M ~ even have the same
sequential configuration graph and thus are configuration equivalent. Hence M '
contains only useful transitions and is thus reduced. []

This theorem can be strengthened as follows.

T h e o r e m 37. For every E N system M there exists a strongly reduced E N system
M ~ such that M ,~ M ~.

Proof. Let M = (P, T, F, Cin). According to Theorem 36 we may assume that
M is reduced, i.e., useM(T) = T. We now simply construct M ~ by removing
all isolated places. Define use(P) = {p e P I nbh(p) # o}; thus use(P) is the
set of nonisolated places of M. Let M' = (p, , T, F, C~n) with p l = use(P) and
C~n = Ci,, N pt . Obviously M ~ has no isolated places.

Define the function (~ : CM -+ 7)(P ') with ~(C) = C N P' for all C E CM
and let /~ be the identity on T. We prove that M ~,~ M ' using Lemma 30. It

52

is easy to prove by induction on C that , for all C E CM, C - p i = G i n - pt
(intuitively this holds because the marking of the isolated places never changes).
This implies that a is injective. Also ct(Cin) = C" n. By Lemma 30 it now suffices
to prove that C[t)MD iff C 1"1 P'[t)M,D ffl P'. This can easily be proved using
Lemma 7, because (C N P~) - (D N P ') = (C - D) A P ' (for arbitrary sets) and
"t A P~ = °t, and analogously for D - C and t*. Hence M ~ is (a, ~)-configuration
equivalent with M. Finally, by Definition 28, ~ is a bijection between useM(T)
and useM, (T). This implies tha t useM, (T) = T. Hence M t is reduced and thus
strongly reduced. O

Example 16. According to the constructions in the proofs of Theorems 36 and 37,
the EN system M in Fig. 34 is transformed into the equivalent strongly reduced
EN system M ~ of Fig. 35: first the useless transition ta is removed and then the
isolated places Pr and Ps are removed.

Pl P2 P3

t3 L_I

Fig. 34. An EN system with useless transition t3.

We will now show that a strongly reduced EN system contains no "superflu-
ous" places in the following sense: for every condition there exists a configuration
in which this condition holds, and there exists a configuration in which this con-
dition does not hold. Hence there are no void, static conditions that either always
hold or never hold.

T h e o r e m 38. Let M = (P, T, F, Cin) be a strongly reduced EN system. For
every p E P there exist configurations C, D E CM such that p E C and p ~ D.

53

Pl P2 P3

Fig. 35. A strongly reduced EN system, configuration equivalent with the EN system
of Fig. 34.

Proof. Since p is not isolated, there is a transit ion t such tha t t E nbh(p) . Since
t is useful, there is a reachable configuration E with t c o n E. Let E[t)E'. If
t E p°, then p E E and p ~ E ' . And if t E "p, then p E E ' and p ~ E. []

We have now proved tha t isolated places and useless transit ions can be re-
moved from an EN system M. But, in general, there are also other kinds of
"superfluous" places and transitions, in particular when M is not simple (see
Definition 2(2,3)). There are two types of simplicity, which we will now consider
from this viewpoint.

First assume tha t M is not P-simple. Then there are two distinct places p
and q such tha t "p = °q and p° = q°. I t is intuitively clear tha t one of these two
places is superfluous. It can easily be shown that the removal of either p or q
results in an EN system tha t is configuration equivalent with M. Hence for every
EN system there exists a configuration equivalent strongly reduced EN system
tha t is P-simple.

Now assume that M is not T-simple. Then there are two distinct transitions
s and t such that °s -- "t and s* = t °. Intuitively one of these two transitions
is again superfluous. However, if s and t are useful, then the removal of either s
or t does not result in a configuration equivalent EN system, simply because the
number of useful transit ions of two configuration equivalent EN systems must
be equal (~3 is a bijection). We will now show that T-simplicity is not a normal
form for EN systems, not even with respect to the weakest kind of equivalence
(viz. firing sequence equivalence).

T h e o r e m 39. There exists an EN system M such that for every EN system M' :
if M' ~fs M, then M' is not T-simple.

Proof. The following technical proper ty of an (arbitrary) EN sys tem M ' will
be useful in our proof: if s, u E TM, and there exists an x E T ~ , , such tha t
xsus E FS(M') , then s ° _C °u and °s C_ u °. This is proved as follows. Since
xsus E FS(M') , there exist configurations C, D1, D2, and E of M ' such tha t
C[s)D1, DI[u)D2, and D2[s)E. Since D1 - D 2 = "u, s ° C_ D1, and s ° AD~ = g ,

54

we have s ° C_ °u. Since D2 - D1 = u °, *s n D1 = ~, and °s c_ D2, we have
°8 C '~°.

Now consider the EN system M = (P , T , F , Cin) with P = {p ,q} , T =
{ s , t , u } , Cin = {p}, °s = °t = u ° = {p} and s* = t ° = °u = {q}. Suppose
that M ' is an EN system that is firing sequence equivalent with M, and assume
for the sake of simplicity that FS(M') = FS(M) (i.e., that i5 is the identity).
Since s u s • FS(M) = FS(Mt), the technical property given above implies that
s ° C_ °u and °s C u t hold in M' . Likewise it follows from s u s u • FS(M') tha t
u ° _C °s and °u C_ s ° (take x = s and interchange s and u in the statement of
the above technical property). Hence s ° = °u and *s = u ° in M ~. Analogously
we have t ° = °u and °t -- u ° in M r. Hence s ° = t ° and °s = °t in M r, and M r
is thus not T-simple. []

We would like to point out that the difference between P-simplicity and T-
simplicity demonstrated above is a direct consequence of the fact that we are
more interested in transitions than in places (which is formally expressed in our
definitions of equivalence by requiring the existence of a bijection ~ between the
useful transitions).

Note that it is also not possible to find for every EN system M a firing
sequence equivalent EN system M r that has only live transitions. In fact, liveness
of a transition t of M means (cf. Definition 8(6)) tha t for every x E FS(M) there
exists y E T ~ such that x y t E FS(M). This implies that if ~(FS(M)) = FS(M') ,
then t E TM is live iff f~(t) E TM, is live. Hence liveness of transitions is preserved
by firing sequence equivalence.

4.3 Sequential EN Systems

An EN system can often be bet ter understood when it can be seen as several
communicating concurrent subsystems (or components), where each such sub-
system is "simpler" (can be easier understood) than the whole system itself. It
would be particularly desirable if the considered EN system could be decom-
posed into subsystems that no longer contain concurrency themselves, i.e., into
sequential EN systems. Though this is not always directly possible, we will show
in the next subsection that every EN system is equivalent with such a system.
Hence "sequentially decomposable" systems are a normal form for EN systems.

In this subsection we define sequential EN systems and study several of their
properties. We call an EN system sequential if its global states are not distributed
(see the beginning of Section 3.3).

D e f i n i t i o n 40. An EN system M is sequential if # C = 1 for all C E CM.

Example 17. The EN systems of Figs. 27 and 30 are sequential. This can be seen
from their configuration graphs, which are given in Figs. 29 and 31, respectively.

Here is a sufficient (structural) condition for sequentiality; it is satisfied by
the EN systems of the previous example.

55

L e m m a 4 1 . If M = (P,T, F, C~n) is an E N system for which
(1) #Cin = 1, and
(2) # (' t) = # (t °) = 1 for all t E T ,
then M is sequential.

Proof. It is easy to prove by induction on C that # C = 1 for all C E CM. []

Systems that just satisfy the second property of this lemma are called state
machines or S-systems in the literature, see, e.g., [Hac72, DesEsp95].

Finite automata, which are the usual model of finite-state sequential systems,
are closely related to EN systems with the two properties of Lemma 41. The
differences are that finite automata also have final states, that their transitions
are labeled, and that transitions t with °t = t ° are allowed (cf. Definition 1(4)).
These additional features have also been considered for Petri nets in the literature
(see, e.g., [Pet81, Tau89, Och95]).

It should be clear that in the case of reduced EN systems the two properties
of Lemma 41 characterize sequentiality. In fact, for a sequential EN system M, a
transition with more than one place in its input- or output-set must be useless.
If, moreover, M is strongly reduced, then every configuration {p} is reachable,
because every place p is the input- or output-set of at least one useful transition.

L e m m a 42. Let M = (P, T, F, Cin) be a reduced E N system.
(1) M is sequential iff

(i) #Cin = 1, and
Oi) # (' t) = # (t ') = 1 for all t E T.

(2) I f m is stron91y reduced and sequential, then CM = { {p} I P E P}.

From this lemma it easily follows that isomorphism and configuration equiv-
alence coincide for strongly reduced sequential systems.

T h e o r e m 4 3 . Let M and M ~ be two strongly reduced sequential EN systems.
Then M ~ M ' iff M -~ M' .

Every strongly reduced sequential system is in fact isomorphic with the finite
automaton constructed in the proof of Theorem 12.

The definition of a sequential EN system (Definition 40) is "place oriented":
the global state of the system is not distributed. Another possibility is a "tran-
sition oriented" definition, where we require that the global state transitions are
not distributed (see the beginning of Section 3.3), i.e., that concurrent steps do
not occur (cf. the discussion of the notions of sequentiality and concurrency in
Section 3.5). EN systems satisfying this property are "concurrency-free".

Def in i t i on 44. An EN system M is concurrency-free if there do not exist C E
CM and t l , t2 E TM such that {t l , t2} con C.

It should be clear that every sequential EN system is concurrency-free. This
does not hold the other way around: the EN systems of Figs. 26 and 32 are

56

concurrency-free (as can be seen from their configuration graphs in Figs. 28
and 33, respectively), but not sequential. It is shown in Examples 13 and 14
that these EN systems are (weakly) configuration equivalent with sequential
EN systems. However, there exist concurrency-free EN systems that are not
even firing sequence equivalent with any sequential EN system. To show this we
observe that for a sequential EN system M = (P, T, F, Cin) and for x, y, z E T*
and t e T, if xt, yt, xz e FS(M) then yz E FS(M); this is because if Cin[x)C
and Cin[y)D, then C = "t --- D. The concurrency-free EN system of Fig. 36 does
not satisfy this property: take x = tt , y = t2, t = t3, and z = t3t2.

-~t3

Fig. 36. A concurrency-free EN system that is not firing sequence equivalent with any
sequential EN system.

Finally we observe that Theorem 43 does not hold for concurrency-free sys-
tems: the EN systems M (Fig. 26) and M I (Fig. 27) from Example 13 are con-
figuration equivalent, but not isomorphic.

4.4 Subsys tems and Sequent ia l C o m p o n e n t s

In this subsection we will show that every EN system is configuration equivalent
with an EN system that can be decomposed into sequential subsystems, i.e.,
in subsystems that, considered on their own, are sequential EN systems (see
Definition 40). Sequential subsystems will also be called sequential components.

We first define the notions 'subsystem' and 'sequential component' and then
study several of their characteristics. These notions, or variants of them, can be
found in, e.g., [Hac72, DesEsp95].

Intuitively, a subsystem M ~ of M consists of a set of places of M (the local
states of the subsystem) together with all transitions of M that can put tokens
in these places and/or can remove tokens from these places, i.e., all transitions

57

that belong to the neighbourhoods of these places. The flow relation F t of M '
is completely determined by the flow relation F of M: a place and a transition
of M t are connected by F t i f f they are connected by F . The same holds for the
inital configuration: a place of M ~ belongs to the initial configuration of M ~ iff
it belongs to the initial configuration of M. Hence the subsystem is uniquely
determined by its set of places.

D e f i n i t i o n 45. Let M -- (P ,T ,F , Cin) and M' = (P' ,T' ,F' ,C~,~) be EN sys-
tems. M t is a subsystem of M if:
(1) P ' C _ P , T ' C _ T , F ' C _ F , C ~ n CC~n,
(2) Vp e P ' : nbhM(p) C nbhM,(p) , and
(3) Vp e P ' : if p e Cin, then p E C~n.
If, moreover, M ~ is a sequential EN system, then M ~ is a sequential component
of M.

Note that the empty EN system (~, g , ~ , g) and M itself are subsystems of
M. They will be called the trivial subsystems of M.

In the next lemma we state some properties of subsystems that are easy to
prove.

L e m m a 4 6 . Let M = (P, T, F, Cin) and M' = (P', T' , F', C~) be E N systems.
(1) M' is a subsystem of M iff

P ' C_ P , T ' -- n b h M (P ') , F' = F M ((P ' x T ') U (T ' x P ')) , andC~n = CinMP'.
(2) If M ~ is a subsystem of M then:

for every t E T' , (°t)M' = (°t)M N P' and (t °) M , : (t°)M N P' ,
for every t E T - T r, nbhM(t) M P~ = O,
for every p E P' , (°P)M' = (*P)M and (P°)M' = (P°)M.

Lemma 46(1) says that a subsystem is indeed completely determined by its
set of places. However, not every set of places of an EN system determines a sub-
system! Formally this means that , for a given EN system M = (P, T, F, Cin) and
a given subset P' of P , the 4-tuple M' = (pt , T t, F', C~n) with T' = nbhM(P') ,
F ' = F M ((P ' x T ') U (T ' x P ')) , and C~n = Cin N P' does not have to be
an EN system. For example, take P = {p,q}, T = {t}, F ---- {(p,t), (t ,q)}, and
Cin = {p}, and consider P ' -- {p}. Then T ' = {t}, F ~ = {(p, t)}, and C~n = {p}.
But M ~ is not an EN system because (P t , T ~ , F) is not a net: (t°)M , = O (see
Definition 1(3)).

If the 4-tuple M j determined by the set p t (as in Lemma 46(1)) is an EN sys-
tem, then we call M t the subsystem of M determined by P~. We now characterize
the sets of places tha t determine subsystems.

L e m m a 4 7 . Let M = (P ,T ,F , Cin) be an EN system and let S C P. There
exists a subsystem M ~ of M with PM, = S i1~ °S = S °.

Proof. (Only-if) Assume that M' = (S, T ' , F ' , C~n) is a subsystem of M. We first
prove that °S C_ S ° (where the ° is of course the one of M). Take a t E *S and let
p E S such that t E "p. Then, according to Definition 45(2), t E nbhM,(p) and

58

thus t E T'. Definition 1(3) then implies that there exists q E S with (q, t) E F',
and thus (q,t) E F. This means that t E S °. The inclusion S ° C_ *S can be
proved analogously.

(If) Assume that *S = S °. Define M' = (P', T' , F', C~n) with P' = S and T',
F ' , and C~n as in Lemma 46(1). It is easy to check that M' is an EN system, i.e.,
M ' satisfies the conditions from Definitions 1 and 5. In particular, the equality
°S = S ° guarantees that Definition 1(3) is satisfied. According to Lemma 46(1),
M' is then a subsystem of M. [:]

Note that condition (3) from Definition 1 is essentially used in the above
proof.

Since a subsystem is uniquely determined by its set of places, in the sequel
we will often make no distinction between a subsystem and its set of places.
Thus, according to Lemma 47: a set of places S is a subsystem iff "S = S °. This
property of S has the following equivalent formulation: for all t E T, °t n S ~
iff t ° n S # 0. Note also that, for a subsystem M' = (S, T', F , C~n) of M,
T ' = nbh(S) = °S U S ° according to Lemma 46(1), and hence T ~ = °S = S °.
Finally note that, according to Lemma 47, the union of two subsystems is again
a subsystem (or more precisely: the union of the sets of places of two subsystems
determines a subsystem).

Example18. (1) The subset {P3,P5} of the set of places of the EN system M
from Fig. 37 is a subsystem of M; this can easily be proved using Lemma 47.
The subsystem determined by {P3,P5} is M' = (S, T, F, Cin) with S = {Pa,Ps),
T = {t3,t4}, F = {(P3, t4), (t4,P5), (Ps, t3), (ta,P3)}, and Cin = {p3}. Since M'
is sequential, M ' is thus a sequential component of M. Another subsystem of M
is {pl,P2,p3,p4}; for this subsystem T = { t l , t2 , t3 , t4} , F = {(t l ,pl) , (Pl , t2) ,
(t2,P2), (p2,t3), (t3,P3), (P3,t4), (t4,P4), (p4, t l)} , and Cin = {Pl,P3}. Since
#C~n > 1 this is not a sequential component of M. Using Lemma 47 one can
check that the only other subsystems of M are the trivial ones, i.e., the empty
subsystem and the system M itself.

(2) Subsystems of the EN system M of Fig. 9 are {Pl,p2} (the consumer),
{Cl, c2} (the producer), and {Pl,P2, Cl, c2} (the union of the producer and the
consumer). The producer and the consumer are both sequential components of
M, but their union is not. M has no other nontrivial subsystems. In particular
{b} (the buffer) is not a subsystem of M. Thus, our notion of subsystem is more
restricted than suggested in the discussion of the producer/consumer problem
in Section 3.1, where the buffer was viewed as a component of the system. In
Example 23 (Fig. 47) we will see that there is a slight variation of M in which
the buffer is also a sequential component.

We will give (in Theorem 49) a characterization of the sets of places that de-
termine sequential components. First we prove an important property of subsys-
tems: when we restrict a reachable configuration of an EN system to a subsystem,
then we obtain again a reachable configuration of the subsystem.

L e m m a 4 8 . Let M' = (S ,T , F ,C~n) be a subsystem of an E N system M =
(P,T ,F ,C~,) .

59

Pl t2 P2

tl

P4 t4 P3

t3

Fig. 37. An EN system with two nontrivial subsystems: {pa,ps} and {p~ ,p2, pa,p4}.

(1) For all C C P, if C E CM then C n S E CM, .
(2) For all t E T', if t E useM (T) then t E useM, (T').

Proof. Before proving (1) and (2), let us consider configurations C, D of M and
a transition t of M such that C n S E CM, and C[t)MD. Then we claim the
following: i f t ~ T' then DNS = COS, and i f t 6 T' then (COS)[t)M,(DDS). To
prove this, note first that, by Lemma 7, C - D = (°t)M and D - C = (t')M, and
hence (G A S) - (DNS) = (° t) M n S and (D A S) - (CDS) = (t°)M AS. I f t ~ T',
then, by Lemma 46(2), (°t)MNS = O and (t°)M AS -~ 0, and so D D S = CDS.
If t e T', then, by Lemma 46(2), ('t)M, = ('t)M N S and (t')M, = (t°)M N S,
and so, by Lemma 7, (C n S)[t)M, (D N S). This proves our claim.

(1) We prove this by induction on C. By Lemma 46(1) the statement holds
for C = Ci,~. Now assume that C N S E CM, and let C[t)MD for a t E T. By the
above claim, either t ~ T' and D N S = CNS, or t E T' and (CAS)[t)M,(DAS).
In both cases, D n S E CM,.

(2) Assume that t eonM C for a C E CM and let C[t)MD. By (1), C n S E
CM,. Thus, by the above claim, (C n S)[t)M, (D n S). Hence t conM, C n S. []

In the next example we will show that the mapping from CM to CM, that
maps C to C n S (see Lemma 48(1)) need not be surjective nor injective.

Example 19. Let M be the EN system of Fig. 38. Its configuration graph is drawn
in Fig. 39.

(1) Figure 40 shows a subsystem M1 of M, and Fig. 41 gives the configuration
graph of M1. For {Pl,Ps} E CM1 there does not exist C E CM such that C n
PM1 = {Pl,Ps}; this also holds for {P4,P5} E CM1- Furthermore, note that
though M is a concurrency-free EN system, M1 is not.

(2) Figure 42 shows a subsystem M2 of M (and of M1), and Fig. 43 gives the
configuration graph of M2. This subsystem is a sequential component of M. The
configurations {Pl, P2, P3 }, {P2, Pc,/)4 }, {/)2, P6 } E CA/ all give the configuration
{p2} e CM2 when intersected with PM2.

0 a~

o

O
0

4N
b

61

Po

tl

Pl P2

k._) p5

Fig. 40. A subsystem M1 of M.

Po

PiP2

t2t4
P2P4 I PiP5

t4 t t2

~ P 6 [P4P5

PsP6

Fig. 41. The configuration graph of M1.

Po

P2

62

Fig. 42. A subsystem M2 of M.

P5

Po

If1
P2

I t4
P5

Fig. 43. The configuration graph of M2.

Compare the following characterization with Lemma 42(1).

T h e o r e m 49. Let M = (P, T, F, Cin) be a reduced E N system and let S C_ P.
Then the following statements are equivalent.
(1) There is a sequential component M ~ of M with PM, = S.
(2) # (C n S) = 1 for all C e aM.
(3) (i) # (Cin n S) = 1, and

(ii) Vt e T : # (' t m S) = # (t ° mS) = l or # (' t m S) = # (t " OS) =O.

Proof. (1) implies (2): Follows directly from Lemma 48(1) and the definition of
a sequential EN system (Definition 40).

63

(2) implies (3): To prove (ii), consider a t • T. Since M is reduced, there is
a C • ~M with t con C. Since # (C V) S) = 1, # (° t M S) < 1. Now let C[t)D.
Since # (D M S) = 1, it is easy to see that # (° t M S) --- # (t ° M S).

(3) implies (1): Condition (3)(ii) implies that °S = S °. Hence, according to
Lemma 47, there exists a (unique) subsystem M ~ of M with PM, : S. Then, by
Lemma 46(1), #((Cin)M,) = 1 and, by Lemma 46(2), #((*t)M,) = #((t°)M ,) =
1 for all t E TM,. Lemma 41 now implies tha t M ~ is sequential. [2

According to Theorem 49(2) a sequential component of an EN system is
always in exactly one local state (there is always exactly one token in its set of
places).

Subsystems S that just satisfy proper ty 3(ii) of Theorem 49 and, moreover,
are strongly connected (viewed as graphs), are called state machine components
or S-components in the literature (see, e.g., [DesEsp95]). Such subsystems contain
an arbitrary, but fixed number of tokens.

We will now show that, for strongly reduced EN systems, sequential compo-
nents themselves do not have nontrivial subsystems and are thus not decompos-
able.

L e m m a 50. Let M be a strongly reduced sequential EN system and let M ~ be a
subsystem of M. Then M' is trivial.

Proof. Let M = (P,T,F, Ci~) and M ' = (S,T',F',C~n). By Lemma 47, °S =
S °. By Lemma 46 it suffices to prove that S = o or S = P. Assume that
S ~ O; then it remains to prove that S = P . Since M is strongly reduced,
CM ---- {{p} [p E P} according to Lemma 42(2). Thus for all t E T and p, q E P ,
if {p}[t)M{q}, then (p E S iff q E S). This implies that for all x E T* and
p, q E P , if {p}[x)M{q}, then (p E S iff q E S). Now let Cin = {Po}. Take a
q E S. Since {q} e CM, {pO}[X)M{q} for some x E T*. Thus P0 • S. To prove
that P C S, consider an arbitrary p • P . Since {p} • CM, {PO}[X)M{p} for
some x • T*. Thus p • S, and so S = P. []

T h e o r e m 51. Let M be a strongly reduced EN system, and let M ~ be a sequential
component of M. Then M ~ has no nontrivial subsystems.

Proof. Since M is reduced, Lemma 48(2) implies that M t is also reduced. Since
M has no isolated places, neither does M ~ (by Definition 45(2)). Hence M ~ is
strongly reduced, and so, by Lemma 50 has no nontrivial subsystems. []

The following example demonstrates tha t this theorem does not hold the
other way around.

Example20. Let M be the EN system from Example 19 (Fig. 38). Figure 44
shows a subsystem M3 of M that is not sequential. It is straightforward to
verify that M3 has only trivial subsystems.

We now define the notion of a decomposition of an EN system into subsys-
tems, and in particular into sequential components. It is called a "covering" of
the EN system (see, e.g., [Hac72] or Chapter 5 of [DesEsp95]).

64

Fig . 44. A subsystem Ma of M.

/90

P~

t4

P3

D e f i n i t i o n 52. Let M = (P, T, F, Cin) be an EN system.
(1) A set {MI, . • . , M~} of subsystems of M, n _> 0, with M~ = (Si, Ti, Fi, (Cin)i)

n S n n for 1 < i < n, is a covering of M if P = (Ji=l 4, T = Ui=l Ti, F = Ui=l Fi, and
n C Gin = Ui=I(in)i.

(2) M is covered by sequential components if there exists a covering { M x , . . . , M~},
n > 0, of M such that Ms is a sequential component of M for every 1 < i < n.

Since a subsystem can be identified with its set of places, it should be clear
that a set of subsystems of M is a covering of M if their union is the set of places
of M.

L e m m a 53. Let M = (P, T, F, Cin) be an EN system, and let, for every 1 <_
i < n (with n > 0), Mi = (Si,Ti, Fi, (Cin)i) be a subsystem of i . Then
{ M i , . . . , Mn} is a covering of M iff P = (Jinx Si.

An EN system that is covered by sequential components M 1 , . . . , Mn can
intuitively be viewed as a system consisting of the communicating concurrent
subsystems M I , . . . , Mn, where each subsystem Mi is sequential. The commu-
nication between components takes place through synchronization on shared

65

transitions. Components may also share places, meaning that the sets of places
S1 , . . . ,Sn of M1, . . . , Mn, respectively, need not be disjoint. If there is a token
in place p E $1 • $2, then this means that both components M1 and M2 are in
the same local state p. Hence a token in p represents all components to which
p belongs. Note that, in general, an EN system can have several coverings by
sequential components, i.e., several interpretations as a set of communicating
components.

Exaraple21. (1) The EN system M of Fig. 45 is covered by one sequential com-
ponent, viz. M itself. The system itself is sequential. With Cin = {pl,p2} the
system has no covering by sequential components.

P3

Pl t2 P2

Fig. 45. A sequential EN system.

(2) The only sequential component of the EN system of Fig. 37 is {p3,p5},
see Example 18(1). We already saw in that example that Lemma 47 can be used
to conclude that Pl, P2, and p4 do not belong to any sequential component. It
is often quicker to use Theorem 49 for that purpose: for example, if S is the set
of places of a sequential component and P2 E S, then Pl E S and p3 E S by
Theorem 49(3)(ii), and hence #(Cin N S) = 2, contradicting Theorem 49(2).

(3) The EN system of Fig. 12 has a covering by two sequential components,
viz. {Po, Pl, P2, P4, P6 } and {Po, Pl, P3, Ps, P6 }. Intuitively, these two components
work on the same job in places po, pl, and P6, but work on different jobs when
they are in places p2,1o4 and P3, P5, respectively.

(4) The EN system of Fig. 2 is covered by three sequential components. In
terms of the sets of places, the components are: { w l , c l , r l } (component 1),
{w2,c2,r2} (component 2), and {p, cl, c2} (the permission component). If we
give the complete specification, then component 1 is the EN system (S, T, F, Cin)
with S = (w l , c l , r l } , T = { i n l , o u t l , d l } , F = { (w l , i n l) , (in l ,c l) , (Cl,OUtl),
(outl ,rl) , (r l ,dl) , (dl,wl)}, and C~n = {wl}; and analogously for compo-
nent 2. The permission component is then the EN system (S, T, F, Cin) with
S = {p, cl,c2}, T = { in l ,ou t l , in2 , out2}, g = {(p, inl) , (inl ,Cl), (Cl,OUtl),
(outl,p), (p, in2), (in2,c2), (c2,0ut2), (out2,p)}, and Cin -- {p}.

66

(5) The EN system of Fig. 9 is not covered by sequential components. Both
the producer ({Pl,P2}) and the consumer ({cl, c2}) are sequential components,
but the buffer b belongs to no sequential component (see also Example 18(2)).

(6) See Examples 19 and 20. M is the EN system in Fig. 38, and M1 and M3
are the subsystems of M in Figs. 40 and 44, respectively. It should be clear that
{M1,M3} is a covering of M. However, there does not exist a covering of M
by sequential components, since each subsystem M' that contains/93 must also
contain P2 and tl; then ~(tl* n PM') _> 2, and so, by Theorem 49, M' is not a
sequential component. M1 is covered by sequential components, but M3 is not.

We will now show that for every EN system M there exists a configuration
equivalent EN system M' that is covered by sequential components.

T h e o r e m 54. For every EN system M there exists a reduced EN system M'
that is configuration equivalent with M and that is covered by at most ~PM
sequential components.

In the remainder of this subsection we will prove this theorem. Note that
according to Theorem 36 we may assume that M is reduced. The proof technique
is based on the so-called complement construction.

Defini t ion 55. Let M be an EN system and let p, q E PM. Then p and q are
complementary, denoted by p coin q, if p* = *q and °p = q°.

Example22. Let M be the EN system of Fig. 37. It is clear that P3 corn P5, and
that there are no other complementary places.

In general a place can have several complementary places. If the EN system
is P-simple, then each place has at most one complementary place.

The complement construction is based on the following property of two com-
plementary places.

Lernrna 56. Let M = (P, T, F, Cin) be a reduced EN system. For all p, q E P,
{p, q} is a sequential component of M iff #(Cin O {p, q}) = 1 and p corn q.

Proof. We use Theorem 49(3). It is easy to check that, for arbitrary p, q E P,
p corn q iff S = {p, q} satisfies condition (ii) of Theorem 49(3) (where we use
Definition 1(4): "t n t ° = ~ for all t E T). []

If, moreover, M is strongly reduced, then the condition #(Cin n {p, q}) = 1
can be omitted from the statement of Lemma 56. Thus, for strongly reduced EN
systems, the complementary places are exactly the sequential components of size
two.

By Lemma 56, in a reduced EN system two complementary places p and q
(of which exactly one is in Gin) form a sequential component. That means that
there is a token in q iff there is no token in p. Viewing p and q as booleans, q
is the negation of p. The complement construction constructs a complement for
those places that do not yet belong to a sequential component. We do this place
by place, as follows.

67

T h e o r e m 5 7 . Let M be a reduced E N system and let po • PM. Then there exists
a reduced E N system M ~ that is configuration equivalent with M , such that:
(1) PM' = PM U {q0} with qo ~ PM,
(2) {Po, qo} is a sequential component of M ' , and
(3) for every S C PM,

S is a sequential component of M i1~ S is a sequential component of M ~.

Proof. Let M = (P, T, F, Cin). We define M ' - (P' , T', F ' , C~n) by setting
P ' -- P U (q0}, where q0 is a new place (i.e., q0 ~ P U T),
T' = T,
F' -- F U ((qo, t) l (t,po) • F } U ((t , qo) l (po,t) • F}, and
C' n -- Cin ifpo • Cin, and C' n = Ci~U (qo} ifpo • Cin.

To prove that M and M ~ are configuration equivalent, we define the function
: CM -+ •(P') by ~(C) -- C if po • C, and ~(C) -- C U (qo} ff po ~ C. Note

that (~ is injective (because ~(C) N P = C) and that ~(Ci~) = C~n. According
to Lemma 30 (with ~ the identity on T) it now suffices to prove that for all
C , D • C M a n d t • T ,

t conM, o~(C) implies t c o n u C, and (*)
C[t)MD implies c~(C)[t)M,C~(D). (**)

Implication (*) follows from: (*t)M = (' t)M, n P, (t*)M = (t°)M , n P, and
c~(C) O P = C. To prove (**) we distinguish three cases.
Case 1: Po • (t°)M. Then (°t)M, = (°t)M U {qo} and (t°)M , = (t°)M. More-
over P0 ¢ C and P0 • D, and so ~(C) = C u {qo} and (~(D) : D. Hence
(~(C) - a(D) = (C - D) U {qo} and (~(D) - ~(C) = D - C. Thus C - D : (*t)M
implies a (C) - a (D) -: (*t)M,, and D - C = (t °)M implies ~ (D) - a (C) = (t°)M ,.
By Lemma 7, this proves implication (**) for this case.
Case 2 (Po • (' t)M) and Case 3 (po ~ (°t)M U (t°)M) can be proved in a com-
pletely analogous way. Hence, by Lemma 30, M and M' are (c h ~)-configuration
equivalent. By Definition 28, USeM, (T I) : T , and so M' is reduced.

It is clear that (1) holds, (2) follows from Lemma 56, and (3) follows easily
from Theorem 49(3). O

Now, Theorem 54 follows directly from the repeated (at most # P M times)
application of Theorem 57. In this way, each place that did not yet belong to
a sequential component will be complemented and consequently, by Lemma 56,
covered by a sequential component.

Example 23. (1) The EN system of Fig. 46 is obtained from the one of Fig. 37 by
complementing places Pl,/)2, and Pa. (2) The EN system of Fig. 47 is obtained
from the EN system of Fig. 9 by complementing the buffer place b = b I. It is
covered by three sequential components: the producer (Pl,P2}, the consumer
(Cl,C2}, and the buffer {bf,be}. It should be clear that this EN system still
models the producer/consumer problem as discussed in Section 3.1. Rather than
treating place b itself as the buffer (which is full iff it contains a token), we now
represent the two possible states of the buffer by the two places b! (full buffer)
and b~ (empty buffer).

68

q2

Pl t2

U t4 P3

q4

Fig. 46. The result of complementing places Pl, P2, and p4 of the EN system of Fig. 37.

/
Cl Pl

I c

/
Fig. 47. The producer/consumer system with three sequential components.

4.5 Contact - freeness

In an EN system M, an event t has concession in a configuration C if it has
both input-concession (i.e., "t _C C) and output-concession (i.e., t* f3 C = ~).
A transition that has input-concession in C, need not have output-concession in
C. This is called contact, and is illustrated in Fig. 48. As an example, transition
f has contact in configuration {P2, b, cl} of the producer/consumer system in
Fig. 9; it cannot be fired because the buffer is full. Note that in the corresponding

69

configuration {P2, b f , cl } of the producer/consumer system of Fig. 47 transition
f does not have input-concession.

Fig. 48. Contact.

°t

In general, to decide whether t has concession in C, one has to check both the
pre-conditions and the post-conditions of t. However, if there is never contact in
M, then t has concession in C iff all the pre-conditions of t in C are satisfied:
thus one does not have to check the post-conditions of t!

For this reason EN systems without contact play an important part in the
theory of the behaviour of EN systems. They are formally defined as follows.

D e f i n i t i o n 58. Let M = (P, T, F, Cin) be an EN system.
M is contact-free if for all t E T and C E CM, if "t C C then t ° I"1 C = o .

Contact-free EN systems are also called safe EN systems. In fact, they are
the same as the safe P / T systems (assuming that the nets of P / T systems are
defined as in Definition 1).

Example 24. The EN system of Fig. 45 is contact-free (because it is sequential).
With Cin = {Px,P2} it is not contact-free.

We will now show that for every EN system there exists a configuration
equivalent reduced EN system that is contact-free. Hence contact-free EN sys-
tems are a normal form for EN systems. This is a simple corollary of the normal
form from the previous subsection.

T h e o r e m 59. If a reduced EN system M is covered by sequential components,
then M is contact-free.

70

Proof. Let M = (P, T,F, Cin) and let C E CM- Let "t C_ C with t E T and
assume that t ° A C ¢ ~. Let p E t ° NC and let S C_ P be a sequential component
o f M w i t h p E S. T h e n p E t ° n S and so # (t ° N S) = 1 = # (* t N S) by
Theorem 49(3). Hence there is a place q E *t N S C_ C M S. Thus # (C A S) >_ 2,
contradicting Theorem 49(2). [3

Theorems 54 and 59 imply that contact-freeness is a normal form.

T h e o r e m 60. For every EN system there exists a configuration equivalent re-
duced contact-free EN system.

Theorem 59 does not hold the other way around! The EN system of Fig. 49
has no sequential components, but it is contact-free. By (the proofs of) Theo-
rems 3.15 and 3.18 of [DesEsp95] (see also Section 7.3 of [Rei82]), the converse
of Theorem 59 does hold for the so-called T-systems (or marked graphs); in such
systems both p° and °p contain exactly one transition, for every p E P. In fact,
assuming the EN system to be strongly reduced, the converse of Theorem 59
even holds for the (larger) class of EN systems that are free-choice (see the end
of Section 3.5) and that have live transitions only (see Definition 8(6)); see Sec-
tion 4.2 of [Hac72] or Theorem 5.6 of [DesEsp95] (the S-coverability Theorem).
In these cases, the sequential components are even strongly connected.

Theorem 59 also provides a method to deduce contact-freeness, as demon-
strated by the following example.

Example25. (1) The EN system M in Fig. 45, with Cin = {pl}, is sequential
and hence contact-free according to Theorem 59. With Cin = {Pl,/92 } the system
clearly is not contact-free and hence, according to Theorem 59, it is not covered
by sequential components (see Example 21(1)).

(2) The EN system M of Fig. 12 is covered by two sequential components
(see Example 21(3)). Hence M is contact-free.

(3) The EN system M of Fig. 2 is covered by three sequential components
(see Example 21(4)) and is thus also contact-free.

(4) The EN systems of Figs. 46 and 47 are covered by sequential components
(see Example 23) and are thus contact-free.

The notion of 'contact-freeness' should not be confused with the notion of
'confiict-freeness' (see Definition 22). An example of an EN system that is both
contact-free and conflict-free, is the producer/consumer system of Fig. 47. Such
systems can be characterized as follows.

T h e o r e m 61. Let M = (P, T, F, Cin) be an EN system.
M is contact-free and conflict-free iff
for all C E C.M and all U C_ T with U ~ 0, if *U C_ C, then U con C.

If two transitions of a contact-free EN system have an output-conflict, in
some configuration, then they also have an input-conflict in that configuration
(cf. (3) of Section 3.5). Using this it can be shown that there is no confusion in
contact-free free-choice systems (see the end of Section 3.5).

71

Fig. 49. A contact-free EN system without sequential components.

5 P r o c e s s e s

The way in which we have formalized the concurrent behaviour of an EN system
in Section 3.4 still has a sequential flavour. The only difference with the sequen-
tial behaviour in Section 3.3 is tha t at each step, i.e., during each global state
transition, several transitions can be fired simultaneously. This may be viewed
as a formalization of simultaneity rather than concurrency. However, in general,
actions do not occur simultaneously but they may overlap in time, in an arbi-
t rary fashion. Thus, one component of a system can execute six actions while,
independently, another component executes two actions and par t of a third. In
this section we will define the notion of a "process" of an EN system, which
formalizes a concurrent run of the system, taking into account this feature of
concurrency. In order to abstract from the notion of time, as we did before, we
will only formalize that one action should be executed "before" another action,
or, tha t one action is one of the "causes" of another action (cf. (1) in Section 3.5).
Such a notion of causality between the events that occur during a run of the sys-
tem, is, in general, a partial order. It will be represented by a special type of
acyclic net, called "process net" (or causal net, or occurrence net).

In Section 5.1 we recall a number of notions concerning partial orders, and
in Section 5.2 we consider process nets and some of their formal properties. In
Sections 5.3 and 5.4 we introduce and study the processes of an EN system.

The theory of process nets and processes originated in [Pet76], and is pre-
sented in detail in [BesDev87, BesFer88] (for EN systems see in particular Sec-
tion 4.4 of [BesFer88]).

5.1 Part ial Orders

We start this subsection with the usual definition of a (strict) partial order.

72

D e f i n i t i o n 62. Let A be a finite set. A binary relation p C_ A x A is a partial
order on A if p is irreflexive and transitive; (A, p) is also called a partially ordered
set. A subset B of A is linearly ordered if for all a, b E B: a p b or b p a or a = b.

With every partial order p we can associate two important relations lip and
COp.

D e f i n i t i o n 63. Let (A, p) be a partially ordered set. Then lip C_ A x A and
cop C_ A × A are the binary relations such that , for every a, b E A,

(1) a lip b i f f a p b or b p a or a = b, and
(2) a c o p b i f f - ~ a p b a n d - ~ b p a .

For a partially ordered set (A, p), lip is called the line relation of p and COp
is called the concurrency relation of p.

Note that the irreflexivity of p implies tha t a co a a for every a E A. Two
distinct elements of A are either comparable (li) or incomparable (co).

L e m m a 64. Let (A, p) be a partially ordered set. Then, for every a, b E A,
(1) a lip b or a cop b, and
(2) (a lip b and a cop b) iff a = b.

The maximal cliques of lip and COp play an important part in what follows.
Maximal cliques are now defined for arbi t rary reflexive symmetric relations (and
note that lip and COp are reflexive and symmetric).

D e f i n i t i o n 65. Let A be a finite set, let a C_ A x A be a reflexive symmetric
relation, and let B C_ A. B is a a-clique if a a b for all a,b E B, and B is a
maximal a-clique if B is a a-clique and for every a E A - B there exists b E B
such that -~ a a b.

L e m m a 66. Let A be a finite set and let a C_ A × A be a reflexive symmetric
relation. For every a-clique B there exists a maximal a-clique C with B C_ C.

Proof. If B is maximal then we are ready. Otherwise there exists al ~ B such
that al a b for all b E B. Then B1 = B U {al } is a a-clique. If B1 is maximal
then we are ready. Otherwise there exists a2 ~ B1 such that B2 = B1 U {a2} is
a a-clique. We iterate this procedure. Since A is finite it must terminate with a
maximal a-clique Bn. Clearly B C_ Bn. Q

In particular, for every a E A there exists a maximal a-clique C with a E C
(because every singleton {a} is a a-clique, by the reflexivity of a).

For a partially ordered set (A, p), a lip-clique is a linearly ordered subset of
A, and a COp-clique is a set of mutually incomparable elements.

D e f i n i t i o n 67. Let (A, p) be a partially ordered set. A maximal lip-clique is a
line of p and a maximal cop-clique is a cut of p.

73

Note that if A = o (and thus p = 0) , then the empty set is both a line and
a cut of p. If A # g , then lines and cuts are nonempty sets.

It is clear from Lemma 64(2) that , for every line L and every cut C of p,
(L n C) < 1. This leads to the following definition (see [Pet76] and Section 2.3
of [BesFer88], where it is called K-density).

D e f i n i t i o n 68. Let (A, p) be a partially ordered set. The ordering p is dense if
every line and every cut of p have a nonempty intersection.

The empty partially ordered set is clearly not dense. There also exist non-
empty partially ordered sets that are not dense. Consider, e.g., the N-shaped
partially ordered set (A, p) with A = {a, b, c, d} and p = {(a, b), (c, b), (c, d)}.
Then the line {c, b} and the cut {a, d} do not intersect.

A cut divides a partially ordered set into two parts: the part "before" (pre-
ceding) the cut, and the part "after" (following) the cut. This can be defined,
for arbi t rary subsets of A instead of cuts, as follows. We also define the sets of
minimal and maximal elements of (a subset of) A.

D e f i n i t i o n 69. Let (A, p) be a partially ordered set and let B C A. Then
(-4B)p = {a e A I 3b e B :a p b or a = b},
(B-~)p = {a e A [3b E B : b p a or b = a},
(°B)p = {b e B [-~3b' E B : b' p b}, and
(B°)p -- {b e B I 3b' • B : b p b'}.

If p is clear from the context, then we will just write -~B, B ~ , °B, and B °'.
Intuitively, -+B is the part of A before B (including B), B -~ is the part of A
after B (including B), °B is the initial part of B, and B ° is the final part of B.
In the literature, -~B and B -~ are often denoted SB and J'B, respectively.

The following technical lemma shows that every element of B is after its
initial part and before its final part.

L e m m a 70. Let (A, p) be a partially ordered set and let B C A.
Then B C_ (°B)-~ and B C -~(B°).

Proof. To prove that B C_ (°B)-~, we have to show that for every b • B there
exists m • °B such that m p b or m = b. Let b • B. If b • °B then we are
ready. Otherwise there exists bl • B with bl p b. If bl • °B then we are ready.
Otherwise there exists b2 • B with b2 p bl and thus b2 p b. We iterate this
procedure. Since B is finite it must terminate with a bn • °B such that bn p b.
Formally all this can be proved by induction on #{b ' • B I b' p b}.

The proof of B C_ -* (B °) is "dual", i.e., follows from the above by considering
the partially ordered set (A, p - l) , with p-1 = {(a, b) I (b, a) • p}. I3

Lemma 66 is a special case of (the second inclusion of) Lemma 70, for the
partially ordered set (C, ~) where C is the set of all a-cliques.

The following elementary properties of cuts can easily be proved from the
definitions, using Lemma 70.

74

T h e o r e m 71. Let (A, p) be a partially ordered set and let B be a cut of p.
(1) °A and A ° are cuts of p,
(2) (°A)-~ = A , - ~ (° A) = °A, (A°) -+ = A °, and ~ (A °) = A,
(3) -~B U B -~ = A and -*B N B -~ = B ,
(,~) °(-*B) = °A, (-~B) ° = B , °(B-*) = B , and (B-~) ° = A °.

Proof. As an example we prove that °A is a cut. From Definition 69 it is obvious
that °A is a co-clique. By Lemma 70, for every a 6 A - °A there exists m 6 °A
such that m p a. This shows that °A is a maximal co-clique. [3

We now present another result tha t uses Lemma 70: every line intersects the
initial and the final cut (hence a "partial" density).

L e m m a 72. Let (A, p) be a partially ordered set with A ~ ~ and let L be a line
of p. T h e n L M ° A ~ a n d L M A ° ¢e~ .

Proof. By duality it suffices to prove that L N °A ~ ~. Since A is nonempty,
L is nonempty. Then, by Lemma 70 (with B = L), °L is nonempty. Since L
is a li-clique, °L consists of precisely one element, say a. By Lemma 70 (with
B -- A) there exists m 6 °A with m p a or m = a. This implies tha t L U {m} is
a li-clique. Since L is maximal, m E L. Hence m 6 L N °A (and m -- a). U

5.2 P r o c e s s N e t s

For the description of the concurrent runs of an EN system we will define so-
called processes. In defining processes, nets of a special kind are used: process
nets. These nets will be t reated in this subsection.

D e f i n i t i o n 73. A net N = (P, T, F) is a process net if:
(1) N is acyclic, and
(2) # (' p) <_ 1 and # (p°) < 1 for all p E P .

Hence, process nets are nets without cycles and with "unbranching" places
only. They are also called occurrence nets or causal nets.

For every acyclic directed graph with edge relation F , the relation F + (which
indicates the nonempty paths in the graphs) is a partial order on the set of nodes
of the graph. Applying this to the directed graph GN corresponding to the net
N (see Section 3.2) gives the next result.

L e m m a 74. For every process net N , F + is a partial order on X N .

The above result allows us to consider a process net N = (P, T, F) as a par-
tially ordered set (X, F+) . In this way, all terminology and notations concerning
partial orders introduced so far can be carried over to process nets. In particular,
we write l ig and CON instead of liE+ and COF+ and speak about lines and cuts
of N instead of lines and cuts o f F +. Thus, for x , y 6 X , x CON y iff-~ x F + y
a n d - - y F + x, a n d x l i g y i f f x F + y o r y F + x o r x = y .

We are especially interested in cuts of a process net tha t consist of places
only, i.e., that are configurations of the process net.

75

D e f i n i t i o n 75. A slice of a process net N is a cut C of N such tha t C C_ PN.

L e m m a 76. Let N = (P, T, F) be a process net and let C C_ P.
C is a slice of N iff
(1) for all p, q E C, p CON q, and
(2) for every p E P - C there exists q E C such that -1 p CON q.

Proof. I f C is a slice of N , then (1) and (2) follow directly from the definition of
a cut of N. Now assume tha t (1) and (2) hold. We have to prove tha t C is a cut
of N. By (1), C is a CON-Clique. To show tha t it is maximal , it suffices, by (2),
to prove that for every t E T there exists q E C such tha t t F + q or q F + t. Let
p E t °, i.e., t F p. I f p E C, then we are ready. Now assume p ~t C. According
to (2) there exists q E C, such tha t p F + q or q F + p. I f p F + q, then t F + q
(since t F p). If q F + p, then q F + t, because *p = {t}. This last fact is based
on proper ty (2) in the definition of a process net. D

This lemma says tha t a slice is the same as a maximal clique of the relation
CON restricted to the set P . The next result then follows immediately from
Lemma 66.

L e m m a 77. Let N = (P, T, F) be a process net. For every CON-clique B C_ P
there exists a slice C of N with B C C.

From now on we write ° N for ° X N (the minimal elements of the net N) .
Likewise we write N ° for X N ° (the maximal elements of N) . By Theorem 71(1),
° N and N ° are cuts. They are even slices of N, because, by Definition 1(3),
*t ~ o and t ° ~ O, for every transit ion t. Note tha t ° N = {p E PN I °P = O}
and N ° = {p E PN I P ° = 0} .

In the sequel, we will view each process net N = (P, T, F) as the EN system
(P, T, F, °N) , i.e., with the initial slice ° N as initial configuration. Proper ty (2)
of a process net (Definition 73) guarantees tha t this EN system is conflict-free,
see the discussion following Definition 22.

If two process nets N and N ' are isomorphic via a bijection a : PN --+ PN',
then, obviously, a (° N) = °N ' . In other words: then they are also isomorphic as
EN systems (cf. Definition 27).

Example 26. Fig. 50 shows an example of a process net N . The places in ° N are
marked with tokens. The places marked with crosses show another slice C of N.
Note tha t -~C is the pa r t of N above (and including) the crossed places, whereas
C -~ is the par t below (and including) them.

Here are some basic properties of co-cliques and slices of process nets.

L e m m a 78. Let N = (P, T, F) be a process net.
(1) For every U C_ T , if U is a co-clique, then *U and U* are co-cliques. In

particular, "t and t ° are co-cliques for every t E T.
(2) For every co-clique U C_ T there exists a slice C such that °U C_ C.

76

Fig. 50. A process net.

,)

,)

3

(3a) For every slice C and every t E T , i f °t C_ C, then t ° O C = ¢J and
D = (C - "t) U t ° is a slice such that ~ D = -"C U {t} U t °.

(3b) For every slice C and every t E T , i f t ° C C, then *t n C = o and
D = (C - t °) U °t is a slice such that - ' D = - ' C - t ° - {t}.

(4) For every slice C and every transition t, i f t E - ' C , then nbh(t) C_ ~ C .
(5) For every slice C ~ ° N there exists t E T such that t ° C_ C.

Proof. (1) Let U be a co-clique. To show tha t °U is a co-clique, let pl E °tl
and P2 E °t2 with tx,t2 E U, and suppose tha t pl F + P2. Since pl ° -- {tl} by
Definition 73(2), tl F + p2 and so tl F + t2, contradicting the fact tha t U is a
co-clique. In the same way it can be shown that U ° is a co-clique.

(2) follows directly from (1) and Lemma 77.
(3a) Let °t C C. Since C is a co-clique, t * n C = ~ . To prove that D is a slice,

we first show that it is a co-clique. Since both C and t ° are co-cliques, it suffices
to consider places p E C - *t and q E t ° such that p F + q or q F + p. If p F + q,
then, since °q -- {t}, there exists q~ E °t such that p F + q~. If q F + p, then
q~ F + p for any qe E °t. In both cases, since p, qt E C, this contradicts the fact
that C is a co-clique. Using Lemma 76, the maximality of D easily follows from
the maximality of C. Thus, D is a slice. The proof of the remaining property of
D is left to the reader.

(3b) Here t "fires backwards" in C yielding D. The proof is similar to the
proof of (3a).

77

(4) Let t E -~C. Thus, t F + q for some q E C. Obviously *t C_ -*C. Now
consider p E t ° and suppose that p ~ -~C. Then, by Theorem 71(3), p E C -~ - C
and so there exists q~ E C such tha t q~ F + p. Hence q~ F + t, and so q~ F + q,
contradicting the fact tha t C is a co-clique.

(5) Since C ~ °N, T n -~C ~ 0 . L e m m a 70 then implies tha t (T M -+C) ° is
also nonempty. Take a transit ion t tha t is a maximal element of T n ~ C . We
claim tha t t ° C_ C. In fact, suppose tha t there exists p E t ° such tha t p @ C.
Since, by (4), p E -~C, there exists a place q E C such tha t p F + q. Hence there
is a transit ion t I such tha t p F t ~ F + q. Consequently t F + t f, which contradicts
the maximal i ty of t, because t ' E T n -~C. [3

We will now show tha t the reachable configurations of a process net N are
exactly the slices of N.

T h e o r e m "/9. Let N = (P, T, F, °N) be a process net and let C C P.
C E CN iff C is a slice of N .

Proof. (Only-if) By induction on C. The base of the induction holds because
° N is a slice. The induction step follows directly from Lemma 78(3a).

(If) By induction on # (- ~ C M T), i.e., the number of events before the slice
C. If -*C fl T = O, then C = °N. If -~C M T ~ O, then C ~ ° N and so,
by Lemma 78(5), there is a t E T such tha t t ° C C. Then, by Lemma 78(3b),
°t f3 C = ~ and D = (C - t °) U °t is a slice. Also -~D --= -~C - t ° - (t} and hence
(- ~ D f3 T) = # (- ~ C M T) - 1. Thus, by the induction hypothesis, D E C.N.
Obviously D[t)C and hence C E CN. 1"1

Theorem 79 and Lemma 78(3a) imply tha t every process net is contact-free.
The conflict-freeness and contact-freeness of a process net can be expressed to-
gether as follows (see Theorem 61).

T h e o r e m 80. Let N be a process net, let C E C,N , and let U C_ TN with U ~ o .
I f °U C_ C, then U con C.

In general a process net is not strongly reduced, because it may contain
isolated places. However, as we will show now, a process net is always reduced.
We also give a characterization of the concurrent steps of a process net (i.e., the
sets of labels tha t appear in its configuration graph).

T h e o r e m 81. Let N = (P, T, F, °N) be a process net.
(1) N is reduced.
(2) For every U C_ T, (3C e C.N : U c o n C) iff U is a co-clique.

Proof. (1) follows from (2), because for every t E T, {t} is a co-clique.
(2) If U is a co-clique then, by L e m m a 78(2) and by Theorems 79 and 80,

U c o n C for a C E CN. The other way around, if U c o n C, then °U C_ C and
hence *U is a co-clique by Theorem 79. To show tha t U is a co-clique, suppose
tha t t l F + t2 for tx, t2 E U. Then there exists P2 E °t2 such tha t tl F + p2. Hence,
by Definition 1(3), there exists Pl E °tl such tha t Pl F + P2, contradict ing the
fact tha t °U is a co-clique. []

78

Theorem 79 gives a characterization of the reachable configurations of a
process net in terms of the partial order F +. We will now do the same for
sequential components. Whereas reachable configurations correspond to slices,
sequential components correspond to lines.

L e m m a 8 2 . Let N = (P , T , F , ° N) be a process net.
(1) I f L is a liN-clique, then L U n b h (L n P) is a liN-clique.
(~) If L is a line of N , then for every t • T:

" t n L ~ o i f f t • L iff t ° n L ~ o .

Proof. (1) Let L be a li-clique. We have to prove that L U °(L n P) u (L n P)*
is a li-clique. Take x • L and t • (L n P) ' , hence (p,t) • F for a p • L. If
x F + p then x F + t, and i f p F + x then t F* x (by Definition 73(2)). A similar
reasoning holds for all other cases.

(2) We will prove that "t n L ¢ g iff t • L (the proof tha t t • L iff t ° n L ¢
can be done in the same way). First let p • °t n L. Then t • (L n P)° and
hence L U {t} is a li-clique according to (1). Then t • L, because L is a line.
Now, for the implication in the other direction, let us assume that t • L and let
Y = {x • L I x F + t}. Lemma 72 implies that Y ~ o , and so, by Lemma 70,
Y° ~ ~. Since L is a li-clique, y o consists of one element, say xm. Since Xm F + t,
there exists p • °t with Xm F* p. This implies that L U {p} is a li-clique and
hence that p • L. Thus p • °t n L. []

T h e o r e m 8 3 . Let N = (P , T , F , ° N) be a process net with P # ~.
(1) If M is a sequential component of N , then PM U TM is a line of N .
(2) If L is a line of N , then (L O P, L n T, (L × L) n F, L o °N) is a sequential
component of N .

Proof. (1) Let M be a sequential component of N and let S -- PM. Then TM =
S ° (see Lemmas 46 and 47). We have to show that S U S ° is a line of N. We first
show that S is a li-clique. Let p, q E S and assume that p ~ q and p co q. Then, by
Lemma 77, there is a slice C with p, q E C. Theorem 79 implies tha t C E CN. But
then # (C A S) > 2, contradicting Theorem 49(2) (which is applicable because, by
Theorem 81(1), N is reduced). Hence S is a li-clique. Then, by Lemma 82(1),
S U S ° is a li-cfique. Now it remains to prove that S U S ° is maximal. First
consider p E P - S. By Lemma 77 and Theorem 79 there is a slice C E CAr
with p E C. Since # (C n S) = 1, there exists q E S with q E C. Then, for this
q E S U S °, p li q does not hold. Now consider t E T - S °. Then °t n S = ~ .
Again there is a slice C E CN with *t C C (see also Lemma 78(1)) and again
there exists q E C n S. From the fact tha t p co q for every p E *t it follows that
t li q does not hold for this q E S U S °.

(2) Let L be a line and S = L A P . It is easy to check that M = (S, LAT, (L x
L) n F, L n °N) is a subsystem of N (where condition (2) of Definition 45 follows
from Lemma 82(1) and the fact tha t L is a line). Now it remains to prove that
M is sequential. By Theorem 49(2) and the fact that M is determined by S, it
suffices to prove that # (C n S) = 1 for every slice C 6 CN. Since # (L n C) < 1
and C c_ P , we only need to show that L n C ~ o . This is done by induction

79

on C. The base of the induction follows from Lemma 72 and the induction step
from Lemma 82(2): if C[t)D and °t M L ~ o , then t ° M L ~ O. []

From Lemma 53, Theorem 83(2), and Lemma 66 (for a = li) it follows that
every process net is not only contact-free (as shown after Theorem 79), but is
even covered by sequential components (cf. Theorem 59). As an example, the
process net of Example 26 (Fig. 50) is covered by the three sequential compo-
nents that correspond to the four places in each vertical row.

Also, Theorems 83(2), 79, and 49(2) imply that L M C ~ g for every line L
and every slice C. This is already close to density (see Definition 68).

T h e o r e m 84. Every process net N = (P, T, F, °N), with P ~ 0, is dense.

Proof. Let L be a line and C be a cut of N. It is not hard to prove (analogously
to Lemma 78(3a)) that C ~ = (C M P) U (C M T) ° is a slice. By Theorems 83(2),
79, and 49(2), L M C ' ~ 0. L e t p E LMC' . I f p E C M P , t h e n p E L M C . If
p E (C M T) °, then there is a t E C such that p E t ° M L. Lemma 82(2) then
implies that t E L, and hence t E L N C. []

Hence, density is an abstract version of the fact that in every reachable
configuration every sequential component is in one particular state.

5.3 P r o c e s s e s

Process nets will be used in defining the notion of a process, which formalizes a
concurrent run of a system. Informally speaking, a process of an EN system M
describes a transformation of the initial configuration Ci,~ of M to a configuration
C of M; it is a record of all occurrences of events that lead from Cin to C,
together with all conditions involved in these events. Two occurrences of events
are (partially) ordered in this record if there is a condition that starts to hold
as a result of the first occurrence of an event, and ceases to hold as a result of
the second (or if the first is connected to the second by a chain of occurrences of
events related in this way). This partial order represents the causal connection
between the occurrences of the events, cf. Fig. 16. Note that the linear order of
occurrences of events in a firing sequence also represents the fact that they are
observed by a sequential observer.

Consider for example the (contact-free) EN system M = (P,T, F, Cin) of
Fig. 51. We start by recording the initial configuration {Pl, P2} (see Fig. 52).
Next we record the occurrence of event tl (see Fig. 53). What we obtain in this
way, is a process (a record of a transformation) from the configuration Cin =
{pl,p2} to the configuration C = {P3,P4}. We can continue by also recording
the occurrence of (for example) the concurrent step {t2, t3} in configuration C,
see Fig. 54. What we obtain now, is a process (a record of a transformation)
leading from the configuration Cin -= {pl,P2} to itself. By continuing one more
step, we again record the occurrence of tl and again obtain a process (a record
of a transformation) from Cin to C (see Fig. 55). Finally we can (for example)

Pl P2

t~

80

Fig. 51. An EN system M.

pi©

P 2 Q

Fig. 52. A process of the EN system M of Fig. 51.

P3

P2

P4

Fig. 53. A process that extends the process of Fig. 52.

81

/)3 t2 Pl P l ~
/)4 t3 P2

Fig. 54. A process that extends the process of Fig. 53.

P3 t2 Pl

P2 C P4

/94 t3 /92

Fig. 55. A process that extends the process of Fig. 54.

record the occurrence of event t4 and thus obtain a process leading from Cin to
the configuration {P4,P5} (see Fig. 56).

Thus, a process does not describe a complete run of the system (which can
be infinite), but ra ther an initial finite par t of it.

Note tha t our processes are themselves nets. These nets record the occur-
rences of events together with the occurrences of the conditions that belong to
these events. Moreover, processes are nets of a special kind, viz. process nets:
(1) if an event occurs, a possible conflict is resolved, and (2) different occur-
rences of the same condition and different occurrences of the same event are
recorded by different copies of the corresponding condition and event, respec-
tively. Therefore all places are unbranched and no cycles occur. The flow relation
of the net represents the causal part ial order between the events and conditions
(see Lemma 74).

I t is impor tant to note that our processes only record that conditions hold,
not tha t conditions do not hold. Hence a process faithfully describes a run of
the system under consideration only if this system is contact-free, i.e., we need
not record which conditions do not hold when we record the occurrence of an
event. This is the reason for restricting our a t tent ion to processes of contact-
free EN systems. Fortunately, Theorem 60 says tha t for every EN sys tem there
exists a configuration equivalent contact-free EN system. Hence, wi thout loss

82

Pl () () P2

t l

P3() (,)P4

t2 I I I I r a

Pl () (~)P2

t l

P3() ~)P4

t4

Fig. 56. A process of the EN system M of Fig. 51, leading from {pl,p2} to {p4,ps}.

of generality, we can assume contact-freeness in our study of the behaviour of
EN systems. More specifically, when dealing with an EN system M that is not
contact-free, if we want to study its behaviour through its processes, then we will
study the processes of a contact-free EN system that is configuration equivalent
with M (e.g., the system that is obtained by the complement construction in
the proof of Theorem 57").

The above considerations lead to the formal notion of a process in a contact-
free EN system. However, before giving the formal definition, we need a number
of auxiliary notions.

Defini t ion 85. Let •i and E2 be disjoint alphabets. A (~1, E~)-labelled net is
a 5-tuple N = (P, T, F, ¢1, ¢2), where
(P, T, F) is a net (the underlying net of N , denoted by und(N)),

83

¢1 is a function from P to Z1 (the place labelling of N), and
¢2 is a function from T to Z2 (the transition labelling of N).

N is also called a labelled net, and, if u n d (N) is a process net, then N
is also called a (Zl,~2)-labelled process net or simply a labelled process net.
All notations and terminology concerning (process) nets carry over, through the
underlying nets, to labelled (process) nets. We will also use the notation ¢IN, ¢2N
for ¢1, ¢2, respectively.

To compare labelled nets we need the following notion of isomorphism, which
expresses the fact tha t the identity of the places, the transitions, and the labels
is irrelevant.

l I I I Def in i t i onS6 . Let N = (P,T,F,¢I,¢2) and N' = (P ' ,T ,F ,¢1,¢2) be two
(Z1, Z2)-, respectively (Z~, Z~)-labelled nets. Then N and N' are isomorphic,
denoted by N - N' , if there exist bijections a : ~71 --+ Z~, /3 : Z2 -+ Z~,
7 : P -+ P ' , and 6 : T -+ T t, such that:
(1) u n d (N) =-~ u n d (g ') ,
(2) for all p E P, ¢~ (7(P)) = c~(¢1 (p)), and
(3) for all t e T, ¢~((~(t)) --/3(¢2(t)).

For isomorphic N and N ~ as above, we also say that N and N ' are (c~,/3)-
isomorphic, denoted by N ~-~ N ~.

Condition (1) above means that the underlying nets are isomorphic, condi-
tion (2) means that corresponding places (via 3,) have corresponding labels (via
c~), and condition (3) means that corresponding transitions (via 5) also have
corresponding labels (via 13).

This notion of isomorphism between labelled nets can naturally be extended
to isomorphism between sets of labelled nets in the following way.

De f in i t i on87 . Let 7) and 7)' be two sets of (El, Z2)-, respectively (Z~, E~)-
labelled nets. Then 7) and 7)' are isomorphic, denoted by 7) =- 7)', if there exist
bijections c~ : Z1 --+ ~7~ and/3 : X2 --+ Z~, such that
(1) for every N E 7) there exists N I E 7)~ such that N -:~ N ~, and
(2) for every N ~ E 7)' there exists N E 7) such that N - ~ N I.

For isomorphic 7) and 7)' as above, we also say that 7) and 7) ' are (a,/3)-
isomorphic, denoted by 7) ---~ :P'.

Condition (1) means that every net in 7) is isomorphic with a net in 7)' and
condition (2) means that, the other way around, every net in P~ is isomorphic
with a net in 7). Note that the isomorphisms from (1) and (2) always use the
same, fixed a priori, bijections ~ and/3 between the alphabets.

We now present the formal definition of the notion of a process. Recall from
Section 2 that] r B denotes the restriction of function f : A --+ A' to the set
B C_ A. The requirement that f r B is injective thus means tha t for all bl, b2 E B,
if 51 ~ 52 then f(bl) ~ f(b2).

84

Defini t ion 88. Let N = (PN, TN, FN, 41,42) be a (El, X2)-labelled process net
and let M = (P, T, F, Cin) be a contact-free EN system.
Then N is a process of M if
(1) E1 = P and E2 = use(T),
(2) 41 [°N is injective,
(3) 41(°N) = Gin,
(4) for every t e TN, 41 r *t is injective and 41 t t ° is injective, and
(5) for every t e TN, 41(°t) = °(42($)) and 4t (t*) = (42(t)) °.

From now on, for the sake of simplicity, we will also write 4 instead of 41
and 42, when the subscript is clear from the context.

For a contact-free EN system M, PROC(M) denotes the set of all processes
of M.

Requirement (1) above says that the places of the process net are labelled
with the places of the system, and the transitions of the process net are labelled
with the useful transitions of the system. Requirements (2) and (3) say that,
via the labelling 4, the minimal places of the process net N are in one-to-one
correspondence with the initial configuration of the system. The non-minimal
places of N represent conditions that are set by the occurrence of some event.
Thus, °N faithfully records the conditions that hold initially. Requirements (4)
and (5) say that, via the labelling 4, the places in the input- and output-set
of a transition s of the process net are in one-to-one correspondence with the
places in the input- and output-set, respectively, of a transition t of the system.
This means that s is indeed a faithful record of the occurrence of the event
t = 4(s). Note that requirement (5) implies that for all x, y e XN, if x FN y
then 4(x) F 4(Y).

Example27. (1) Let M be the (contact-free) EN system of Fig. 47. A process
N of M is drawn in Fig. 57 (the underlying process net is the one of Fig. 50).
Note that the symbols next to the places and transitions of N axe labels, i.e.,
places and transitions of M (the identities of the places and transitions of N
are not given in the figure). The process N leads from the initial configuration
{Pl, bl, Cl } of M to the configuration {P2, be, c2 } of M.

(2) A process of the EN system of Fig. 2 (mutual exclusion) is drawn in
Fig. 58. It leads from the initial configuration {wl,p, w2} to the configuration
{cl,w2}.

We will now show that the firing of transitions in a process is mapped (by
4) to the firing of transitions in the system. Hence, playing the token game in a
process corresponds to playing the token game in the system. To prove this, we
need the following lemma.

L e m m a 8 9 . Let M = (P,T,F, Cin) be a contact-free EN system and let N =
(PN,TN, F N , 4 1 , ~) be a process of M. Let C ,D E CN and t 6 TN.
I f 4 ~ C is injective, 4(C) e CM, and C[t)ND, then 4 r D is injective and
4(C)[4(t))M4(D).

85

bs

p e

be

p e

Fig. 57. A process of the producer/consumer system of Fig. 47.

Proof. Prom °t C C it follows that ¢(*t) C ¢(C) and hence, by requirement (5) of
Definition 88, that °¢(t) C_ ¢(C). Since M is contact-free, ¢(t) ° N ¢(C) = O and
hence, again by requirement (5), ¢(t°)N¢(C) = ~. This, and the fact that ¢ r t °
is injective (requirement (4)), implies that ¢ r (C U D) is injective. Consequently
¢ (C - D) = ¢ (C) - ¢ (D) and ¢ (D - C) = ¢ (D) - ¢ (C) . By Lemma 7, °t = C - D
and t ° = D - C. Hence °~b(t) = ~b(°t) = ~b(C - D) = ¢(C) - ¢(D) and similarly
¢(t) ° = ¢(D) - ¢(C). Lemma 7 now implies that ¢(C)[¢(t))MC(D). []

T h e o r e m g 0 . Let M = (P,T,F, Cin) be a contact-free EN system and let N =
(PN,Tlv,FN,¢I,¢2) be a process of M.
(1) For every C e CN, ¢ r C is injective and ¢(C) e CM.
(2) For every C,D e CN and t e TN, if C[t}gD then ¢(C)[¢(t))M¢(D).

Proof. (1) can easily be proved by induction on C. The base of the induction
(i.e., C = °N) directly follows from requirements (2) and (3) of Definition 88,
and the induction step follows from Lemma 89.

(2) directly follows from (1) and Lemma 89. []

T h e o r e m 91. Let M = (P, T, F, Cin) be a contact-free EN system and let N =
(PN, TN, FN, ¢1, ¢2) be a process of M.
(1) For every co-clique D of Xlv, ¢ r D is injective.
(2) For every C, D e CN and U C_ TN, if C[U)ND then ¢(C)[¢(U))M¢(D).
(3) For every co-clique U C_ TN there exist C, D E aM such that C[¢(U))MD.

~J

O

~D

87

Proof. (1) We have to show that for every two distinct elements x and y of XN,
if x CO y then ¢(x) ~ ¢(y). This is obvious if one of the two is a place and the
other a transition. If {x, y} C PN, then by Lemma 77 there exists a slice C E CN
with {x, y} _C C, and Theorem 90(1) then implies that ¢ r {x, y} is injective. If
{x, y} C TN, then Lemma 78(1) implies that "x U "y is a co-clique. According
to the previous case, ¢ I ('x U °y) is injective. Definition 73(2) now implies that
¢('x) ~ ¢('y) . Hence "¢(x) # "¢(y) and thus ¢(x) ~ ¢(y).

(2) Assume that C[U)ND. By Theorem 81(2), U is a co-clique. Then (1)
implies that ¢ [U is injective. This means that the set of orderings of the
elements of ¢(V) equals { (¢ (t l) , . . . , ¢ (tn)) I (t l , . . . , t n) is an ordering of the
elements of U}. This, together with Theorems 20(2) and 90(2), implies that
¢(C)[¢(U))M¢(D).

(3) If U C TN is a co-clique, then there exists C 6 CN with U con C by
Theorem 81(2). Theorem 90(1) implies that ¢(C) 6 CM. Now apply (2). Q

There is a clear connection between the firing sequences of an EN system
and the firing sequences of its processes. Theorem 90 implies that every firing
sequence of a process N (of an EN system M) is mapped to a firing sequence of M
by ¢. We will now show that this also holds the other way around: for every firing
sequence of M there exists a firing sequence of a process N of M which is mapped
to it by ¢; moreover, we can guarantee that this is a "complete" firing sequence
of N, i.e., a firing sequence from °N to N ° (note that , by Theorem 79, every
process net has such a complete firing sequence). This resembles the construction
which we presented as an example at the beginning of this subsection (in Figs. 52
to 56).

T h e o r e m 92. Let M = (P, T, F, Cin) be a contact-free EN system, let t l , . . . , tn
be transitions in T, and let C C P. Then Cin[tl " " ' tn)MC iff there exists a
process N = (PN, TN, FN, ¢1, ¢2) of M and there exist transitions s l , . . . , sn in
TN such that
(I) ¢(s~) = t~ fo r i < i < n,
(2) ¢(Y °) = C, and
(3) °N[S l - - -S ,)NN °.

Proof. (If) This follows from Definition 88(3) and Theorem 90(2).
(Only-if) The proof is by induction on n.
For n = 0 we have to show the existence of a process N with °N = N °. If

Cin = {ql , . . - ,qm}, then such a process N is defined by: PN = {Pl, . . . ,pro},
TN = 0, FN = 0, ~ = 0, and ¢1 (Pi) = qi for 1 < i < rn.

Now assume that C~n[tl... tn)C[t>D and assume (the induction hypothesis)
that there exists a process N satisfying requirements (1-3). Let °t = {q l , . . . , qk}
and t" = {q~,... ,q~}. Since C = ¢(N °) and "t C C, there are (unique) places
Pl , . . . ,Pk E N ° such that ¢(pi) = qi for 1 < i < k. Now take an s ~ TN and
P~,... ,P~m ¢ PN. We extend N by adding transition s and places p~ , . . . ,p~, in

I ! such a way that "s = {Pl , . . . ,Pk}, s* = {p~,... ,Pro}, ¢(s) = t, and ¢(p~) --- qi
for 1 < i < m. It is easy to see that in this way a new process is obtained, and
that it satisfies requirements (1-3) for C~n[tl... tnt)D. D

88

It is also straightforward to prove that, for given firing sequence t l . . . tn,
the process N is unique (modulo isomorphism, i.e., modulo ~_~, where a is the
identity on PM and/~ the identity on use(TM)). Since every process has a com-
plete firing sequence, this implies that every process of M is obtained in this
way from a firing sequence of M (cf. [BesDev87], Theorem 3.5.3 of [BesFer88],
and Section 3 of [NieRozThi90]). Note, however, that different firing sequences
tl . . . tn can lead to the same process N. The resulting equivalence relation be-
tween firing sequences is studied in Section 6.2. The uniqueness of N will also
follow from later results (see the remark after Theorem 122).

Note that Theorem 92 implies that, for every contact-free EN system M,
PROC(M) ~ ~ (since ~ is always a firing sequence of M).

Example 28. Consider the EN system M of Fig. 47 and the process N of M of
Fig. 57. Examples of firing sequences of M that correspond to process N in the
way indicated in Theorem 92 are: pefcep and ecpfpe.

We now prove the converse of Theorem 90(2).

T h e o r e m 93. Let M be a contact-free EN system. Let C, D • CM and t E TM.
If C[t)MD, then there exists a process N of M and there exist C ~, D ~ • CN and
s e TN, such that C'[S)ND', Cg(C') = C, CN(s) = t, and CN(D') = D.

Proof. There is a firing sequence x such that Cin[X)MC. If we now apply The-
orem 92 to Cin[Xt)MD, then we obtain a process N of M and a firing sequence
ys (with y • T~v and s • TN) such that ¢(y) = x, ~b(s) = t, ¢(N °) = D, and
°N[ys)NN ° (where ¢ = CY). Assume that °N[y)NC'[s)NN° and let D' = N °.
By Theorem 90, ~)(°N)[~(y))M¢(C') holds, i.e., Cin[X)M¢(C'). Hence ¢(C') =
C. []

Analogously the following converse of Theorem 91(2,3) can be proved. The
details of the proof of (1) are left to the reader; (2) follows immediately from (1)
and Theorem 81(2).

T h e o r e m 94. Let M be a contact-free EN system. Let C, D E CM and let U C_
TM. If C[U)MD, then:
(1) there exists a process N of M and there exist C ~, D ~ e CN and V C TN,
such that C'[V}ND', ¢N(C') = C, CN(V) = U, and ¢g(D') = D,
(2) there exist a process N o f M and a co-clique V C TN such that ¢N(V) = U.

It would be natural to say that two EN systems are equivalent if they have
isomorphic sets of processes (see Definition 87). The next result shows that two
(reduced) EN systems are equivalent in this sense iff they are isomorphic. Thus,
as discussed in the next subsection, this equivalence relation does not capture
equivalent behaviour of EN systems.

T h e o r e m 95. Let M and M ~ be two contact-free reduced EN systems. Then
PROC(M) - PROC(M') iff M - M'.

89

T' F ' C' ~ It is easy to see that Proof. Let M = (P , T , F , Cin) and M t = (P ' , , , inJ"
if M ----~ M' , then PROC(M) ---~ PROC(M') . Now assume that PROC(M) -=~
PROC(M') . Then a and/~ are bijections, a : P -* P ' and 1~ : T -+ T' . It now
suffices to show that (1) a(Cin) -- C~n and tha t (2) for every t E T, a (' t) = °/~(t)
and a (t ') =/3(t) °.

(1) Consider a process N of M (this is possible because PROC(M) # g)
and consider a process N ' of M' tha t is (a,/~)-isomorphic with N. Then °N
corresponds to °N ' and hence oz(¢N(°N)) ---- CN,(°N'). Since CN(°N) = Gin
and CN, (°N') = C~,, this means that a(Cin) = C~n.

(2) Since M is reduced, there exist C, D e CM with C[t)MD. Then, by
Theorem 93, there exist a process N of M and an s E TN such that Cg(s) = t.
Let N ~ be a process of M t that is (~,/~)-isomorphic with N and assume that
8 t e TN, corresponds to s. Then CN' (St) = /~(t). Fhrthermore, "s corresponds
to *(s') and s" to (d) °, and hence c~(¢N(°S)) = CN,(°(St)) and OZ(~)N(8°)) =
CN, ((s ') ') . N o w C N (' S) = "¢N(s) = "t, CN, (' (s ')) = (s') = "•(t), C N (s ') =
Cg(s)" = t ' , and CN,((s ') ') = CN,(S') ° = /~(t)', and hence a(' t) = "t3(t) and

= o

5.4 P r u n e d Contrac ted Processes

We can interpret the set PROC(M) of processes of an EN system M as the be-
haviour of M: it is the set of all concurrent runs of M. However, by Theorem 95,
this definition of the behaviour of an EN system is too strong, since the system
M is uniquely determined by PROC(M) , modulo isomorphism, which means
that the behaviour of the EN system would be identified with its structure! In
this way it would be impossible to transform systems while preserving their be-
haviour. The intuitive reason why Theorem 95 holds, is that in a process both
the events and the conditions are recorded: in that way we are able to read the
flow relation of the system from the flow relation of its processes and their la-
bels (see Definition 88(4,5)). However, since we are more interested in the events
than in the conditions of the system when defining behaviour (see Section 4.1),
we will, in this subsection, remove the conditions from every process N. In this
way the set TN of recorded events remains, together with their causal order (the
partial order F + , restricted to TN). This can be considered as a "labelled par-
tially ordered set", with labels in TM (or, more precisely, in use(TM)). Then we
will define the behaviour of M as the set of all labelled partially ordered sets
obtained in this way. With this definition of the behaviour of M, the system M is
no longer uniquely determined, i.e., Theorem 95 no longer holds. Note that such
partially ordered sets of occurrences of events are similar to firing sequences,
which are linearly ordered sets of occurrences of events.

Modulo isomorphism, labelled partially ordered sets (with labels in an al-
phabet ~2) are also called partially ordered multisets (with elements in ~) or
pom-sets, see, e.g., [Pra86]. Here, we model labelled partially ordered sets by
node-labelled acyclic graphs, which are easier to compare to processes. There is
a clear connection between partial orders and acyclic graphs. A partially ordered
set (A, p) with p c A x A is a (special kind of) acyclic directed graph. The other

90

way around it is clear that for every acyclic directed graph (V,F), (V, F +) is
a partially ordered set (cf. Lemma 74). We will say that the graph (V, F) rep-
resents the partially ordered set (V, F+). In general a partially ordered set can
thus be represented by several acyclic graphs.

To begin with, we recall several notions concerning node-labelled directed
graphs which, for the sake of simplicity, we will simply call labelled graphs. Note
that we have so far only considered (initialized) edge-labeUed graphs (in partic-
ular configuration graphs). We have also considered labelled nets (in particular
processes) in the previous section. When we view a net as a graph, labelled
nets can be viewed as node-labelled graphs. The following definitions axe thus
analogous to those for labelled nets.

Defini t ion 96. Let `U be an alphabet. A (,U-)labelled graph is a quadruple G =
(V, F, E, ~), where V is a finite set of nodes, F C V x V is a set of edges, and ¢
is a function from V to Z (the labelling of G). G is acyclic ff F + is irreflexive.

The components of G are also indicated by Pc, FG, EG, and CG.
To compare graphs labelled over distinct alphabets we need the following

notion of isomorphism.

Def in i t ion 97. Let ~ and Z ~ be two alphabets and let G = (V, F, E, ¢) and
G * = (V', U, E' , ¢') be two `U-, respectively `u'-labelled graphs. Then G and G'
are isomorphic, denoted by G = G ~, if there exist bijections fl : E -~ E ~ and

: V -+ V', such that
(1) for all v, w • V, (v, w) • F iff ((i(v), 5(w)) • F ' , and
(2) for all v • V, ¢'(5(v)) = ~(¢(v)).

For isomorphic G and G' as above, we also say that G and G' are ~-
isomorphic, denoted by G --f~ G'.

The above notion of isomorphism between labelled graphs can naturally be
extended to isomorphism between sets of labelled graphs in the following way.

Definit ion 98. Let :P and P ' be two sets of E-, respectively E~-labelled graphs.
Then • and :P' are isomorphic, denoted by :P = :P~, if there exists a bijection

: 27 -~ `U', such that
(1) for every G • P there exists G t • P~ such that G - ~ G', and
(2) for every G' • 7 ~' there exists G • :P such that G - ~ GL

For isomorphic 7) and P~ as above, we also say that 7) and 7)~ are ~-
isomorphic, denoted by :P ___~ 7 ~. Note that the isoraorphisms from (1) and
(2) always use the same, fixed a priori, bijection ~ between the alphabets (cf.
Definition 87).

A labelled graph G = (V, F, Z, ¢) for which (V, F) is a partially ordered set is
also called a labelled partially ordered set or, shorter, a labelled partial order. To
every acyclic labelled graph such a labelled partial order is naturally associated.

Defini t ion 99. Let G = (V, F, E, ¢) be an acyclic labelled graph. The transitive
closure of G, denoted by tra(G), is the labelled graph (V, F +, ~7, ¢). We also say
that G represents tra(G).

91

Note that tra(G) is a labelled partial order. In general a labelled partial order
is represented by several labelled graphs. One of these graphs is the "smallest"
(and is also known as the "Hasse diagram" of the partial order).

Defini t ion 100. Let G = (V, F, S, ¢) be an acyclic labelled graph. The pruned
version of G, denoted by pru(G), is the labelled graph (V,/,1 E, ¢) wi th / , t =
{(v,w) E/ '1-~ 3u E V: (v,u) • F + and (u,w) • F+}.

This means that pru(G) is the graph that is obtained from G by removing
all edges (v, w) such that there exists a path of length _> 2 from v to w in G,
i.e., by removing the so-called transitive edges.

Example 29. Figure 59 shows a graph with its transitive closure and its pruned
version. The labels have been omitted.

G tra(G) pru(G)

Fig. 59. A graph with its transitive closure and its pruned version.

We now recall the well-known fact that tra(G) is represented by pru(G),
and that pru(G) is uniquely determined by tra(G).

T h e o r e m 101. For every acyclic labelled graph G,
tra(pru(G)) -- tra(G) and pru(tra(G)) = pru(G).

Proof. Let G = (V, F, E, 0). We will prove the inclusion tra(G) C tra(pru(G));
the other inclusions are immediate. We have to prove that, for all v,w E V, if
there is a path from v to w, then there is a path from v to w that uses only non-
transitive edges. This is done by induction on the length n(v, w) of the longest
path from v to w. If n(v,w) = 1, then the longest path from v to w is the edge
(v, w). Hence that edge is not transitive. Now take n(v, w) _ 2 and assume that
the claim holds for all lengths < n(v, w). Consider the longest path from v to w
and take a node u on that path that is distinct from v and w. Then the subpath
from v to u is also the longest path from v to u, and hence n(v,u) < n(v,w).
This implies that there is a path from v to u with non-transitive edges only.
Likewise there is a path from u to w with non-transitive edges only. D

This implies that two labelled partial orders are isomorphic iff their pruned
versions are isomorphic.

92

Theorem 102. Let 27 and 27~ be alphabets. Let G and G ~ be two acyclic 27-,
respectively E~-labelled graphs and let/~ : E --+ E' be a bijection.
Then tra(G) =a tra(G') iff pru(G) --~ pru(G') .

Proof. It is clear that, for labelled graphs G1 and G2, if G1 - a G2, then
tra(Gx) ~a tra(G2) and pru(G1) - a pru(G2). Hence, if t ra(G) --a tra(G') ,
then pru(t ra(G)) -=~ pru(t ra(G')) and thus pru(G) =a pru(G') . Likewise in
the other direction. []

We now return to the processes of an EN system M. As observed before, we
are interested in the labelled partial order (TN, F + N (TN x TN), TM, ~ N) for a
process N of M. There is an easy way to construct a labelled graph that repre-
sents this labelled partial order: we remove the places from N and replace them
by edges. When we then remove the transitive edges from this graph we obtain
a unique representation of the labelled partial order. The precise formulation of
this is given in the following definition, cf. Fig. 16.

Definition 103. Let N = (P, T, F, ¢1, ¢2) be an acyclic (,U1,272)-labelled net.
(1) The contracted version of N, denoted by ctr(N), is the labelled graph

(T,1", Z2, ¢2) such that, for all s, t E T, (s,t) e 1" iffs ° N*t ¢ ~.
(2) The pruned contracted version of N is the labelled graph pru(c t r (N)) .

It is easy to see that c t r (N) indeed represents the labelled partial order
(TN,F+N A (TN x TN),272,~N). Then, by Theorem 101, the same holds for
pru(c t r (N)) .

L e m m a 104. Let N = (P, T, F, Cx, ¢2) be an acyclic (2:71, S2)-labelled net and
let pru(c t r (N)) = (T, F, $2, ¢2)- Then,
for all s, t ~ T, (s, t) e F + iff (s, t) ~ F +.

If N is a process of an EN system M, then c t r (N) is called a contracted
process of M and pru(c t r (N)) a pruned contracted process of M. For a contact-
free EN system M we denote by LPO(M) the set of all pruned contracted
processes of M (where LPO stands for Labelled Partial Orders). Hence

LPO(M) = {pru(c t r (N)) I N e PROC(M)}.

Example30. (1) Let M be the EN system of Fig. 47 (the producer/consumer
system) and let N be the process of M in Fig. 57. Then err(N) = pru(c t r (N))
is given in Fig. 60. A larger pruned contracted process of M is drawn in Fig. 61.

(2) Let M be the EN system of Fig. 2 (the mutual exclusion system) and let
N be the process of M in Fig. 58. Then c t r (N) and p ru (e t r (N)) are given in
Fig. 62.

We can now call two EN systems equivalent if their sets of pruned contracted
processes are isomorphic (see Definition 98). The behaviour of an EN system M
is thus defined as LPO(M), modulo isomorphism.

93

I

P

~ e

~c

~e

o r

~ . / \ . (
Fig. 60. The (pruned) contracted version of the process of Fig. 57.

Fig. 61.
Fig. 47.

P /%c

C

P

Another pruned contracted process of the producer/consumer system of

94

in11

outl .

znl in1

ctr(N) pru(ctr(N))

Fig. 62. The contracted process and the pruned contracted process corresponding to
the process of Fig. 58.

Defini t ion 105. Two contact-free EN systems M and M' are lpo-equivalent if
L P O (/) _= LPO(M').

An intuitive way to view a concurrent system, is to see it as a system with its
actions not linearly ordered but partially ordered, where a linear order can be
interpreted as an ordering in time, whereas a partial order can be interpreted as
showing the causal relationships between the actions. This means that the above
definition of behaviour is intuitively attractive and perhaps the most natural one.

We now show (as mentioned already in the introduction of this subsection)
that, in contrast with ordinary processes (see Theorem 95), the set of pruned
contracted processes does not uniquely determine an EN system (modulo iso-
morphism).

Theo rem 106. There exist reduced contact-free E N systems M and M ' such
that LPO(M) =-- LPO(M') but M -- M ' does not hold.

Proo]. The EN systems M and M' of Figs. 30 and 32 have isomorphic sets of
contracted processes, and those contracted processes are already pruned, i.e.,

95

contain no transitive edges. Hence LPO(M) - LPO(M'). Note that in this case
the contracted processes correspond to FS(M) = FS(M') = {A, a, c, e, ab, cd,
el, abd}, see Example 15.

Another example of two lpo-equivalent EN systems M and M' that are not
isomorphic is depicted in Fig. 63. The sets of contracted processes of M and M'
are not isomorphic, but the sets of pruned contracted processes are. D

a b c

M =

M !

Fig. 63. Two non-isomorphic lpo-equivalent EN systems.

In the remainder of this subsection we will prove that the function p rue t r :
PROC(M) --+ LPO(M), defined by pruc t r (N) -- pru(ctr(N)) , is a bijection
(modulo isomorphism); i.e., though certain information is lost by the function
pructr , it does not identify distinct processes. Hence LPO(M) is still a "faithful"
modelling of the behaviour of M. This is formulated as follows.

T h e o r e m 107. Let M be a contact-free EN system and let N, N r be two processes
of M. Let a be the identity on PM and ~3 the identity on use(TM). Then
N ~ g ' iff pru(etr (N)) _~ pru(etr(N')) .

This implies that if M and M' are lpo-equivalent EN systems, then there
is a bijection f : PROC(M) --+ PROC(M') between their processes such that
pru(etr(N)) _-_~ pru(e t r (f (N))) for every process N of M.

We now turn to the proof of Theorem 107. The Only-if direction of the proof
is clear (both etr and pru preserve isomorphism). A simple proof of the impli-
cation in the other direction will be given after Theorem 115. The proof that
follows is, however, more transparent, because it shows how to reconstruct the
process N directly from the pruned contracted process pru(etr(N)) , i.e., from
(TN, F + N (TN x TN),TM, ¢2N). This technique will be useful in Theorem 149.
To explain the construction we need two lemmas.

L e m m a 108. Let N = (P, T, F, ~1, ~) be a process o] a contact-free E N system
M and let ql, q2 E P.

96

(1) For all s l ,s2 E T,
i] sl E °ql, s2 E (12", (81,82) • F +, and ¢(ql) = ¢(q2), then (ql,q2) • F*.
(2} If*q1 = 0 and ¢(ql) = ¢(q2), then (ql,q2) • F*.

Proof. (1) If qx # q2, then, by Theorem 91(1), qx co q2 does not hold. Hence
ql li q2. Then (ql,q2) • F +, because (q2,ql) • F + implies that (s~,s l) E F*
and hence that N is cyclic. The proof of (2) is analogous. []

In the next lemma we show how the position of the places of N can be
determined from the labelled partial order (TN , F+iv n (TN × TN) , TM , ¢2N)-

L e m m a 109. Let N = (P, T, F, ¢1, ¢2) be a process of a contact-free E N system
M and let p E PM.

(1) For all sl, s2 • T:
3q • P with sx E °q, s2 • q°, and ¢(q) = p

iff
¢(sl) • *p, ¢(s2) • p°, (s l , s2) • F +, and
-,3s • T : ¢(s) • p° and (sl, s) • F + and (s, s2) • F +.

(2) For all s2 • T:
3q • P with "q = ¢g, s2 • q°, and ¢(q) = p

ill
p • (Cin)M, ¢(s2) • p°, and
-~3s e T : ¢(s) • p° and (s, s2) • F +.

Proof. First note that the right-hand side of the equivalence in (1) means that
s~ is minimal (with respect to the partial order F +) in the set of all s • T with
¢(s) • p" and (sl, s) • F + (and, in fact, it is the minimum of that set). Similarly
for (2), s2 is minimal in the set of all s • T with O(s) • p ' .

(1) (Only-if) Obviously (s l , s2) • F + and, by Definition 88(5), ¢(sl) • "p
and ¢(s2) • p°. Now assume that ¢(s) • p ' , (s l , s) • F +, and (s, s2) • F +.
By Definition 88(5) there exists q' • P with s • (q')° and ¢(q') = p. Hence,
by Lemma 108(1), (q, q') • F*. Then, since q" = {s2}, also (s2, s) • F*. This
contradicts the fact that N is acyclic.

(If) Since ¢(sl) • °p, there exists ql • P with sl • °ql and ¢(qi) = p.
Likewise there exists q2 with s2 • q2 ° and ¢(q2) = p. We prove that ql = q2
(which is then the required q). By Lemma 108(1), (ql,q2) • F*. Suppose that
ql ~ q2. Then there is a transition s such that ql F s F + qz. Clearly ¢(s) • p°,
(sl, s) • F +, and (s, s2) • F +, contradicting the assumption.

(2) can be proved analogously, using Lemma 108(2) and Definition 88(3). []

We now prove the If-part of Theorem 107. Let M = (PM, use(TM), FM, Gin).
To show that the function p r u c t r : PROC(M) ~ LPO(M) is a bijection modulo
isomorphism, it suffices to define a function p roc : LPO(M) -+ PROC(M) such
that

(1) for all G, G' • LPO(M), if G =~ G', then proc(G) =2 proc(G') , and
(2) for all N • PROC(M), p roc (p ruc t r (N)) - ~ g .

97

It is straightforward to define the function proc, on the basis of Lemma 109, as
follows. Let G = (T, F~ use(TM), ¢) be an element of LPO(M). Then proc(G)
is the (PM,USe(TM))-labelled net (P ,T ,F , ¢1,¢), with P, ¢1, and F defined
as follows. P consists of newly created places of two types: all places qp with
p E (Cin)M, and all places qs,p with s E T and p E ¢(s) °. Their labels are
defined by ¢1 (%) = ¢1 (qs,p) -- P. Intuitively, the places qp form the initial slice
of proc(G), and the places qs,p form the post-set of the transition s in proc(G).
With this in mind we define F A (T x P) = ((s, qs,p) [s E T ,p e ¢(s)*}. The
remaining part of F is defined on the basis of Lemma 109 (and Lemma 104):
F M (P × T) consists of all pairs (q~l ,p, s~) such that

¢(s2) E p°, (sl, s2) e F +, and
-~3s E T : ~b(s) E p* and (sl, s) E F + and (s, s2) • F +,

and all pairs (%, s2) such that
¢(s2) • p" and
-~3s • T : ¢(s) E p" and (s, s2) • F +.

This ends the definition of the function proc. It should be clear that it satis-
fies property (1) above. To show property (2), let N = (P, T, F, ¢1, ¢2). Then
proc(pructr (N)) and N have the same transitions, with the same labels. Note
now that, in N, the sets °N and all s °, s • T, form a partition of P. Thus, by De-
finition 88, there is an obvious bijection between the places of proc(pruct r (N))
and N: qp corresponds to the unique place in °N with label p, and qs,p cor-
responds to the unique place in s ° with label p. It is straightforward to show
from Lemmas 109 and 104 that this correspondence defines an isomorphism be-
tween proc(pructr (N)) and N. Note that this also shows that proc(G) is in
PROC(M), for every G • LPO(M).

This ends the proof of Theorem 107.

6 C o m p a r i s o n o f P a r t i a l a n d L i n e a r O r d e r

In this section we compare the partial order behaviour LPO(M) of an EN
system M with its linear order behaviour FS(M). In the first subsection we
show that lpo-equivalence and firing sequence equivalence are the same (cf.
[Pom88, PomRozSim92]). The basic concepts used to prove this are the inde-
pendency relation between the transitions of an EN system, and the dependency
graph of a firing sequence. These concepts are at the basis of the so-called the-
ory of traces (see, e.g., [AalRoz88] and [DieRoz95], in particular [Maz95] and
[HooRoz95]). In the second subsection we show that LPO(M) can be viewed as
the set of equivalence classes of a natural equivalence relation on FS(M) that
models concurrency. This equivalence relation, called lpo-equivalence of firing
sequences, is proved to be the same as the trace equivalence of firing sequences
based on the independency relation (see [Maz95]).

This section is largely based on Section 5 of [AalRoz88].

98

6.1 LPO-Equivalence and Firing Sequence Equivalence

To recapitulate, we now have in total three definitions of the behaviour of a
contact-free EN system M: SCG(M) by configuration equivalence, FS(M) by fir-
ing sequence equivalence, and LPO(M) by Ipo-equivalence, where firing sequence
equivalence is weaker than configuration equivalence (Corollary 34). Though fir-
ing sequence equivalence describes the sequential (linearly ordered) behaviour of
M and lpo-equivalence the non-sequential (partially ordered) behaviour of M,
we will prove in this subsection the rather surprising result that two contact-free
EN systems are lpo-equivalent iff they are firing sequence equivalent. In one di-
rection this result is as expected: if two EN systems are lpo-equivalent, then they
are firing sequence equivalent. This intuitively holds because we can obtain the
linear orders in FS(M) from the acyclic graphs in LPO(M) by ordering these
graphs topologically. Topological order of acyclic graphs, as defined next, gives
a fundamental connection between partial orders and linear orders.

Defini t ion 110. A topological orderofan acyclic labelled graph G = (V, F, S , ¢)
is a sequence ul .. "un E V*, with ui E V for 1 < i < n, and
(1) all ui are distinct,
(2) V = {u l , . . . , un}, and
(3) for all 1 < i , j <_ n, if (ui ,uj) • F, then i < j .
A word of G is a word ¢ (u l) . ' . ¢ (u n) • ,U*, where Ul " " u n is a topological
order of G.

For an acyclic labelled graph G = (V, /', S , ¢), the set of all topological
orders of G is denoted by top(G). It is well known that every acyclic graph can
be ordered topologically, i.e., top(G) ~ ~. Furthermore, words(G) denotes the
set of all words of G, i.e., words(G) = {¢(Ul). . . ¢(un) l u x " ' u n e top(G)}.

Two graphs G and G ~ that represent the same partial order have the same
topological orders (and hence the same words).

Lemma 111. Let G and G' be acyclic labelled graphs.
l / t r a (G) = tra(G') , then top(G) = top(G') and words(G) = words(G').

Example 31. Consider the acyclic labelled graph G shown in Fig. 64, with VG =
{ v l , . . . , v 6 } and ~G = {p , f , e , c } . Then, e.g., v3vlv4v~v6v5 and vlv2v3v4v5v6
are topological orders of G, and pefcep and ecpfpe are the corresponding words
of G. Sequences that are not topological orders of G are, e.g., vav4v6v4vl and
V3V4VlV2V6V5.

We want to show that for every contact-free EN system M,

FS(M) = U{words (G) I G e LPO(M)},

i.e., the firing sequences of M are the words of the pruned contracted processes
of M. We know from Theorem 92 that there is a relationship between the firing
sequences of M and the "complete" firing sequences of the processes of M.

99

P

Fig. 64. An acyclic labelled graph.

More precisely, FS(M) = {¢N(Sl) '"¢N(Sn) I ° N [S l " ' s ~) N ° for a process
N of M}. Now it only remains to show that these complete firing sequences
Sl . . . s n of N are precisely the topological orders of the partially ordered set
(TN, F+N N (TN x TN)).

Theo rem 112. Let N = (P , T , F) be a process net and let t l , --- , tn E T. Then
°g[t l . . . t .) Y ° iZ
(1) all ti are distinct,
(2) T = { t l , . . . , t , } , and
(3) for all 1 < i, j < n, if (ti, t j) e F +, then i < j .

This theorem is an immediate consequence (using Theorem 71(2)) of the
following lemma, which is a simple extension of Theorem 79.

Lemma113 . Let N = (P , T , F , ° N) be a process net, C C P, a n d t x , . . . , t n E T.
Then °N[tl . " tn)C iff
(1) all ti are distinct,
(2) - ~ C N T = { t x , . . . , t , } ,
(3) for all 1 < i , j < n, if (t i , t j) E F +, then i < j , and
(4) C is a slice.

Pro@ The proof is by induction on n, and is analogous to the proof of Theo-
rem 79. The details are left to the reader. Note that if conditions (1-4) hold, then
tn is a maximal element of - 'C A T (with respect to F +) and hence tn* C_ C. D

Theo rem 114. Let M be a contact-free E N system. Then
FS(M) = U{words(G) I G e LPO(M)} .

Proof. By Theorem92, FS(M) = { ¢ N (S l) " ' ¢ N (s n) t 3N E PROC(M) :
° N [s l ' " sn)N°} . For a process N = (P, T, F, ¢1, ¢2) of M, Theorem 112 now
implies that ° N [s l . . . sn)N ° iff Sl.-- sn is a topological order of ctr(N), i.e., iff
s l - . - sn is a topological order of pru(ctr(N)) , see Theorem 101 and Lemma 111.
Note that the labelling ¢ of pru(ctr(N)) is the restriction of CN to TN. This im-
plies that FS(M) = {Ca(u1)'-" Ce(un) I U l . . . u n is a topological order of G E
LPO(M)} = (J{words(G) I G e LPO(M)}. D

100

Example 32. Let M be the EN system of Fig. 47 and N the process of M in
Fig. 57, with pru(c t r (N)) shown in Fig. 60. The words of p ru(c t r (N)) that
are given in Example 31 (see Fig. 64) are the firing sequences of M given in
Example 28.

The next theorem now follows from Theorem 114 and the following simple
fact: if G and G' are labelled graphs such that G -=~ G', and 5 is the correspond-
ing bijection between VG and VG, (see Definition 97), then:
(1) ul""Un e top(G) iff 6 (u l) " " 6(Un) E top(G') , and
(2) words (a ') =/3(words(G)).

Theorem 115. Let M and M' be two contact-free EN systems and let ~ be a
bijection from use(TM) to use(TM,).
I/LeO(M) LPO(M') then ~(FS(M)) = FS(M').

Similar arguments can be used to give an alternative proof of Theorem 107, as
follows. Let p ru(e t r (N)) - a p ru(e t r (N ')) where/~ is the identity on use(TM).
Then, by the simple fact above, words(pru(e t r (N))) = words(pru(c t r (N '))) .
By Theorem 112, words(pru(c t r (N))) = {¢N(s l) ' ' ' ¢/v(sn) [°N[sl"'" sn)N °}
and similarly for N'. From this and the uniqueness (modulo - ~) of the process
in the statement of Theorem 92, it follows that N --~ N'. Note that, conse-
quently, the function p roc : LeO(M) -+ PROC(M) mentioned in the proof of
Theorem 107 can simply be defined as follows: for G E LeO(M), let t l - - - tn
be any element of words(G); then proc(G) is the process N corresponding to
tl . . . tn as constructed in the proof of Theorem 92.

We are now going to prove the, more surprising, converse of Theorem 115
(see Theorem 125). More specifically, we will show that we can "break" the linear
orders in FS(M) in such a way that partial orders in LeO(M) axe obtained. To
this purpose we use the "independency relation" between the transitions of an
EN system M, defined as follows.

Defini t ion 116. Let 27 be an alphabet. A relation I C S x S is an independency
relation (over S) if I is irreflexive and symmetric.

Defini t ion 117. Let M = (P,T, F, C~n) be an EN system.
(1) The independency relation of M is the independency relation ind(M)

over use(T) defined by
ind(M) = {(s,t) E T x T I s ¢ t and 3C E CM : {s,t} con C}.

(2) The dependency relation of M is the relation dep(M) defined by
dep(M) = (use(T) x use(T)) - ind(M).

Example 33.
(e,p), (p, e),
(e, e), (c, e)}

Consider the EN system M of Fig. 47. Then ind(M) = {(p,e),
(c,p), (f,c), (c,f)} and dep(M) = {(p,f), (f,p), (f,e), (e, f) ,

U{(x,x) I x E {p, f , e, c} }. See also Examples 8 and 9, and Fig. 15.

Usually (see [Maz95]), the independency relation of M is defined to be
{(s,t) E TM XTM I S ~ t and disj({s,t})}. The above, stronger definition serves
the same purposes (cf. [Hoo94]), and moreover it satisfies the next lemma.

101

We will show that, using ind(M) , we can construct for every firing sequence
tl --- tn of M a pruned contracted process G of M such that tl . . . tn is a word
of G (without knowing the system M). First we show that we can determine
ind(M) from FS(M) (without knowing M).

L e m m a l l S . Let M = (P ,T ,F , Cin) be an E N system. Then
ind(M) = {(s,t) e T x T i 3 x • T*: xst • FS (M) and xts • FS (M)} .

Proof. If (s, t) • ind(M) , then there is a C • CM such that {s, t} con C.
Hence, by Lemma 17, st con C and ts con C. Let x • T* with Cin[x)C. Then
xs t and xts are firing sequences of M. The other way around, assume that
xst, x t s • FS(M). Let C • CM with Ci,~[x)C. Then st con C and ts con C.
Lemma 19 then implies that {s, t} con C, and hence (s, t) • ind(M) . []

We now "break" the linear order of every firing sequence of M, i.e., for every
firing sequence we construct an acyclic graph, and then show that this graph is
an element of LPO(M). In the next definition we use a predetermined countable
set of nodes {vl, v2, v3, . . .}. This set is used to canonically construct graphs. For
later usage we present the definition for an arbitrary independency relation, see
[HooRoz95].

Def in i t ion 119. Let Z be an alphabet and I an independency relation over ~7.
Let x = tl . . . t,~ • Z*, with n > 0 and t l , . . . , tn • ~ .

(1) The dependency graph o f x (over I) , denoted by dep l (x) , is the labelled
graph (V, F, Z , ¢), where V = { v l , . . . , vn}, ¢(vi) = ti for all 1 < i < n, and, for
all 1 < i , j < n, (vi,vj) E F iff i < j and (t i , t j) 4 1 .

(2) The pruned dependency graph of x (over I) is p ru (dep l (x)) .

Note that vl . . . vn is a topological order of dep1(x), and hence x is a word
of depl(x) .

For an EN system M we write dePM(X) instead of dePind(M) (X).

Example34. Take E = {p, f , e ,c} and I = ind(M) as in Example 33. Then
dep1(ecpfpe) is given in Fig. 65 and pru(depl (ecp fpe)) in Fig. 66. Since the
graphs in Figs. 64 and 66 are the same, pru(dep1(ecpfpe)) can thus also be
found in Fig. 64.

We now want to show that , for every contact-free EN system M, LPO(M) -
{pru(dePM(X)) I x • FS(M)}. First we show a simple connection between
ind(M) and the processes of an EN system M.

L e m m a 120. Let N = (P, T, F, ¢1, ¢2) be a process of a contact-free E N system
M and let s, t be distinct elements of T . Then:
(1) i f 8 CO N t, then (¢(s), ¢(t)) • i nd (M) ,
(2) if s ° M °t ~ o , then (¢(s), ¢(t)) • dep(M) .

Proof. (1) This follows directly from Theorem 91(3).
(2) If s ° M °t ¢ O, then also ¢(s) ° ~ *¢(t) # ~. []

102

Fig. 65. A dependency graph.

Fig. 66. A pruned dependency graph.

In the next theorem we show the connection between a complete firing se-
quence of a process N of M and the dependency graph of the corresponding
firing sequence of M. To begin with, we prove the following lemma.

Lemma 121. Let N = (P, T, F, ¢1, ¢2) be a process of a contact-free EN system
M. Let °Y[s l . . . sn)N ° with T : { S l , . . . , Sn}, and let G = dePM(¢(Sl) . . . ¢(Sn))
Then for an I < i , j < n: • f + iff (v ,vj) • r + .

Proof. (Only-if) If s i*N *sj # Z, then, by Lemma 120(2), (¢(si) ,¢(sj)) E
dep(M) and, by Theorem 112(3), i < j . Hence (vi ,vj) E T'G according to Defi-
nition 119.

(If) If (vi ,vj) • -ra, then i < j and (¢(s i) ,¢(s j)) • dep(M). Then, by
Lemma 120(1), si CON Sj does not hold. Hence (si, sj) • F + or (sj, si) • F +.
Theorem 112(3) then implies that (si, sj) • F +. [:]

T h e o r e m 122. Let N = (P, T, F, ¢1, ¢2) be a process of a contact-free E N sys-
tem M and let °N[Sl .-. sn)N °. Let/5 be the identity on use(TM).
Then pru(e t r (N)) --~ pru(dePM(¢(s 1)--- ¢(Sn))).

Proof. Lemma 121 implies t ra (c t r (N)) --~ tra(dePM(¢(Sl)---¢(Sn))) via the
bijection 5 with 5(si) = v~ between the nodes of these labelled graphs. Now, by
Theorem 102, the result holds. [2

Thus, for every firing sequence tl ..- tn of the EN system M, its dependency
graph d e P M (t l . . , tn) represents the same labelled partial order as (the con-
tracted version of) a process N of M corresponding to tl . . . tn, as expressed
in Theorem 92. Together with Theorem 107 this proves the uniqueness (modulo
--~) of this process N, cf. the remark following Theorem 92.

103

Example 35. Let M be the EN system of Fig. 47 and N the process of M in
Fig. 57. Then there is a firing sequence °N[s l . . . sn)N ° with ¢(sl) .-o ¢(sn) --
ecp~pe (see Example 28). The graphs p ru (c t r (N)) and pru(dePM(ecpfpe)) are
drawn in Figs. 60 and 64, respectively.

T h e o r e m 123. Let M be a contact-free EN system, and let fl be the identity on
use(TM). Then LPO(M) =-~ {pru(dePM(X)) Ix e FS(M)}.

Proo]. Directly by Theorems 92 and 122. D

We need one more lemma to show that firing sequence equivalence implies
lpo-equivalence.

L e m m a 1 2 4 . Let M and M' be EN systems and let fl : use(TM) --+ use(TM,)
be a bijection. I f Z(FS(M)) = FS(M') then
{pru(dePM(X)) Ix • FS(M)} - ~ {pru(dePM,(X)) Ix • FS(M')}.

Proof. If/~(FS(M)) = FS(M') then, by Lemma 118, ind(M') = {(fl(s),fl(t)) I
(s, t) • ind(M)}. Then, for x E FS(M), pru(dePM(X)) ----~ pru(dePM,(fl(x))).

[]

We are now ready to prove the main result of this section.

T h e o r e m 125. Let M and M' be two contact-free EN systems and let ~ be a
bijection from use(TM) to use(TM,).
I] fl(FS(M)) = FS(M') then LPO(M) =_~ LPO(M').

Proof. By Theorem 123 and Lemma 124. []

T h e o r e m 126. Two contact-free EN systems are Ipo-equivalent iff they are fir-
ing sequence equivalent.

Proof. By Theorems 115 and 125. []

The following two corollaries of this characterization are interesting.

Corol la ry 127. If two contact-free EN systems are configuration equivalent,
then they are lpo-equivalent.

Proof. Directly by Corollary 34 and Theorem 126. []

Corol lary 128. There is an algorithm that, for two arbitrary contact-free EN
systems M and M r, decides whether or not M and M r are lpo-equivalent.

Proof. According to Theorem 126 we have to check whether there exists a bijec-
tion fl from use(TM) to use(TM,) such that fl(FS(M)) -- FS(M'). We first
construct SCG(M) and SCG(M'). From these we can obtain use(TM) and
use(TM,). Now we test all bijections ft. The languages FS(M), fl(FS(M)), and
FS(M') are regular, and finite automata can easily be constructed for them (see
Theorem 12). Since there is an algorithm to decide whether two finite automata
are equivalent (see, e.g., [HopUl179]), we can now apply it to the automata for
fl(FS(M)) and FS(M'). []

104

For an arbitrary (not necessarily contact-free) EN system M, let PD(M) =
{pru(depM(x)) [x E FS(M)}: the set of pruned dependency graphs of M.
Then Theorem 123 says that for every contact-free EN system M: LPO(M) -__.a
PD(M), where fi is the identity on use(TM). Now note that PD(M) is also de-
fined (and meaningful) for EN systems M that are not contact-free. Lemma 124
implies that, for arbitrary EN systems M and M ~, if M ,~ M ~ then PD(M) -
PD(M'). As we have observed already, for an EN system M that is not contact-
free we consider the processes of a contact-free EN system M ~ that is configu-
ration equivalent with M. Consequently, in such a case PD(M) - PD(M ~) =-
LPO(M'); in other words PD(M) is isomorphic with LPO(M~). Hence we can
view PD(M) as the behaviour of M, and we can thus meaningfully define lpo-
equivalence for arbitrary EN systems M and M~: M and M ~ are lpo-equivalent
if PD(M) = PD(M'). The above results can then easily be extended to arbitrary
EN systems (e.g., Lemma 124 would then be the generalization of Theorem 125).

6.2 Equivalence of Firing Sequences

Another way to understand the concurrent behaviour of an EN system is by
calling two firing sequences of an EN system equivalent if they correspond to
two distinct sequential observations of the same run of the system. This notion
of equivalence can be formulated as follows.

Definition 129. Let M be a contact-free EN system and let x , x ~ E FS(M).
Then x and x ~ are lpo-equivalent, denoted by x "~lpo x*, if there exist a process

N of M and two firing sequences y ,y ' E T~ such that °N[y)N °, CN(Y) = x,
°N[y ')N °, and CN(Y') = X'.

Note that the process N is unique modulo =2 (cf. the remarks following
Theorems 92 and 122). Note also that, by Theorem 112, x ~lpo x~ iff x, x ~ E
words(G) for some G E LPO(M).

Example 36. The two firing sequences pefcep and ecpfpe given in Example 28 are
lpo-equivalent, i.e., pefcep "~ lpo ecpfpe.

Due to the relationship between pruned contracted processes and dependency
graphs of firing sequences discussed in the previous subsection, lpo-equivalence
can be characterized in terms of dependency graphs as follows (and for non-
contact-free EN systems we can take this as the definition of lpo-equivalence).
This characterization is a part of Theorem 3.12 of [NieRozThi90].

Theorem 130. Let M be a contact-free EN system and let x, x s E FS(M). Then
x "~lpo x' iff pru(depM(x)) =a pru(depM(x')) , where fl is the identity on
use(TM).

Proof. (Only-if) If x ~'lpo x', then there exist a process N of M and two firing se-

quences y, y* of N with °N[y)N °, CN (Y) = x, °N[y~)N °, and CN (Y~) = x J. Hence,

105

by Theorem 122, p ru (c t r (N)) -=2 pru(dePM(¢~v(Y))) and p r u (c t r (N)) ---2
pru(dePM(¢N(y'))).

(If) By Theorem 123 there exists a process N of M such that p r u (e t r (N)) - ~
pru(dePM(X)). Since v l . . "vn is a topological order of pru(dePM(X)) (where
n =]xl) , there is a topological order y of p r u (c t r (N)) with the same la-
bels, i.e., CJv(y) = x. Then, by Theorem 112, °N[y)N °. Since p r u (c t r (N)) -;~
pru(dePM(X')) , analogously there exists y' with CN(y') = x' and °N[y ')N °. D

We will now show a very simple characterization of isomorphism of depen-
dency graphs, in terms of the independency relation ind (M) induced by the EN
system M. This characterization can be proved very generally, without reference
to EN systems; it is part of the theory of traces, see [HooRoz95].

For a given independency relation we define an associated equivalence relation
on words as follows.

De f in i t i on 131. Let I be an independency relation over Z.
The relation --I C ~* × ~'* is defined as follows: for x , y • Z*,
x - x Y iff there exist a, b • S and xl , x2 • S*, such that
x = xlabx2, y = xlbax2, and (a,b) • I.
The relation ~ t C_ S* x E* is then defined as the smallest equivalence relation
that contains --'~. If x ~ I Y then x and y are trace equivalent (over I).

Thus, two words are trace equivalent if one can be obtained from the other
by interchanging independent symbols, repeatedly.

L e m m a 132. Let I be an independency relation over Z , and let x, y • 27*.
(1) x ~ ! y iff there exist n >_ 0 and xo , . . . ,Xn • Z* such that Xo = x,

Xn = y, and xi-1 - I xi for all 1 < i < n.
(e) x ~I Y implies Ixl = lyl.

Intuitively the definition of trace equivalence is based on the following prop-
erty of firing sequences of an EN system M = (P ,T ,F , Cin): for x , y E T* and
s, t e T, if xsty • FS(M) and (s, t) • ind(M) , then xtsy • FS(M). The proof
of this property is easy: If (s,t) • i nd (M) then disj({s, t}). Let Cin[x)C[st)D.
Then st con C and disj({s, t}). This implies that {s, t} con C and thus (by
Lemma 17) that C[ts)D. Hence xtsy • FS(M). In other words, transitions in
ind (M) are interchangeable in a firing sequence, because they actually occur con-
currently. Thus, FS(M) is closed under ~ind(M): i fx E FS(M) and x ~ind(M) Y,
then y • FS(M). A similar argument shows that , for x , y • FS(M), x "~ind(M) Y
iff X ~ I Y, where I = {(s, t) • TM × TM I s ~ t, disj({s, t})} (the "usual"
independency relation, cf. the remark following Definition 117).

Example3Z Again, let 27 = { p , f , e , c } and I = {(p,e), (e,p), (p,c), (c,p), (f ,c) ,
(c, f)}. Then I is an independency relation, pefc "-I epfc "-z epcf , pefc ~ I epcf,
and [pefc]i = {pefc, pecf , epfc, epcf , ecpf }.

106

For an independency relation I over 27 and an x • 27*, [x]I denotes the
equivalence class of ~z that contains x. An equivalence class of ~ is called a
trace over I; intuitively it is the set of all sequential observations of one run
of some system. In Example 37 ~oefc]i is a trace over I . We will prove that
Ix]1 = w o r d s (d e p l (x)). To this purpose we use the following well-known result
from graph theory (where the labelling of the graph is irrelevant).

L e m m a 133. Let G = (V, F, 27, ¢) be an acyclie graph. Let J c V x V be the
independency relation (of G) defined as follows: for all u, w • V,
(u , w) • J i f f u # w , (u , w) ¢ F , a n d (w , u) ~ F .
Then, for every topological order u l . . . u~ of G,
t op (G) = {wl " " w n • V* l u l " " U n ~ j wl " ' W n } .

Proof. (1) It is clear tha t { w l " " W n E V* I Ul ' ' 'Un "~'J Wl ' '" Wn} C t op (G)
for every u l " " U n • top(G) .

(2) Now it remains to show that t op (G) c { W l " ' w n • V* I U l ' " u n ~ j
wi "'" Wn}. Let wl " " w n E t op (G) . We prove by induction on k that for every
k, 1 < k < n + 1, there exists a topological order t x ' " tn of G such that
t l ' " t n -~j w l . . . w n and t~ = ui for all 1 < i < k - 1. For k = 1 we
take t l - - . tn -" W l ' " W n . For the induction step, assume that the statement
holds for k, and consider the topological order t l . . . tn which satisfies the re-
quirements for k. There exists m, k < m g n, such that Uk = tin. Then
t k , . . . , t m - 1 succeed uk in the topological order U l ' " u n . Hence there are no
edges (tk, t i n) , . . . , (tin-x, tra) in T' (and of course no edges in the other direction
because tl .. "tn is a topological order). Thus (t k , t m) , . . . , (tm-x , tm) • J. This
implies that t l . . . t ~ ~ j t l . . "tk-ltrntk" " ' tm- l tm+l ' " "tn. And this is a topo-
logical order (according to (1)) tha t satisfies the requirements for k + 1. []

For I = i nd (M) , the next result is a refinement of Theorem 114, as can be
seen from Theorem 123.

T h e o r e m 134. Let I be an independency relation over 27, and x • E*. Then
[x]l = w o r d s (d e P i (x)).

Proof. Let J be the independency relation of the graph G = d e p l (x) , as defined
in Lemma 133. Then it is easy to check that , for u ,w E V a , (u,w) E J iff
(¢(u), ¢(w)) E I. Hence, for all y • E*, x ~y y iff there is a Wl . . "Wn • V~ with
V l ' " v n ~ j wl " " w n and y = ¢ (W l) ' " ¢ (w n) . Now v l " " V n is a topological
order of d e p l (x) . Hence, according to Lemma 133, Vl " " v n ~ r wl ""Wn iff
wx'" "Wn is a topological order. Thus, for all y • ~7", x ~ I Y iff there exists a
topological order W l ' " w n of d e p i (x) such that y = ¢ (w]) ' " ¢(Wn). []

This implies tha t two words are trace equivalent iff they have isomorphic
dependency graphs.

Theorem 135. Let I be an independency relation over S , and let x, y E 27*.
Then the following/our statements are equivalent.

107

(1) z ~ l y,
(2) [x]i = [y].
(3) depi(x) -a depI(y), and
(4) pru(dePi(X)) -z~ p ru (dep / (y)) ,
where ~ is the identity on S .

Proof. (1) implies (3): Assume x = xlabx2 and y = xlbax2, with x l , x2 E E*
and (a, b) E I . Then it is easy to see that dep i (x) and dePi (y) are isomorphic:
if Ixll = i - 1, then take the bijection 5 : {vl , . . . ,Vn} -+ (v l , . . . , v n } such that
5(vi) = vi+l, 5(vi+l) = vi, and 5(vj) = vj for j ~ i, i + 1.

(3) implies (2): This follows from Theorem 134, because d e p t (x) and dept(y)
have corresponding topological orders with the same labels. Likewise (4) implies
(2), because p ru (dep i (x)) has the same topological orders as depl (x) . [3

Note that Theorems 134 and 135 do not refer to EN systems. The equality of
lpo-equivalence and trace equivalence of firing sequences of EN systems is now
a direct consequence of Theorems 130 and 135.

T h e o r e m 136. Let M be a contact-~ree E N system and x, x ~ E FS(M) . Then
X "~'lpo xl i f f X ~ind(M) xt"

A trace language (over an independency relation I) is a set of equivalence
classes of ~z. Now the behaviour of an EN system M can also be defined as
the trace language TR(M) = {[x] ind(M) I X E FS(M)}, i.e., the language
FS(M) in which trace equivalent words are grouped together. According to
Theorems 123 and 135 the function p r u d e p : TR(M) -~ LPO(M), defined by
prudep([x]) = pru(dePM(X)), is a bijection between TR(M) and LPO(M),
modulo isomorphism (and note that, by Theorem 134, w o r d s is its inverse).
Thus, TR(M) can also be seen as a formalization of the set of runs of the
system M (see Theorem 107). Theorems 130 and 136 (i.e., Theorem 3.12 of
[NieRozThi90]) show that the mapping that assigns a process with each fir-
ing sequence, as defined in Theorem 92, is a bijection between TR(M) and
PROC(M), modulo isomorphism. We can define two EN systems M and M 1
to be trace equivalent if there exists a bijection fl : use(TM) -+ use(TM,) such
that ~(TR(M)) = TR(M') , where ~(TR(M)) is defined in the obvious way.
Then, clearly, trace equivalence is the same as lpo-equivalence.

7 Branching Processes

To obtain a more complete picture of the relationship between different runs of
a system that is not conflict-free, we will consider "branching runs" (also called
"unfoldings"). Intuitively, a branching run combines several conflicting runs of
the system, with an indication of where the conflicts occur. At each point of
conflict, one may view the system as splitting into several "parallel" copies of
itself, one for each resolution of the conflict (just as a splitting universe in science-
fiction). In this section we model these branching runs by "branching processes",

108

which are a natural extension of the processes that we have considered in the
previous sections.

The theory of branching processes or unfolding s was initiated in [NiePloWin81],
and developed in, e.g., [Win87, NieRozThi90, RozThi91, Eng91, NieRozThi95,
WinNie95a, WinNie95b]. In [McM93, McM95, Esp94, EspRSmVog96] branch-
ing processes are used to develop an efficient model checker for contact-free EN
systems, i.e., an algorithm that verifies logical properties of such systems (for
a fragment of so-called branching time temporal logic in [Esp94]). Most papers
consider the unique maximal unfolding of the EN system, which is a (usually infi-
nite) branching run containing all runs of the system. Here we consider arbitrary
(finite) branching runs, as in [Eng91].

Just as processes are based on process nets, branching processes are based
on branching process nets. A branching process net is like a process net, except
that its places may have arbitrary output-sets. A conflict is modelled by a place
with more than one transition in its output-set. Whenever a conflict occurs, the
conflicting parts of the branching run should be separated after the conflict. This
is formalized by requiring the following "conflict relation" to be irreflexive.

Def ini t ion 137. Let N = (P, T, F) be a net. The conflict relation of N is the
binary relation ® C_ XN x XN defined as follows: for all xl,x2 E XN, xl ® x2
if there exist distinct transitions tl, t2 E T such that °tl N or2 ~ O and ti F* xi
f o r / = 1,2.

The conflict relation of a net N will also be denoted by ®N. Note that it is a
symmetric relation. We now use it to define branching process nets, introduced
in [NiePloWinS1] (where they are called occurrence nets).

Defini t ion 138. A net N = (P, T, F) is a branching process net, abbreviated
b-process net, if:
(1) N is acyclic,
(2) #(°p) < 1 for all p E P, and
(3) ®N is irreflexive.

Note that the irreflexivity of ®N can also be expressed as follows: for all
distinct transitions tl, t 2 e T, if *tl N *t2 ¢ g, then {x E XN [t~ F* x} N {x E
XN I t2 F* x} -- O. Intuitively this means that conflicting transitions tl and t2
have disjoint futures.

As for process nets, we will view a b-process net N as an EN system with
initial configuration °N. Every process net is a b-process net, because @N is
empty for a process net N.

Example 38. The EN systems in Figs. 22, 23, 24, and 25 are b-process nets. This
shows that confusion can be present in b-process nets. The acyclic EN system
in Fig. 30 is not a b-process net because #(*p3) -- 2. The EN system of Fig. 34
satisfies (1) and (2) above but it is not a b-process net, because t3 ® t3. In fact,
*tl M *t2 ~ ~ and both tl F* t3 and t2 F* t3. Thus, t~ is in the conflict relation
with itself and so ® is not irreflexive.

109

In a b-process net N we define the notion of a slice in the same way as for
a process net, but we additionally require that its places are not in the conflict
relation ®N. We will denote the complement of ®g by @g; note that it is a
reflexive symmetric relation (cfo Definition 65).

D e f i n i t i o n 139. A slice of a b-process net N is a maximal (CO N n @N)-Clique
C of N such that C C_ PN.

Example 39. Consider the b-process net N of Fig. 23. Its conflict relation is
®N = { (x, y), (y, x) I x e {t3,/94 }, Y e {tl, Ph, t2, P3 }- The slices of N are {Pl, P~ },
{P4}, {Ph,P2}, {Pl,P3}, and {Ph,P3}. Note that {P4} and {Ph,B3} are not cuts.

If one systematically considers the relation CON N @g instead of the re-
lation CON, then Lemmas 76, 77, and 78, and Theorems 79 and 81, also hold
for b-process nets. The details of the proofs are left to the reader. Thus, by
Lemma 78 and Theorem 81, b-process nets are contact-free and reduced. In the
next theorem we state the generalization of Theorem 79: the slices of a b-process
net are exactly its reachable configurations.

T h e o r e m 140. Let N = (19, T, F, °N) be a b-process net and let C C P.
C E CN iff C is a slice of N.

Based on b-process nets, we now define branching processes of an EN system,
see [Eng91]. They can be viewed as records of all events that occur during a
branching run of the system.

D e f i n i t i o n 141. Let N = (PN, TN, FN, ¢1, ¢2) be a (Z1, Z2)-labelled b-process
net and let M = (P,T,F, Cin) be a contact-free EN system.
Then N is a branching process of M, abbreviated b-process, if
(1)-(5) of Definition 88 hold, and
(6) for all s, t e TN, if *s = *t and ¢2(s) --- ¢2(t), then s = t.

For a contact-free EN system M, we denote the set of all b-processes of M
by BPROC(M) .

Condition (6) above says that a conflict is always between two distinct tran-
sitions of M. This is a natural requirement that prevents the same run to appear
twice in the record of a branching run. However, many properties of b-processes
also hold without the requirement.

Example$O. (1) Let M be the (contact-free) EN system of Fig. 51. A branching
process N of M is drawn in Fig. 67. Note that the process of M that is given
in Fig. 56 is "part" of N, i.e., it is one of the runs of M that is combined in the
branching run corresponding to N.

(2) A b-process of the EN system of Fig. 2 (mutual exclusion) is drawn in
Fig. 68. Intuitively, it is a combination of four possible runs of the system: com-
ponent i gets permission to access its critical section, and then component j gets
permission, for every combination of i , j E {1,2}. This can be compared with
the process in Fig. 58, corresponding to one run during which components 1,2,1,
and 1 get permission, respectively.

110

t~

Pl

P3

t4

Fig. 67. A branching process of the EN system of Fig. 51.

It can be proved that Lemma 89 and Theorems 90 and 91 are also true for
b-processes (again with CON N ~N instead of CON). In fact, they are even true
when condition (6) is dropped from the definition of b-process (Definition 141);
this will be needed in the proof of Theorem 149.

As for processes, to compare the behaviour of two different EN systems we
are mainly interested in the events, and their relationships, rather than in the
conditions of a branching process. Thus, we will remove the conditions and con-
sider pruned contracted b-processes (see Section 5.4). In the case of branching
processes we are not only interested in the causal relationship between events
but also in their conflict relation. However, since the conflicts in a b-process are
modelled by places with more than one transition in their output-set, the conflict
relation is lost when the places are removed. Consequently, in pruned contracted
b-processes, we have to model the conflict relation explicitly.

Just as a pruned contracted process represents a labelled partial order, a
pruned contracted b-process will represent a labelled partial order together with
a conflict relation. Such a partial order with conflict relation is called an "event
structure", introduced in [NiePloWinS1] (see also, e.g., [Win87, WinNie95a]).

Definit ion 142. An event structure is a triple (A, p, ®) where
(1) (A, p) is a partially ordered set,

111

r l r2

dl

Wl

d2

1/32

c 1 (~) (~)c2

Fig. 68. A b-process of the mutual exclusion system of Fig. 2.

(2) ® C__ A × A is an irreflexive symmetric relation, and
(3) for all a,b,a',b I E A, i f a ® b , a p a', and b p b', then a ' ®b I.

Condition (3) relates the causal relation p to the conflict relation ®. It ex-
presses the fact that p inherits ®, in the sense that a conflict between a and b is
inherited by all p-descendants of a and b (as in a vendetta).

It is easy to see that for every b-process net N, (XN, F + , ®g) is an event
structure (cf. Lemma 74). For a b-process N of an EN system M, we will be
interested in the "labelled event structure"

(Tlv, F + R (TN x TN), ®g N (TN X TN), TM, ¢2N).

As in the case of processes and labelled partial orders, we will represent such a
labelled event structure by an acyclic labelled graph, with an additional relation
that models conflict. We will call this a "labelled branching graph", defined as
follows.

D e f i n i t i o n 143. Let Z be an alphabet. A (Z-)labelled b-graph is a quintuple
G = (V, F, ®, Z , ¢), where (V, F, Z , ¢) is an acyctic Z-labelled graph, and

112

® C_ V x V is the conflict relation of G, such that
-~3vl,v2,v • V : vl ®v2, vl F* v, and v2 F* v.

It is left to the reader to define the appropriate notion of isomorphism of
labelled b-graphs and sets of labelled b-graphs (cf. Definitions 97 and 98). Note
that a labelled b-graph G can be viewed as a graph with two types of edges:
directed edges in FG, and undirected edges in ®G.

Example$l. Figure 69 shows an example of a labelled b-graph G. The conflict
relation of G is indicated by undirected dashed lines. The nodes of G are labeled

in1 ~.-- .. -:::
" 4

7¢J" "".
in.

in2

~n2

Fig. 69. A labelled b-graph.

out2

by the transitions of the mutual exclusion system of Fig. 2. We will see later
that G is in fact a contracted b-process of that EN system.

We now define the labelled event structure that is represented by a labelled
b-graph, cf. Definition 99.

Defini t ion 144. Let G = (V, F, ®, ~ , ¢) be a labelled b-graph. The transitive
closure of G, denoted by tra(G), is the labelled b-graph (V, F +,tra(®), ~ , ¢),
where tra(®) = {(Vl,V2) I Bv~,v~ • Y : v~ ® v~2 and v~ F*vi for i = 1,2}. We
also say that G represents tra(G).

It should be clear that (V, F +, tra(@)) is an event structure, and so tra(G)
is a labelled event structure. The pruned version of a labelled b-graph is defined
next, cf. Definition 100.

Defini t ion 145. Let G = (V, F, ®, S, ¢) be a labelled b-graph. The pruned ver-
sion of G, denoted by pru(G), is the labelled b-graph (V, F ' , ®', E, ¢) with
F ' = {(v,w) E F [-~ 3u e V : (v,u) • F + a n d (u , w) • F +} and ®' =
{(vx,v2) • ®[-~3(V~l,V~) • ®: (v~,v~) • (vl,v2) and v~ F* vi for i = 1,2}.

It is not difficult to show that Theorems 101 and 102 still hold for labelled
b-graphs.

113

in11 I in2

out~ out2

in1 in2

Fig. 70. The pruned version of the labelled b-graph of Fig. 69.

Example 42. Figure 70 shows the pruned version pru(G) of the labelled b-graph
G of Fig. 69.

After discussing labelled b-graphs, we return to b-processes and show how
to contract and prune them, cf. Definition 103.

Defini t ion 146. Let N = (P, T, F, ¢1, ¢2) be a b-process of an EN system M.
(1) The contracted version of N, denoted by ct r (N), is the labelled b-graph

(T,/', ®, TM, ¢2) such that, for all s, t E T,
(s,t) E F iff s" n ' t ~ o , and (s,t) E ® iff "s M "t ~ o .

(2) The pruned contracted version of N is the labelled b-graph pru(c t r (N)) .

Example43. Let N be the b-process given in Fig. 68. Its contracted version
c t r (N) and pruned contracted version pru(c t r (N)) are shown in Figs. 69 and 70,
respectively. They can be compared with the contracted and pruned contracted
process of Fig. 62.

It is easy to see (using the analogue of Lemma 104 for err(N)) that, for
c t r (N) -= (TN, 1", ®, use(TM), ¢2), tra(®) ---- ®N M (TN X TN). This implies that
c t r (N) is indeed a labelled b-graph, and that both c t r (N) and pru(c t r (N)) rep-
resent the labelled event structure (TN , F + V](TN × TN), @ Nf"I(TN × TN), TM , ¢2N).
We note here that, by condition (6) of Definition 141, this labelled event struc-
ture is deterministic in the sense of [Vaa91].

For a contact-free EN system M we denote by LES(M) the set of all pruned
contracted b-processes of M (where LES stands for Labelled Event Structures).
Hence

LES(M) = {pru(ctr (Y)) I N E BPROC(M)}.

Defini t ion 147. Two contact-free EN systems M and M p are les-equivalent if
LES(M) ~_ LES(M').

Obviously, for every contact-free EN system M, LPO(M) = {G E LES(M) [
®e -- g}. This implies that if two EN systems are les-equivalent, then they

114

are lpo-equivalent. To show that this also holds the other way around, we need
the concept of a "configuration" of an event structure. We define it for labelled
b-graphs. Intuitively, a configuration of a branching run is one of the conflict-free
runs that the branching run consists of.

Defini t ion 148. Let G = (V, F, ®, 2Y, ¢) be a labelled b-graph.
A configuration of G is a subset R of V such that
(1) VVl,V2 E R:-~ vl ®v2, and
(2) Vvi,v2 E V: if v2 E R and vl F v2, then vl E R.
For a configuration R of G, the (non-branching) labelled graph induced by R,
denoted GIRl, is (R, F M (R x R), ~ , ¢ I R).

It is well known that configurations of unfoldings of an EN system corre-
spond to processes of the system (cf. Theorem 4.6 of [NieRozThi90] and the
discussion at the end of that paper). In the next theorem we show that, due to
this correspondence, LES(M) can be recovered from LPO(M) without knowing
M.

T h e o r e m 149. Let M be a contact-free EN system, and let G = i T, F, ®, E, ¢)
be a labelled b-graph with E = use(TM).
Then, G e LES(M) i~
(1) pr . (V) = v ,
(2) G[R] e LPO(M) for every configuration R of G, and
(3) VSl,S2 e T: i f s l ® s2, then (¢(Sl),¢(s2)) e dep(M) and ¢(sl) ~ ¢(s2).

Proof. (Only-if) This direction of the proof consists of verifying a number of
rather obvious properties of pruned contracted b-processes. Let G = pru(ctr(N))
for a b-process N -- (P,T,F,¢I ,¢) of M. Property (1) is obvious. For a config-
uration R C_ T, let N[R] be the labelled net (P',T', F' ,¢~,¢ ') with T' = R,
P ' = °N U nbh(R), and F' , ¢~, ¢' are the restrictions of F, ¢1, ¢ to P ' and T'. It
is straightforward to show that N[R] is a process of M with pru(ctr(N[RD) --
G[R]. This proves property (2). To show property (3), let sl, s2 E T with Sl ®s2.
Then Sl ~ s2 by Definition 143, and *sl n *s2 ¢ ~ by Definition 146. This im-
plies that "¢(Sl)n °¢(s2) ¢ 0, and so (¢(Sl), ¢(s2)) E dep(M). Now we assume
that ¢(Sl) = ¢(s2) and derive a contradiction. Since Sl # s2, condition (6) of
Definition 141 implies that °sl ~ °s2. Thus, there exist distinct places ql E °sl
and q2 E °s2 with the same label. Hence, by the b-analogue of Theorem 91(1),
either ql liN q2 or ql ®N q2. In both cases it is easy to see that there exist transi-

! F * I ! tions s 1' , s 2' such that "s~ N *s~ # g, s i si for i = 1, 2, and (Sl, s2) # (Sl, s2).
Since G is pruned, this contradicts the fact that Sl ® s2.

(If) This direction of the proof is based on Lemma 109 and on the proof
of Theorem 107. Let G = (T, F, ®, 2:, ¢) satisfy properties (1-3). We have to
show the existence of a b-process N of M such that pru(ctr(N)) = G. The
construction of N is exactly the same as the construction of proe(G) (for G e
LPO(M)) in the proof of the If-part of Theorem 107, at the end of Section 5.
Thus, we define N to be the (PM, use(TM))-labelled net (P, T, F, ¢1, ¢), where
P, ¢1, and F are defined in exactly the same way as for proc(G). In what follows

115

we prove that N is a b-process of M such that p ru (c t r (N)) = G. As usual, we
will drop the subscript of ¢1.

Conditions (1)-(5) of Definition 141 (see Definition 88) are all obvious, except
that we have to show that for every s E T, ¢(°s) = *(¢(s)) and ¢ r °s is
injective. For a given s, let Rs = {s' e T 1 st F* s}. It is easy to see that R~
is a configuration of G, and so G[Rs] E LPO(M). From the definitions of N
and proc(G[Rs]), it should be clear tha t *s contains the same places in N and
in proc(G[Rs]), with the same labels. Since proc(G[Rs]) is a process of M, it
satisfies the above two requirements.

Next we claim that

fors , s ' E T , s ' F + s i f f s ' F + s. (1)

In the Only-if direction this follows directly from the definition of N. In the
If direction it follows from an argument about proc(G[Rs]) similar to the one
above, using the fact that the partial order on the transitions of proe(G[Rs]) is
represented by G[Rs], see Lemma 104. Equivalence (1) implies that N is acyclic,
which is condition (1) of a b-process net, cf. Definition 138.

Similarly, for the conflict relations we claim that

for sl, s2 E T, sl ®N s~ iff (sl, s2) E tra(@), (2)

where ® is the conflict relation of G.
We first show the Only-if direction of equivalence (2). By equivalence (1), it

suffices to prove this for the case that *sl f3 "s2 ~ 0. Suppose that (sl, s2)
t ra(®). Then R = {s E T I s F* sl or s F* s2} is a configuration of G, and so
G[R] is in LPO(M). Again, this implies that also °sl A *s2 ~ 0 in proc(G[R]),
contradicting the fact that this is a process of M. From this Only-if direction, and
the fact that t ra(®) is irreflexive, it follows that ®N is irreflexive (condition (3)
of a b-process net, cf. Definition 138). Since condition (2) of a b-process net is
immediate from the definition of N, this shows that N is a b-process net. Thus,
we have almost proved that N is a b-process: only condition (6) of Definition 141
is still missing.

Next we show the If direction of equivalence (2). By equivalence (1), it suf-
fices to prove this for the case that sl ® s~. This implies, by property (3), that
(¢(sl), ¢(s2)) E dep(M). Assume that -- sl ®N s2. If sl liN S2, then, by equiv-
alence (1), sl F* s2 or s2 F* sl, which contradicts the irreflexivity of t ra(®). If
sl CON s2, then (sl,s2) is in the relation CON N @N- Thus, by the b-analogue
of Theorem 91(3) (which is also valid without condition (6) of Definition 141),
there exists C E CM such that {¢(sl),¢(s2)} con C. This contradicts the fact
that (¢(sl), ¢(s2)) E dep(M).

Equivalences (1) and (2) show that p r u (c t r (N)) and G represent the same
labelled event structure. Hence, because they are both pruned, they are the same
(see Theorem 101). Note that we have applied c t r to N without knowing whether
condition (6) of Definition 141 is satisfied; it should be clear that Definition 146
can also be used in this case.

116

It remains to show condition (6) of Definition 141. Consider distinct transi-
tions sx, s2 E T with "st = "s~. It is straightforward to show that (Sl, s2) is in
the conflict relation of pru(c t r (N)) . Thus, since p ru(c t r (N)) = G, Sl ® sz. It
now follows from property (3) that ¢(81) ~ ¢(s2). D

We note here that the condition ¢(st) ¢ ¢(s2) in property (3) of Theorem 149
corresponds precisely to condition (6) of Definition 141. Theorem 149 is still true
when both conditions are dropped.

Theorem 149 allows us to show that lpo-equivalence implies les-equivalence.
This result can also be deduced from the results in [NieRozThi90, Eng91] to-
gether with Lemma 5.3 of [Vaa91].

T h e o r e m 150. Let M and M' be two contact-free EN systems and let fl be a
bijection from use(TM) to use(TM,).
I f LPO(M) =~ LPO(M'), then LES(M) =fl LES(M').

Proof. By Theorem 115, fl(FS(M)) = FS(M'). Hence, by Lemma 118, ind(M') =
{(~(s),~(t)) I (s,t) e ind(M)} (as in the proof of Lemma 124). It now follows
from Theorem 149 that LES(M) - ~ LES(M'). D

Together with the remark after Definition 147 this shows that les-equivalence
is the same as lpo-equivalence (and hence the same as firing sequence equivalence
by Theorem 126).

T h e o r e m 151. Two contact-free EN systems are les-equivalent iff they are lpo-
equivalent.

The analogue of Theorem 107 also holds for b-processes, i.e., the function
p r u c t r is a bijection between BPROC(M) and LES(M); the proof is by Lem-
mas 108 and 109, which also hold for b-processes (even when the conflict rela-
tions are dropped from the pruned contracted b-processes, because in this case
the system M is known).

It is shown in, e.g., [RozThi91, WinNie95a] that there is a general relationship
between tracelanguages and event structures, similar to the relationship between
traces and dependency graphs considered in Section 6.2. Possibly, this could be
used to give an alternative proof of Theorem 151 that is similar to the one of
Theorem 126 in Section 6.1.

8 C o n c l u s i o n

In this chapter we have presented a comprehensive introduction to the theory
of Elementary Net systems. We have discussed here both the structural and the
behavioural aspects of the theory.

However, the behavioural aspects are prevalent in developing the theory of
EN systems, because even such structural issues like reduction and decomposi-
tion make sense only modulo some behavioural equivalence of the systems. For

117

example, if a normal form for EN systems is proved, then it is proved with re-
spect to a specific equivalence. Thus typically we say: "For every EN system
there exists an equivalent EN system that satisfies the conditions of the normal
form". In this sense, the study of (behavioural) equivalences is central to the
theory of EN systems.

We have studied a number of equivalence relations between contact-free EN
systems and the relationships between them: isomorphism, which implies config-
uration equivalence, which in its turn implies firing sequence equivalence, which
equals lpo-equivalence, weak configuration equivalence, trace equivalence, and
les-equivalence. This leaves us with one notion of equivalent structure of EN
systems (isomorphism), and essentially two notions of equivalent behaviour of
EN systems, one stronger than the other: configuration equivalence, for which
we require the two systems to have the same state space, and firing sequence
equivalence (or lpo-equivalence), for which we require the two systems to have
the same runs (i.e., "paths" in the state space). These are the two notions of
behaviour that play an important role in system theory in general.

aEB

M

av

(

hi-

(

~ a

M,

Fig. 71. Two labelled EN systems M and M' that are lpo-equivalent but not weakly
configuration equivalent.

Finally we make a general remark concerning Theorem 126 which says that
lpo-equivalence and firing sequence equivalence are the same. A technical reason
for this surprising result is that all our considerations have been centered around
the transitions: we compare (by means of equivalences) only EN systems with
essentially the same transitions (where 'essentially' means: modulo bijections).
In a more general approach, also EN systems with distinct transitions could be
compared. To indicate that distinct transitions actually perform the same task
we give them the same label (where the label thus in fact represents the task)

118

aE

(

bE

) (

] I

M

Ib

)

la ()

(])

EOb

M t

Fig. 72. Two labelled EN systems M and M ~ that are configuration equivalent but
not lpo-equivalent.

from a given alphabet. Then, in all definitions of behaviour, the labels of the
transitions are used instead of the transitions themselves. Hence, instead of firing
sequences we take the sequences of labels corresponding with the firing sequences,
and the labelled partial orders are not labelled with transitions of the system,
but with their labels. Note that this may drastically change the properties of
the behaviour of EN systems. For example, even such a fundamental property
that a transition cannot fire twice consecutively (cf. the discussion following
Theorem 12), does not hold for labelled EN systems: the same label can occur
twice consecutively in a firing sequence (take any two transitions that fire one
after the other, and give them the same label).

Under this approach Theorem 126 most certainly no longer holds, i.e., the
new lpo-equivalence still implies the new firing sequence equivalence, but not the
other way around. Similarly, Theorem 33 is no longer true: the new weak config-
uration equivalence still implies the new firing sequence equivalence, but not the
other way around. More precisely, the new lpo-equivalence is incomparable with
the new (weak) configuration equivalence; see Figs. 71 and 72 for two well-known
counter-examples (where a, b, and c are the labels of the transitions rather than
the transitions themselves). The relationships between various equivalences of
labelled EN systems are presented in [PomRozSim92].

Note that each (old) equivalence relation implies the corresponding new one.
Thus all normal forms discussed in Section 4 also hold for the new equivalences.
As an example, Theorem 54 implies that for every EN system there is an lpo-
equivalent (in the new sense) reduced EN system that is covered by sequential
components; this is because configuration equivalence implies lpo-equivalence
which, in its turn, implies lpo-equivalence in the new sense.

119

Acknowledgments

We wish to thank IJsbrand Jan Aalbersberg, Iko Keesmaat, George Leih, and
Peter Hoogers for their contributions to these lecture notes. We thank Hen-
drik Jan Hoogeboom, Jetty Kleijn, and P.S.Thiagarajan for valuable comments
throughout the years. We are grateful to Maurice ter Beek, Jurriaan Hage, and
Nik~ van Vugt for their assistance with the preparation of this paper.

References

[AalRoz88]

[BesDev87]

[BesFerS8]

[BraReiRoz87]

[DesEsp95]

[DieRoz95]

[EhrRoz90]

[Eng85]

[Eng91]

[Esp94]

[EspRSmVog96]

[Gen87]

[Hac72]

[Hoo94]

[HooRoz91]

[HooRoz95]

[HopUl179]

IJ.J.Aalbersberg, G.Rozenberg; Theory of traces, Theor. Comput.
Sci. 60 (1988), 1-82
E.Best, R.Devillers; Sequential and concurrent behaviour in Petri net
theory; Theor. Comput. Sci. 55 (1987), 87-136
E.Best, C.Fern~ndez C.; Nonsequential Processes, EATCS Mono-
graphs on Theoretical Computer Science, Vol.13, Springer-Verlag,
Berlin, 1988
W.Brauer, W.Reisig, G.Rozenberg, eds.; Petri Nets: Central Mod-
els and their Properties, Lecture Notes in Computer Science 254,
Springer-Verlag, Berlin, 1987
J.Desel, J.Esparza; Free Choice Petri Nets, Cambridge University
Press, Cambridge, 1995
V.Diekert, G.Rozenberg, eds.; The Book of Traces, World Scientific,
Singapore, 1995
A.Ehrenfeucht, G.Rozenberg; Partial 2-structures; Part II: State
spaces of concurrent systems, Acta Informatica 27 (1990), 348-368
J.Engelfriet; Determinacy -+ (observation equivalence = trace equiv-
alence), Theor. Comput. Sci. 36 (1985), 21-25
J.Engelfriet; Branching processes of Petri nets, Acta Informatica 28
(1991), 575-591
J.Esparza; Model checking using net unfoldings, Science of Computer
Programming 23 (1994), 151-195
J.Esparza, S.RSmer, W.Vogler; An improvement of McMillan's un-
folding algorithm, in Tools and Algorithms for the Construction and
Analysis of Systems (T.Margaria, B.Steffen, eds.), Proc. TACAS'96,
Lecture Notes in Computer Science 1055, Springer-Verlag, Berlin,
1996, pp.87-106
H.J.Genrich; Predicate/Transition nets, in [BraReiRoz87], pp.207-
247
M.H.T.Hack; Analysis of production schemata by Petri nets, M.S.
Thesis, MIT, Project MAC, Cambridge, Mass., 1972
P.W.Hoogers; Behavioural aspects of Petri nets, Ph.D.Thesis, Leiden
University, 1994
H.J.Hoogeboom, G.Rozenberg; Diamond properties of elementary net
systems, Fundamenta Informaticae 14 (1991), 287-300
H.J.Hoogeboom, G.Rozenberg; Dependence graphs, Chapter 2 of
[DieRoz95]
J.E.Hopcroft, J.D.Ullman; Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, Mass., 1979

120

[Jen92]

[LanRob78]

[Maz95]

[McM93]

[McM95]

[Mil89]

[NiePloWin81]

[NieRozThi90]

[NieRozThi92a]

[NieRozThi92b]

[NieRozThi95]

[Och95]
[Pet62]

[Pet76]

[Pet81]

[Pom88]

[PomRozSim92]

[ProS6]

[Rei82]

[Roz87]

[RozThi86]

K.Jensen; Coloured Petri Nets, EATCS Monographs on Theoretical
Computer Science, in three Volumes, Springer-Verlag, Berlin, 1992,
1994, and 1997
L.H.Landweber, E.L.Robertson; Properties of conflict free and per-
sistent Petri nets, J. of the ACM 25 (1978), 352-364
A.Mazurkiewicz; Introduction to trace theory, Chapter 1 of
[DieRoz95]
K.L.McMillan; Using unfoldings to avoid the state explosion prob-
lem in the verification of asynchronous circuits, in Computer Aided
Verification (G.v.Bochmann, D.K.Probst, eds.), Proc. CAV'92, Lec-
ture Notes in Computer Science 663, Springer-Verlag, Berlin, 1993,
pp.164-177
K.L.McMillan; A technique of a state space search based on unfolding,
Formal Methods in System Design 6 (1995), 45-65; see also [McM93]
R.Milner; Communication and Concurrency, Prentice-Hall, Engle-
wood Cliffs, NJ., 1989
M.Nielsen, G.Plotkin, G.Winskel; Petri nets, event structures and
domains, Part 1, Theor. Comput. Sci. 13 (1981), 85-108
M.Nielsen, G.Rozenberg, P.S.Thiagarajan; Behavioural notions for
elementary net systems, Distributed Computing 4 (1990), 45-59 (see
also [Thi90])
M.Nielsen, G.Rozenberg, P.S.Thiagarajan; Elementary transition sys-
tems, Theor. Comput. Sci. 96 (1992), 3-33
M.Nielsen, G.Rozenberg, P.S.Thiagarajan; Elementary transition sys-
tems and refinement, Acta Informatica 29 (1992), 555-578
M.Nielsen, G.Rozenberg, P.S.Thiagarajan; Transition systems, event
structures, and unfoldings, Inform. and Comput. 118 (1995), 191-207
E.Ochmafiski; Recognizable trace languages, Chapter 6 of [DieRoz95]
C.A.Petri; Kommunikation mit Automaten, Rheinisch-Westfdlisches
Institut fiir Instrumentelle Mathematik an der Universit~t Bonn,
Schrift Nr.2, 1962
C.A.Petri; Nicht-sequentielle Prozesse, Universit~t Ertangen
Nfirnberg, Arbeitsberichte des IMMD, Vol.9, Nr.8, 57-82, 1976
J.L.Peterson; Petri Net Theory and the Modeling of Systems;
Prentice-Hall, Englewood Cliffs, 1981
L.Pomello; Osservatore, reti di Petri, processi, Ph.D.Thesis, Univer-
sities of Milano and Turino, 1988
L.Pomello, G.Rozenberg, C.Simone; A survey of equivalence notions
for net based systems, in Advances in Petri Nets 199~ (G.Rozenberg,
ed.), Lecture Notes in Computer Science 609, Springer-Verlag, Berlin,
1992, pp.410-472
V.R.Pratt; Modelling concurrency with partial orders, Int. J. of Par-
allel Programming 15 (1986), 33-71
W.Reisig; Petri Nets, EATCS Monographs on Theoretical Computer
Science, Vol.4, Springer-Verlag, Berlin, 1982
G.Rozenberg; Behaviour of elementary net systems, in [BraReiRoz87],
pp.60-94
G.Rozenberg, P.S.Thiagarajan; Petri nets: basic notions, structure,
behaviour, in Current Trends in Concurrency (J.W.de Bakker, W.-

121

[RozThigl]

[Tau89]

[Thi87]

[Whi90]

[Vaa91]

[win8]

[WinNie95a]

[WinNie95b]

P.de Roever, G.Rozenberg, eds.), Lecture Notes in Computer Science
224, Springer-Verlag, Berlin, 1986, pp.585-668
B.Rozoy, P.S.Thiagarajan; Event structures and trace monoids,
Theor. Comput. Sci. 91 (1991), 285-313
D.Taubner; Finite Representations of CCS and TCSP Programs by
Automata and Petri Nets, Lecture Notes in Computer Science 369,
Springer-Verlag, Berlin, 1989
P.S.Thiagarajan; Elementary net systems, in [BraReiRoz87], pp.26-
59
P.S.Thiagarajan; Some behavioural aspects of net theory, Theor.
Comput. Sci. 71 (1990), 133-153
F.W.Vaandrager; Determinism -4 (event structure isomorphism =
step sequence equivalence), Theor. Comput. Sci. 79 (1991), 275-294
G.Winskel; Event structures, in Petri Nets: Applications and Re-
lationships to other Models of Concurrency (W.Brauer, W.Reisig,
G.Rozenberg, eds.), Lecture Notes in Computer Science 255,
Springer-Verlag, Berlin, 1987, pp.325-392
G.Winskel, M.Nielsen; Models for concurrency, in Handbook of Logic
in Computer Science (S.Abramsky, D.M.Gabbay, T.S.E.Maibaum,
eds.), Vol.4: Semantic Modelling, pp.l-148, Clarendon Press, Oxford,
1995
G.Winskel, M.Nielsen; Trace structures and other models for concur-
rency, Chapter 9 of [DieRoz95]

