

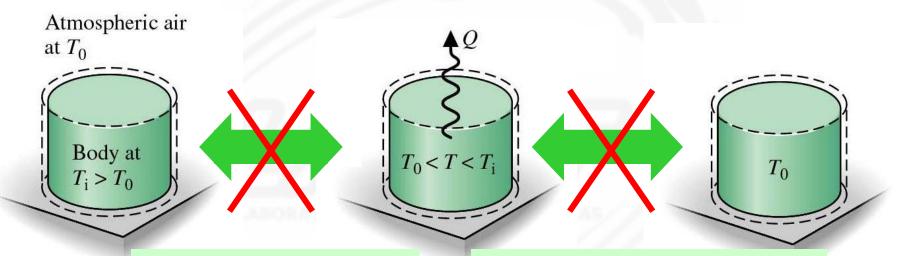
UTFPR – Termodinâmica 2

A Segunda Lei da Termodinâmica

Princípios de Termodinâmica para Engenharia Capítulo 5

2º Semestre de 2011

UTFPR


 Como os princípios de conservação de massa e de energia nem sempre são suficientes para a análise de sistemas, faz-se necessário introduzir a Segunda Lei da Termodinâmica;

 Também serão apresentados alguns resultados (Corolários) da Segunda Lei.

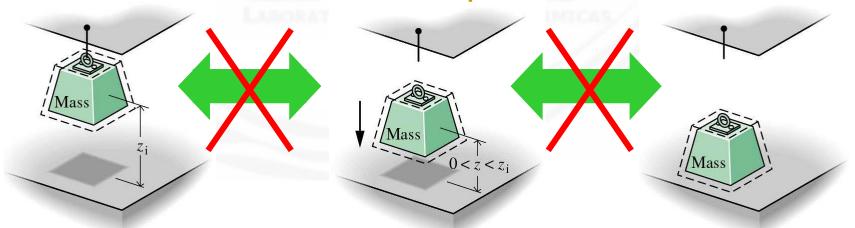
Troca de calor espontânea

 Um objeto a uma temperatura elevada T_i é colocado em contato com o ar atmosférico à T_o < T_i;

Com o tempo ele troca calor com a atmosfera

E no final atingirá a temperatura das vizinhanças

Apesar da **energia total** do sistema ser **conservada**, o processo **inverso** não ocorre **espontaneamente**



Processos espontâneos

Expansão espontânea

Massa em queda

A Direção dos Processos

- Nos exemplos anteriores percebe-se que a lei da conservação é respeitada, porém não é possível realizar espontaneamente os processos inversos, para isso seria necessário um dispositivo auxiliar;
- Quando se utiliza a Segunda Lei da Termodinâmica é possível determinar as direções preferenciais de um processo, assim como o estado final do equilíbrio de uma interação de energia.

Oportunidades para desenvolver trabalho

 Quando existe um desequilíbrio entre dois sistemas, existe uma oportunidade de realizar trabalho enquanto eles caminham para o equilíbrio;

 Esse trabalho seria perdido caso fosse permitido que os sistemas chegassem ao equilíbrio de forma descontrolada;

O Trabalho Máximo que pode ser obtido nessa Oportunidade

- A segunda lei é capaz de avaliar qual o máximo trabalho teórico que seria possível de se obter de sistemas em desequilíbrio;
- E como não existe um aproveitamento perfeito, a Segunda Lei também torna possível a avaliação dos fatores de perda de oportunidades de realizar trabalho.

Aspectos da Segunda Lei

- Além de:
- ► Prever a direção dos processos,
- Estabelecer as condições de equilíbrio,
- Determinar o melhor desempenho teórico de sistemas e
- ► Avaliar fatores de **perda de oportunidades**,
- A Segunda Lei também é capaz de:
- Definir uma escala de temperatura universal,
- Avaliar propriedades em ensaios experimentais,
- Desenvolver conceitos de economia e filosofia e ser usada em muitas outras aplicações.

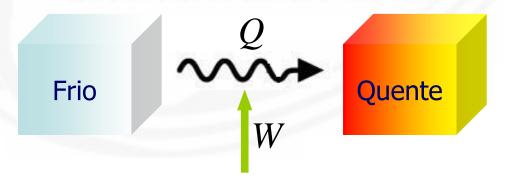
Definições da Segunda Lei

- O Estudo da Segunda Lei da Termodinâmica, formalmente, remonta às primeiras décadas do século XIX.
- Há várias definições (ou enunciados) da Segunda Lei. Todas elas são equivalentes.
- São baseadas em observações experimentais.
- Neste curso estaremos interessados em duas dessas definições (os enunciado de Clausius e de Kelvin-Planck).

Definições da Segunda Lei

- Rudolph Julius Emmanuel Clausius Físico e Matemático alemão. Responsável por reformular as Leis da Termodinâmica (1850) e criar o termo Entropia.
- Lord Kelvin (William Thomson) Físico Matemático e Engenheiro irlandês. Realizou estudos nas área de Termodinâmica e Eletromagnetismo.
- Max Planck Físico Alemão. Um dos fundadores da teoria quântica. Nobel de Física em 1918.

Enunciado de Clausius da Segunda Lei


• É impossível para qualquer sistema operar de maneira que o único efeito seja uma transferência de energia sob a forma de calor de um corpo mais frio para um corpo mais quente.

Analisando o enunciado de Clausius

- O enunciado de Clausius não excluí a possibilidade da transferência de calor de um corpo mais frio para um corpo mais quente (isso ocorre nos refrigeradores).
- Entretanto as palavras "único efeito" sugerem que isso possa ocorrer, desde que seja fornecida energia (trabalho) ao sistema.

Conceito de Reservatório Térmico

 Reservatório Térmico → É um sistema idealizado, onde a temperatura permanece constante mesmo que energia, na forma de calor, seja adicionada ou removida;

• **Exemplos**: atmosfera terrestre, oceanos, lagos, substâncias mudando de fase, ...

Enunciado de **Kelvin-Plank** da Segunda Lei

• É impossível para qualquer sistema operar em um ciclo termodinâmico e fornecer uma quantidade "líquida" de trabalho para as suas vizinhanças, enquanto recebe energia, por transferência de calor, de um único reservatório térmico.

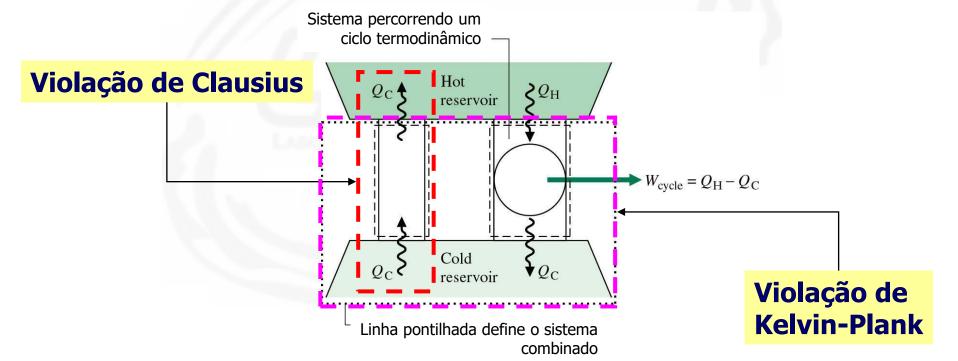
Explicando o enunciado de Kelvin-Plank

• Pela Primeira Lei:

$$W_{ciclo} = Q_{ciclo}$$

Pelo enunciado de Kelvin-Plank:

$$W_{ciclo} \leq 0$$


• Finalmente:

$$Q_{ciclo} \leq 0$$

m reservatório térmiguiyalência dos Enunciados

atório térmico frio e dois sistemas

eservatórios. • A equivalência é demonstrada pelo fato e quando se **viola um enunciado**, conseqüentemente o **outro** enunciado é

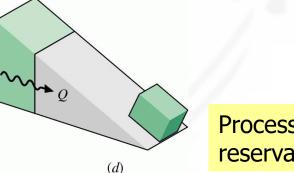
Identificando Irreversibilidades

- Um processo é chamado irreversível se o sistema e todas as partes que compõem suas vizinhanças não puderem ser restabelecidos exatamente aos seus respectivos estados iniciais após a ocorrência do processo;
- Um processo é reversível se tanto o sistema quanto suas vizinhanças puderem retornar aos seus estados iniciais.

Tipos e exemplos de Irreversibilidades

- Irreversibilidades internas são aquelas que ocorrem dentro do sistema;
- Irreversibilidades externas são aquelas que ocorrem nas vizinhanças (fora do sistema);
- São **exemplos** de irreversibilidades:
 - Transferência de calor através de uma diferença de temperatura;
 - Expansões não resistidas;
 - Reações químicas espontâneas;
 - Misturas espontâneas;
 - Atrito;
 - Fluxo de corrente elétrica;
 - Magnetização ou polarização por histerese;
 - Deformação inelástica.

Demonstrando Irreversibilidades


- Faz-se uso da seguinte metodologia:
 - Supõem-se que há uma maneira de retornar o sistema e suas vizinhanças a seus respectivos estados iniciais;
 - Mostra-se que, como conseqüência dessa hipótese, seria possível imaginar um sistema que produzisse trabalho enquanto nenhum outro efeito ocorresse, além de uma transferência de calor de um único reservatório térmico.

Demonstrando Irreversibilidade

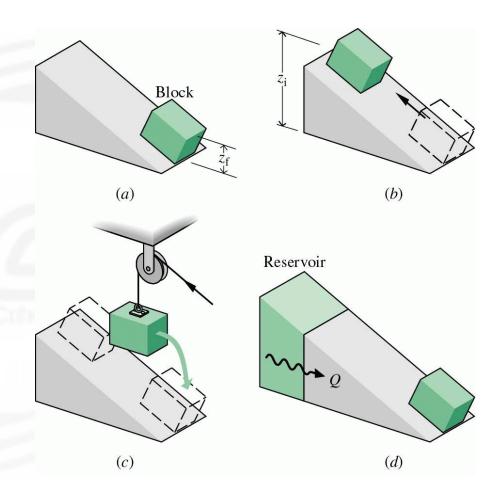
Processo original, bloco escorregando com atrito Processo 1, bloco retornar espontaneamente

Processo 2, usando cabo-polia

Processo 3, usando reservatório térmico

Como 2 e 3 são **possíveis**, logo 1 é **impossível**; como 1 é **inverso** do original, logo o original é **irreversível**!!!

(c)

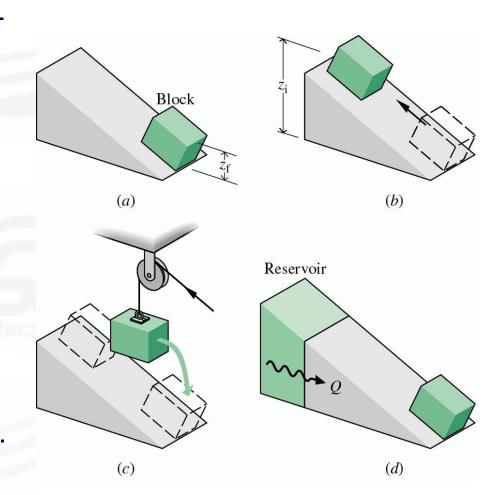


Demonstrando Irreversibilidade

Em (a) a queda do bloco converte energia potencial em acréscimo da energia interna do sistema (rampa). Nesse processo Q = 0 e W = 0, logo as vizinhanças não são perturbadas e o sistema é o único local a se observar, em busca de irreversibilidades.

Imaginemos um ciclo formado pelos processos 1, 2 e 3.

Processo 1 (fig b) o bloco retorna espontaneamente a sua posição inicial na rampa (sua altura volta a zi e a energia interna da rampa diminui até Ui)

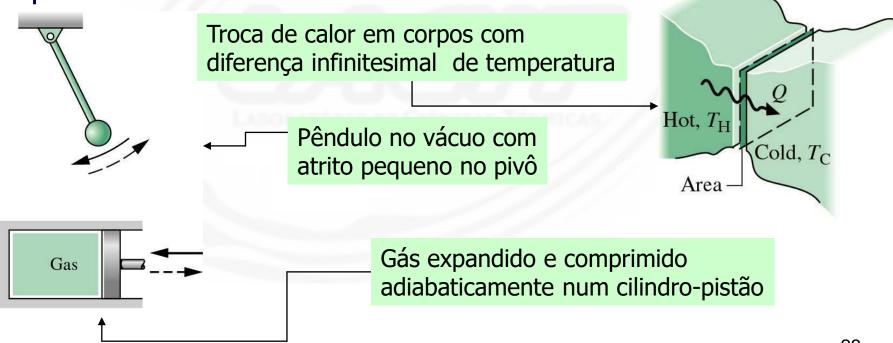

Demonstrando Irreversibilidade

Processo 2 (fig c) um dispositivo cabopolia é usado para baixar o bloco (Z = Zf) enquanto há uma elevação de massa nas vizinhanças → W_{sistema} = mg(Zi-Zf).

Processo 3 (fig d) um reservatório térmico permite transferência de calor ao sistema até U = Uf. $Q_{sistema} = Uf - Ui$ Ou Q = mg(Zi - Zf).

O Resultado desse ciclo é transf calor de um único RT e entregar W às vizinhanças, não existindo outro efeito.

O ciclo viola a definição de Kelvin Planck. Como os processos 2 e 3 são possíveis, 1 é impossível. Logo ele é



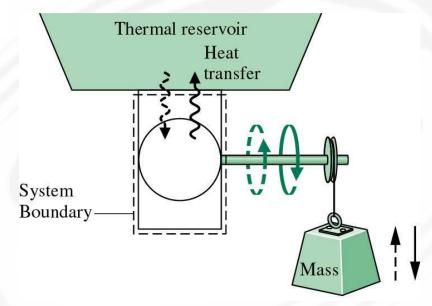
Processos Reversíveis

- Processos Reversíveis são aqueles onde
- são restabelecidas as propriedades iniciais. Porém é um conceito hipotético e utópico;

• Exemplos de processos que podem ser aproximados por processos reversíveis:

Processo Internamente Reversível

- Processo internamente Reversível é aquele no qual não existem irreversibilidades internas;
- Porém ocorrem irreversibilidades nas suas vizinhanças;
- Todas as propriedades intensivas são uniformes ao longo de cada fase presente;
- Consiste numa série de estados de equilíbrio: é um estado de quase-equilíbrio;
- São bem úteis na determinação do melhor desempenho de um sistema;
- Todo processo em um reservatório térmico é um processo internamente reversível.



Interpretação do enunciado de Kelvin-Plank

 Considere que no sistema da figura não existem irreversibilidades, logo o sistema retorna ao seu estado inicial ao final de um ciclo;

RT é livre de irreversibilidades.

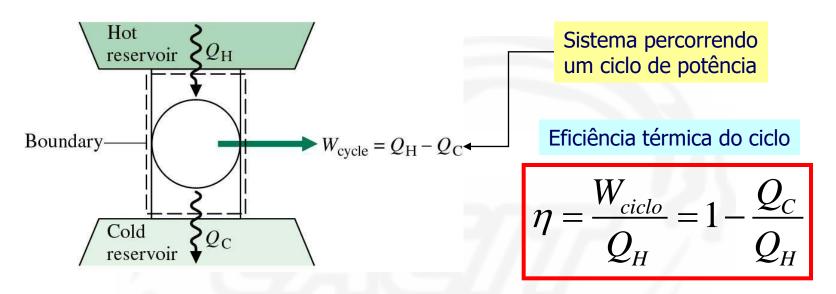
O Sistema massapolia também.

Sistema
percorrendo um
ciclo enquanto
troca energia
(calor) com um
único RT.

- Já que W_{ciclo}= 0 (para não violar a segunda lei), não haveria variação líquida na altura da massa;
- Já que W_{ciclo}= Q_{ciclo}, segue-se que Q_{ciclo}= 0, logo não **haveria** variação líquida nas condições do reservatório térmico.

Conclusões do Enunciado de Kelvin-Plank

 Para sistemas executando um ciclo, sem irreversibilidades:


$$W_{ciclo} = 0$$

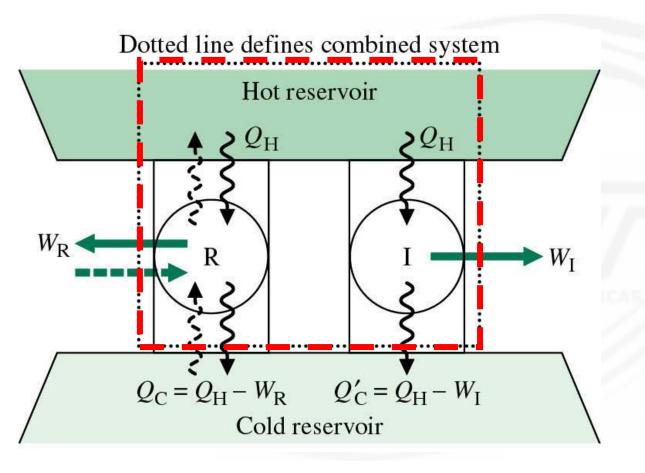
 Para sistemas executando um ciclo, com irreversibilidades:

$$W_{ciclo} < 0$$

Eficiência de Ciclos de Potência

- Se não houvesse a transferência de calor para o reservatório frio, a eficiência seria de 100%;
- Porém, sem o reservatório frio viola-se o enunciado de Kelvin-Plank;
- Decorre dai um corolário de Carnot, que diz: todos os ciclos de potência têm eficiência menor que 100%.

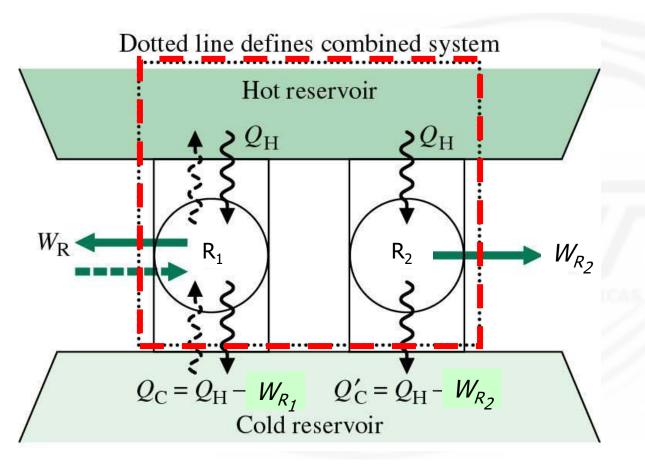
UTFPF



Corolários de Carnot para Ciclos de Potência

- A eficiência térmica de um ciclo de potência irreversível é sempre menor do que a eficiência térmica de um ciclo de potência reversível quando cada um opera entre os mesmos dois reservatórios térmicos;
- Todos os ciclos de potência reversíveis operando entre os mesmos dois reservatórios térmicos possuem a mesma eficiência térmica;

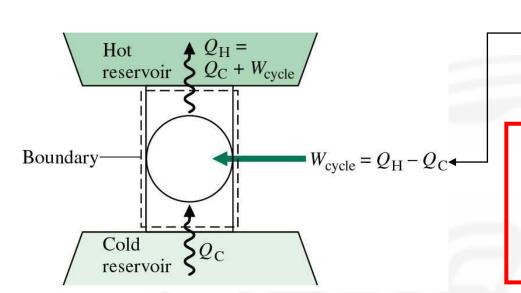
Demonstrando o 1º Corolário



No sistema combinado:

$$W_{ciclo} = W_I - W_R$$
 $W_{ciclo} < 0$ $W_I - W_R < 0$ $W_I < W_R$

Demonstrando o 2º Corolário



No sistema combinado:

$$W_{ciclo} = W_{R_2} - W_{R_1}$$
 $W_{ciclo} = 0$ $W_{R_1} - W_{R_2} = 0$ $W_{R_1} = W_{R_2}$ $\eta_{R_1} = \eta_{R_2}$

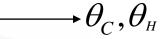
Eficiência de Refrigeração/ Bomba de Calor

Sistema percorrendo um ciclo de refrigeração/ bomba de calor

Eficiência térmica

$$\beta = \frac{Q_C}{W_{ciclo}} = \frac{Q_C}{Q_H - Q_C}$$
 Refrigeração
$$\gamma = \frac{Q_H}{W_{ciclo}} = \frac{Q_H}{Q_H - Q_C}$$
 Bomba de Calor

- Se não houvesse a necessidade do fornecimento de trabalho ao ciclo, os coeficientes de desempenho seriam infinitos;
- Porém sem o fornecimento de trabalho teríamos a violação do enunciado de Clausius;
- Segue daí um Corolário, que diz: todos os ciclos de refrigeração/ bomba de calor tem desempenho finito.


Corolários para Refrigeração/ Bomba de calor

- O coeficiente de desempenho de um ciclo de refrigeração irreversível é sempre menor do que o coeficiente de desempenho de um ciclo de refrigeração reversível quando cada um opera entre os mesmos reservatórios térmicos;
- Todos os ciclos de refrigeração reversíveis operando entre os mesmos dois reservatórios térmicos possuem o mesmo coeficiente de desempenho;
- O mesmo vale substituindo o termo Refrigeração por Bomba de calor.

Definindo uma escala de temperatura

- A partir do 2º Corolário de Carnot, sabemos que a eficiência de um ciclo de potência está relacionada à natureza dos reservatórios;
- Observa-se que é a diferença de temperaturas entre os reservatórios que promove a transferência de calor;
- Logo, a eficiência do ciclo deve depender somente da temperatura dos reservatórios.

Temperaturas em uma escala a ser definida

$$\eta = \eta(\theta_C, \theta_H)$$

$$\eta(\theta_C, \theta_H) = 1 - \frac{Q_C}{Q_H}$$

$$\frac{Q_C}{Q_H} = 1 - \eta(\theta_C, \theta_H)$$

$$\left(\frac{Q_C}{Q_C}\right) = \psi(\theta_C, \theta_H)$$

Definindo a escala Kelvin

Para a escala **Kelvin**, tem-se:

$$\psi = rac{T_C}{T_H} \qquad \qquad \left(rac{Q_C}{Q_H}
ight)_{\substack{ciclo \ rev}} = rac{T_C}{T_H}$$

A mesma equação **vale** para ciclos de refrigeração e bomba de calor, basta que seja um **ciclo reversível**;

Na sequência é necessário utilizar um estado de **referência**, que neste

caso será o ponto triplo da água (273,16 K);

Propriedade termométrica da transferência de calor em T T = 273,16 Q_{pt} Ciclo revTransferência de calor no Ponto de referência

Como a energia rejeitada do ciclo por transferência de calor Q **não** é **negativa**, logo T não pode ser negativo, assim 0K é a **menor temperatura** que pode ser atingida, chamado **zero absoluto**.

Escala Internacional de Temperatura

• Uma vez que **não é possível** reproduzir um ciclo reversível, a Escala Internacional de Temperaturas utiliza **pontos fixos reprodutíveis**:

Defining Fixed Points of the International Temperature Scale of 1990

T (K)	Substance ^a	State ^b	
3 to 5	Не	Vapor pressure point	→ Isótopos particulares do
13.8033	$e-H_2$	Triple point	771
≈ 17	e-H ₂	Vapor pressure point	Termômetro de gás Hélio
≈ 20.3	$e-H_2$	Vapor pressure point	
24.5561	Ne	Triple point	
54.3584	O_2	Triple point	
83.8058	Ar	Triple point	
234.3156	Hg	Triple point	
273.16	H_2O	Triple point	
302.9146	Ga	Melting point	Termômetro de resistência de
429.7485	In	Freezing point	
505.078	Sn	Freezing point	
692.677	Zn	Freezing point	
933.473	Al	Freezing point	
1234.93	Ag	Freezing point	Radiação de corpo negro
1337.33	Au	Freezing point	
1357.77	Cu	Freezing point	

[&]quot;He denotes ³He or ⁴He; e-H₂ is hydrogen at the equilibrium concentration of the ortho- and para-molecular forms.

Eficiência Máxima

Para ciclos de potência:

Eficiência de Carnot

$$\eta_{m\acute{a}x} = 1 - \frac{T_C}{T_H}$$

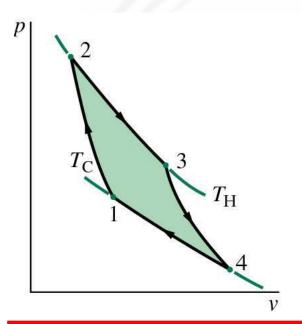
De a para b: pequeno aumento em T_H, grande aumento na eficiência

Maior que b: torna-se muito oneroso aumentar a eficiência

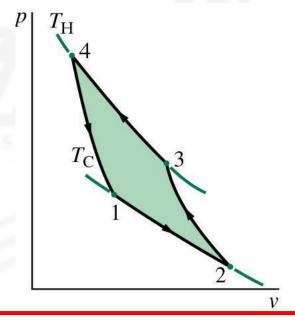
Coeficiente de máximo desempenho

Para ciclos de refrigeração:

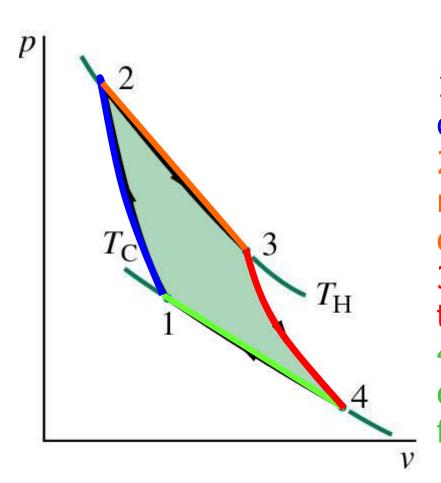
$$\beta_{m\acute{a}x} = \frac{T_C}{T_H - T_C}$$


Para bombas de calor:

$$\gamma_{m\acute{a}x} = \frac{T_H}{T_H - T_C}$$

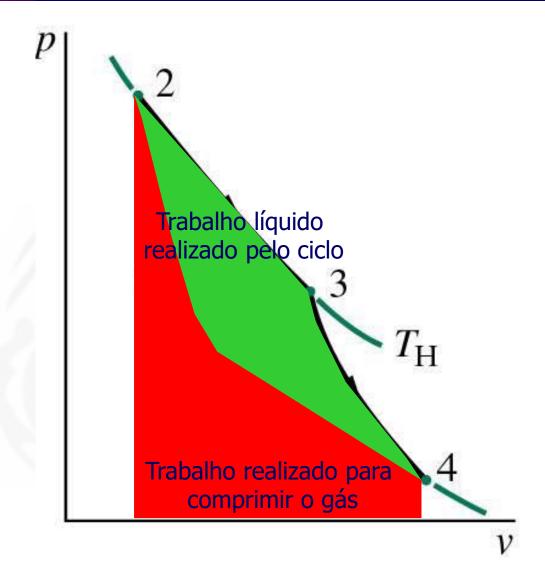


• É um sistema que executa um **ciclo** em uma série de **quatro** processos internamente reversíveis: dois processos adiabáticos alternados com dois processos isotérmicos.


Ciclo de potência Carnot

Ciclo de refrigeração/bomba de calor Carnot

Ciclo de potência



1-2: Compressão adiabática até 2, onde temperatura é T_h; 2-3: Expansão isotérmica, recebendo energia do reservatório quente à T_h; 3-4: Expansão adiabática até a temperatura cair para T_c; 4-1: Compressão isotérmica, cedendo energia ao reservatório frio à T_c.

39

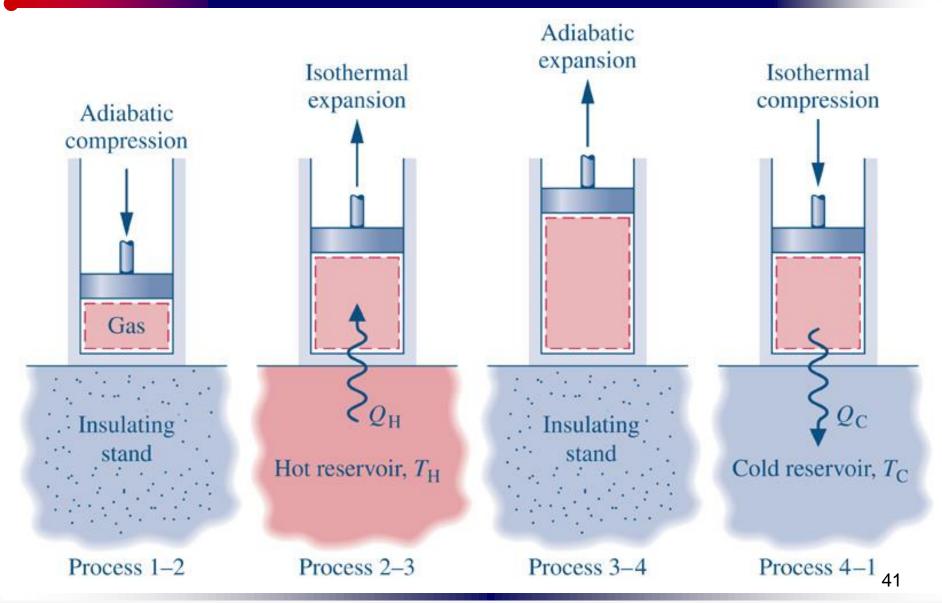
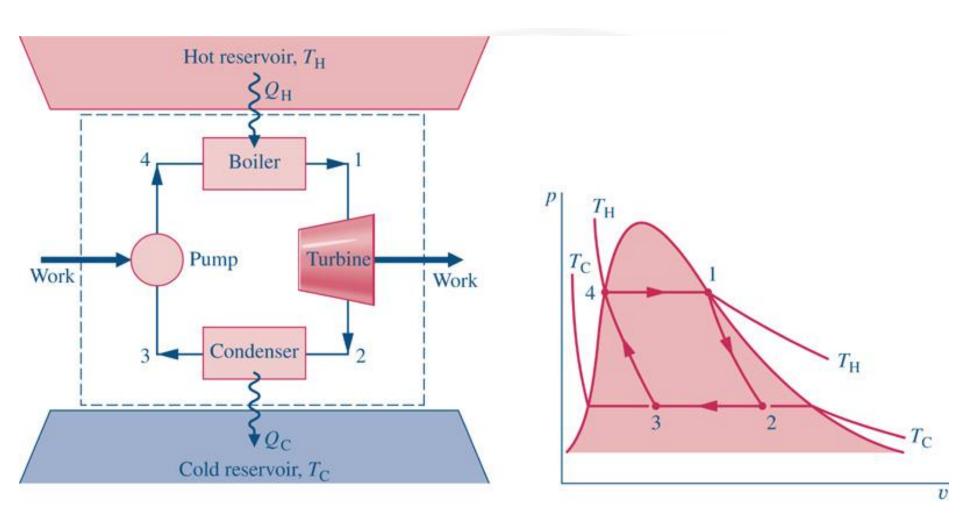
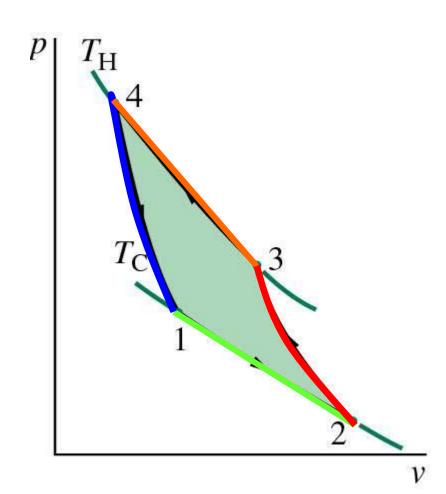


Diagrama p-v



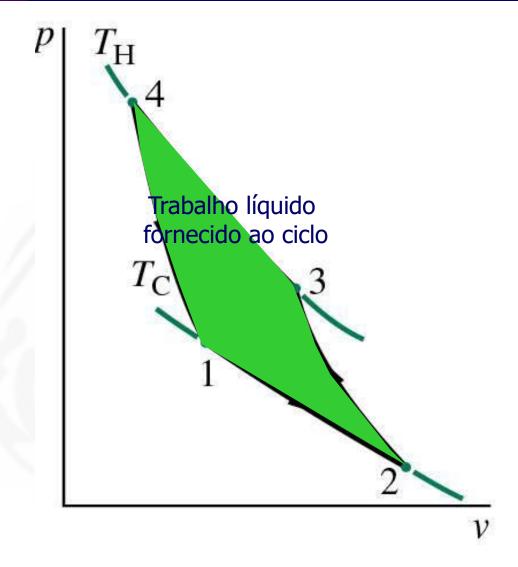
Ciclo de Potência em Cilindro-Pistão



Ciclo de Potência de Carnot à Vapor

Ciclo de Refrigeração/ Bomba de Calor

1-2: Expansão isotérmica, recebendo energia do reservatório frio à T_c;


2-3: Compressão adiabática até atingir temperatura T_h;
3-4: Compressão isotérmica, cedendo energia ao reservatório

quente à T_H;

4-1: Expansão adiabática até a temperatura cair para T_c.

Ciclo de Refrigeração/ Bomba de Calor

- MORAN, Michel J. & SHAPIRO, Howard N. Princípios de termodinâmica para engenharia. 4ª edição. LTC. 2002.
- Este material foi preparado, em suas versões iniciais, pelo graduando em Engenharia Industrial Mecânica João Vitor Fedevjcyk