Laboratório 3c - Oscilador Hartley

Prof. Luis Henrique F. C. de Mello

1 Equipamento e componentes

- Fonte de tensão DC
- Protoboard
- Multímetro digital
- Osciloscópio
- Gerador de sinais
- Ponte RLC
- Resistores 1/4 W:
 - > 330 Ω
 - $\rhd~2.2\,\mathrm{k}\Omega$
 - $\triangleright 5.6 \,\mathrm{k}\Omega$

- Capacitores de poliester:
 - ⊳ 56 nF
 - $\triangleright 100 \,\mathrm{nF} \times 2$
- Indutores radiais/núcleo de ferrite¹:
 - $\triangleright 1 \, \text{mH} \times 2$
- Transistor bipolar de junção PNP:
 - ⊳ BC558B ou similar
- Varactores:
 - \triangleright BB545 ou similar \times 2

2 Roteiro experimental

2.1 Filtro "tanque" LC

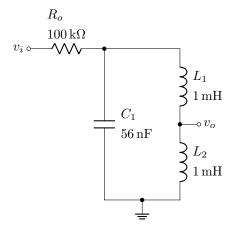


Figura 1: Filtro "tanque" LC

- 1. Implemente na $\it protoboard$ o circuito da Figura 1.
 - (a) Meça na ponte RLC a capacitância de C_1 , a indutância e resistência parasita de L_1 e L_2 .
 - (b) Ajuste no gerador de sinais² um sinal senoidal próximo à frequência de ressonância f_o teórica e conecte a saída do gerador de sinais em v_i . Observando v_i e v_o no osciloscópio, localize e meça a frequência de ressonância f_o e o desvio de fase ϕ nesta frequência.

a.k.a. "bolinha".

 $^{^2}$ utilize o nível máximo de tensão de saída no gerador de sinais em virtude da alta atenuação do circuito.

2.2 Oscilador Hartley

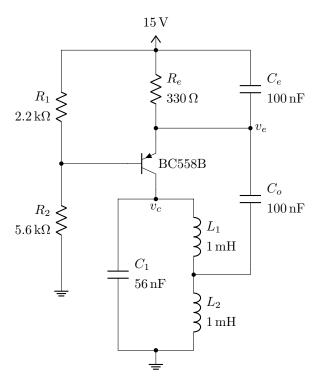


Figura 2: Oscilador Hartley

- 1. Implemente na protoboard o circuito da Figura 2.
 - (a) Capture a tensão no coletor v_c (saída da oscilação) e no emissor v_e (entrada não-inversora da realimentação positiva) e meça a frequência de oscilação f_o , o valor pico-a-pico V_{pp} de v_c e v_e , o ganho A_v e o desvio de fase ϕ entre os sinais.
 - (b) Avalie a distorção do sinal em v_e e v_c utilizando a função FFT do osciloscópio.

2.3 Oscilador Hartley controlado por tensão

- 1. Implemente na protoboard o circuito da Figura 3.
 - (a) Ajuste uma tensão DC em V_b de 0 a 10 V e meça a frequência de oscilação f_o em v_c ou v_e e, considerendo a capacitância C_T dos dois varactores iguais $\forall V_R$, extraia (plote) a capacitância do C_T do varactor BB545 em função de V_R através da expressão teórica de $f_o = 1/2\pi 1/\sqrt{(L_1 + L_2)C_1}$ do circuito "tanque" LC e compare-a com os dados da datasheet do BB545.

3 Questionário

- 1. Prove que o(s) circuito(s) cumpre(m) os criterios de Barkhausen para oscilação harmônica.
- 2. Compare e comente os resultados (em especial os parâmetros de performance frequência de oscilação f_o e amplitude pico-a-pico V_{oo}) dos circuitos simulados e implementados na protoboard. Discorra sobre as semelhanças e diferenças observadas.

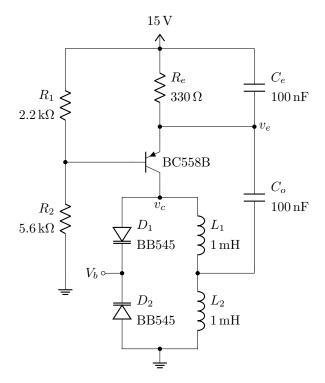


Figura 3: VCO Hartley