Genetic Exchange of Information

- Conjugation
- Transformation
- Transduction

Genetic Exchange in Prokaryotes

Griffith's experiment

Living encapsulated bacteria injected into

2 Mouse died.

3 Colonies of encapsulated bacteria were isolated from dead mouse.

(a)

Living nonencapsulated bacteria injected into mouse.

Mouse remained healthy.

A few colonies of nonencapsulated bacteria were isolated from mouse; phagocytes destroyed nonencapsulated bacteria.

(b)

Heat-killed encapsulated bacteria injected into

Mouse remained healthy.

No colonies were isolated from mouse.

(c)

Transformant principle

3 Colonies of encapsulated bacteria were isolated

from dead mouse.

(d)

Only DNA component carries the genetic information

Conjugation

(a) When an F factor (a plasmid) is transferred from a donor (F⁺) to a recipient (F⁻), the F⁻ cell is converted into an F⁺ cell.

(b) When an F factor becomes integrated into the chromosome of an F⁺ cell, it makes the cell a high frequency of recombination (Hfr) cell.

(c) When an Hfr donor passes a portion of its chromosome into an F⁻ recipient, a recombinant F⁻ cell results.

Transduction

A phage infects the donor bacterial cell.

Phage DNA and proteins are made, and the bacterial chromosome is broken into pieces.

 $\label{lem:copyright @ 2007 Pearson Education, Inc., publishing as Benjamin Cummings.}$

Occasionally during phage assembly, pieces of bacterial DNA are packaged in a phage capsid. Then the donor cell lyses and releases phage particles containing bacterial DNA.

A phage carrying bacterial DNA infects a new host cell, the recipient cell.

Becombination can occur, producing a recombinant cell with a genotype different from both the donor and recipient cells.

 $\label{lem:copyright @ 2007 Pearson Education, Inc., publishing as Benjamin Cummings.}$

Ciclo Lítico e Via Lisogênico

Vias líticas e lisogênica

Integração na via lisogênica

Lambda genome

moa

moa

Host DNA

Auxílio da

integrase

bio

Transdução Generalizada

- Apenas uma pequena parcela dos vírus que carregarão um fragmento do DNA genômico da célula de origem.
- Essa parcela diminuta, centenas ou milhares de virus transfectores entre milhões de virus normais, será suficiente para permitir o uso da transdução no laboratório e para causar efeito na natureza.

Transdução Específica Específica

Table 10.6	Properties of	of transposons
-------------------	---------------	----------------

<u> </u>	
Designation	Characteristics
Kinds of transposons	
Insertion sequences	Relatively short pieces of DNA, 750 to 2,000 bp long, that encode only a transposase; designated IS followed by an italicized number, e.g., IS1, IS2, IS3
Composite transposons	One or more genes flanked by matching insertion sequences; designated Tn followed by an italicized number, e.g., Tn5, Tn10
Mechanism of transposition	
Cut and paste	The transposon is cut out of the DNA where it resides and is inserted in a new location.
Replicative	The transposon is replicated; one copy remains at its original location, and the other is located at a new one.

Figure 8.29a-b

ACTTACTG

AT
Transposase gene TA

Transposase cuts DNA, leaving sticky ends.

2 Sticky ends of transposon and target DNA anneal.

CRISPR Clusters of Regularly Interspaced Short Palindromic Repeats

