Laboratório 3c - Oscilador Hartley - Atividades Prévias

Prof. Luis Henrique F. C. de Mello

1 Introdução

O oscilador Colpitts é uma excelente solução para oscilação em alta frequência. Uma alternativa usual ao filtro ressonante com dois capacitores e um indutor é o filtro ressonante com um capacitor e dois indutores (ou um indutor-bobina com tap central) na malha de realimentação positiva, denominado oscilador Hartley. Este circuito se comporta de forma semelhante ao oscilador Collpits, com certas vantagens e desvantagens. A principal vantagem do oscilador Hartley é que a frequência de oscilação é facilmente ajustada pelo uso de capacitores variáveis, varactores ou varicaps, i.e., deriva-se do oscilador Hartley uma das mais simples topologias de VCO's ($Voltage-Controlled\ Oscillator$) e varactores/varicaps são, em geral, mais precisos e menos susceptíveis a falhas e desgastes mecânicos do que indutores variáveis. Uma desvantagem é que o acoplamento das bobinas pode desviar a frequência de ressonância em relação à projetada, mas o principal problema deste tipo de oscilador é a saída com maior distorção harmônica.

2 Simulações SPICE

2.1 Filtro "tanque" LC

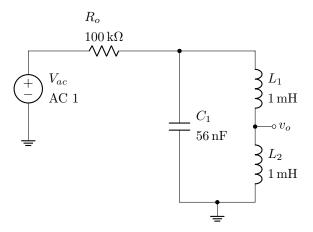


Figura 1: Filtro "tanque" LC

- 1. Simule o circuito da Figura 1. Plote em análise AC a magnitude/módulo e fase (diagrama de Bode) da saída v_o .
 - (a) Qual a frequência de ressonância f_o do circuito? Qual o desvio de fase ϕ nesta frequência?
 - (b) Compare o ganho de tensão A_v na frequência de ressonância f_o e o fator de qualidade Q deste filtro em relação ao filtro do oscilador Colpitts. Como isto pode influenciar na distorção harmônica do circuito?

2.2 Oscilador Hartley

1. Simule o circuito da Figura 2. Plote em análise TRAN a tensão no coletor v_c (saída da oscilação) e no emissor v_e (entrada não-inversora da realimentação positiva).

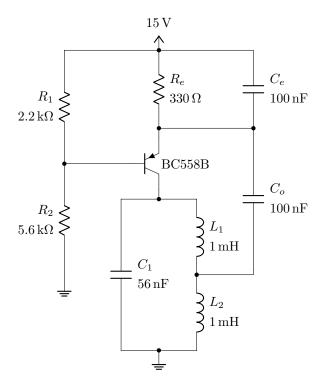


Figura 2: Oscilador Hartley

- (a) Meça a frequência de oscilação f_o , o valor pico-a-pico de v_c e v_e , o ganho A_v e o desvio de fase ϕ entre os sinais.
- 2. Plote o espectro de frequências de v_c e v_e através do algoritmo FFT.
 - (a) Qual a pureza harmônica dos sinais? Meça os harmônicos e calcule a THD ou, alternativamente, obtenha a THD da análise FOUR (use o valor medido de f_o como frequência inicial).

2.3 Varactor

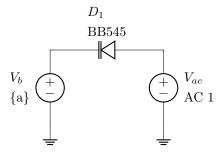


Figura 3: Varactor

- 1. Simule o circuito da Figura 3. Plote em análise AC a capacitância vista pela fonte V_{ac}^{-1} , juntamente com um sweep do parâmetro "a" (tensão na fonte V_b) de 0 a 5 V.
- 2. Plote a característica C_T (capacitância de transição²) vs. V_R (tensão reversa) do varactor.

2.4 Filtro "tanque" LC controlado por tensão

1. Simule o circuito da Figura 4. Plote em análise AC a magnitude/módulo e fase (diagrama de Bode) da saída v_o , juntamente com um sweep do parâmetro "a" (tensão na fonte V_b) de 0 a 5 V.

 $^{^1}$ utilize a impedância de um capacitor em regime permanente e isole a capacitância para usar como expressão no plot. 2 a.k.a. capacitância de depleção.

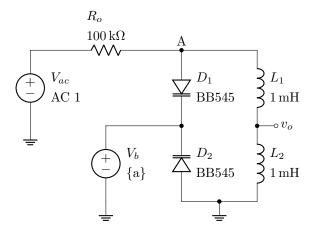


Figura 4: Filtro "tanque" LC controlado por tensão

(a) Qual a tensão quiescente no nó A? Consequentemente, qual a tensão reversa aplicada na junção p-n de cada varactor?

2.5 Oscilador Hartley controlado por tensão (opcional)

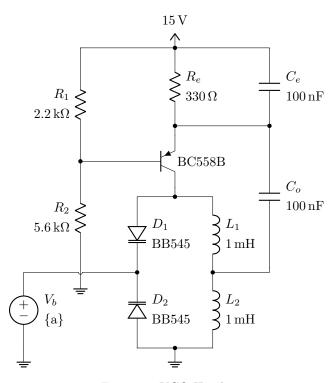


Figura 5: VCO Hartley

- 1. Simule o circuito da Figura 5. Plote em análise TRAN a tensão no coletor v_c (saída da oscilação) e no emissor v_e (entrada não-inversora da realimentação positiva), juntamente com um sweep do parâmetro "a" (tensão na fonte V_b) de 0 a 5 V.
 - (a) Estabeleça a relação (fórmula matemática) entre a frequência de ressonância f_o do circuito e a tensão na fonte V_b .
 - (b) Estime a banda de frequência de oscilação do circuito³.

 $^{^3 \}text{consulte}$ a datasheetdo varactor e extraia o parâmetro ΔC_T do componente.