






Copyright

Copyright	©	1980	by	A.	J.	M.	Spencer

All	rights	reserved.

Bibliographical	Note

This	Dover	edition,	first	published	in	2004,	is	an	unabridged	republication	of	the	edition	originally
published	by	the	Longman	Group	UK	Limited,	Essex,	England,	in	1980.

Library	of	Congress	Cataloging-in-Publication	Data

Spencer,	A.	J.	M.	(Anthony	James	Merrill),	1929-

Continuum	mechanics	/	A.J.M.	Spencer.

p.	cm.

Originally	published:	London	;	New	York	:	Longman,	1980.	(Longman	mathematical
texts)

Includes	bibliographical	references	and	index.

9780486139470

1.	Continuum	mechanics.	1.	Title.

QA808.2.S63	2004	
531—dc22

2003070116

Manufactured	in	the	United	States	by	Courier	Corporation	
43594603	
www.doverpublications.com

http://www.doverpublications.com


Table	of 	Contents

Title	Page
Copyright	Page
Preface
1	-	Introduction
2	-	Introductory	matrix	algebra
3	-	Vectors	and	cartesian	tensors
4	-	Particle	kinematics
5	-	Stress
6	-	Motions	and	deformations
7	-	Conservation	laws
8	-	Linear	constitutive	equations
9	-	Further	analysis	of	finite	deformation
10	-	Non-linear	constitutive	equations
11	-	Cylindrical	and	spherical	polar	coordinates
Appendix	-	Representation	theorem	for	an	isotropic	tensor	function	of	a	tensor
Answers
Further	reading
Index



Preface

The	aim	of	this	book	is	to	provide	an	introduction	to	the	theory	of	continuum	mechanics	in	a	form	which	is
suitable	for	undergraduate	students.	It	is	based	on	lectures	which	I	have	given	in	the	University	of
Nottingham	during	the	last	fourteen	years.	I	have	tried	to	restrict	the	mathematical	background	required	to
that	which	is	normally	familiar	to	a	second-year	mathematics	undergraduate	or	a	mathematically	minded
engineering	graduate,	even	though	some	of	the	theory	can	be	developed	more	concisely	and	elegantly	by
using	more	sophisticated	mathematics	than	I	have	employed.	The	material	covered	comprises	introductory
chapters	on	matrix	algebra	and	on	vectors	and	cartesian	tensors,	the	analysis	of	deformation	and	stress,
the	mathematical	statements	of	the	laws	of	conservation	of	mass,	momentum	and	energy,	and	the
formulation	of	the	mechanical	constitutive	equations	for	various	classes	of	fluids	and	solids.	Cartesian
coordinates	and	cartesian	tensors	are	used	throughout,	except	that	in	the	last	chapter	we	show	how	the
theory	can	be	expressed	in	terms	of	cylindrical	polar	and	spherical	polar	coordinates.	I	have	not	pursued
the	various	branches	of	the	mechanics	of	solids	and	fluids,	such	as	elasticity,	Newtonian	fluid	mechanics,
viscoelasticity	and	plasticity,	beyond	the	point	of	formulating	their	constitutive	equations.	To	do	so	in	any
meaningful	way	would	have	required	a	much	longer	book,	and	these	subjects	are	fully	dealt	with	in	larger
and	more	specialized	texts.

I	am,	of	course,	greatly	indebted	to	many	teachers,	colleagues	and	students	who	have	contributed	to	my
education	in	continuum	mechanics.	They	are	too	numerous	to	mention	individually;	rather	than	giving	a
selective	list	I	ask	them	to	accept	a	collective	acknowledgement.	Similarly,	I	have	felt	that	in	an
introductory	book	of	this	kind	it	would	be	inappropriate	to	give	references	to	original	work,	but	it	is
obvious	that	I	have	made	indirect	use	of	many	sources	and	I	am	glad	to	acknowledge	the	contribution	of
all	the	authors	whose	work	has	influenced	me.

Many	of	the	problems	are	taken	from	examination	papers	set	in	the	Department	of	Theoretical
Mechanics	in	the	University	of	Nottingham,	and	I	acknowledge	the	University’s	permission	to	make	use	of
these.

Finally,	I	thank	Margaret	for	the	typing.

A.	J.	M.	SPENCER	
Nottingham,	1979
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Introduction

1.1	Continuum	mechanics
Modern	physical	theories	tell	us	that	on	the	microscopic	scale	matter	is	discontinuous;	it	consists	of
molecules,	atoms	and	even	smaller	particles.	However,	we	usually	have	to	deal	with	pieces	of	matter
which	are	very	large	compared	with	these	particles;	this	is	true	in	everyday	life,	in	nearly	all	engineering
applications	of	mechanics,	and	in	many	applications	in	physics.	In	such	cases	we	are	not	concerned	with
the	motion	of	individual	atoms	and	molecules,	but	only	with	their	behaviour	in	some	average	sense.	In
principle,	if	we	knew	enough	about	the	behaviour	of	matter	on	the	microscopic	scale	it	would	be	possible
to	calculate	the	way	in	which	material	behaves	on	the	macroscopic	scale	by	applying	appropriate
statistical	procedures.	In	practice,	such	calculations	are	extremely	difficult;	only	the	simplest	systems	can
be	studied	in	this	way,	and	even	in	these	simple	cases	many	approximations	have	to	be	made	in	order	to
obtain	results.	Consequently,	our	knowledge	of	the	mechanical	behaviour	of	materials	is	almost	entirely
based	on	observations	and	experimental	tests	of	their	behaviour	on	a	relatively	large	scale.

Continuum	mechanics	is	concerned	with	the	mechanical	behaviour	of	solids	and	fluids	on	the
macroscopic	scale.	It	ignores	the	discrete	nature	of	matter,	and	treats	material	as	uniformly	distributed
throughout	regions	of	space.	It	is	then	possible	to	define	quantities	such	as	density,	displacement,	velocity,
and	so	on,	as	continuous	(or	at	least	piecewise	continuous)	functions	of	position.	This	procedure	is	found
to	be	satisfactory	provided	that	we	deal	with	bodies	whose	dimensions	are	large	compared	with	the
characteristic	lengths	(for	example,	interatomic	spacings	in	a	crystal,	or	mean	free	paths	in	a	gas)	on	the
microscopic	scale.	The	microscopic	scale	need	not	be	of	atomic	dimensions;	we	can,	for	example,	apply
continuum	mechanics	to	a	granular	material	such	as	sand,	provided	that	the	dimensions	of	the	region
considered	are	large	compared	with	those	of	an	individual	grain.	In	continuum	mechanics	it	is	assumed
that	we	can	associate	a	particle	of	matter	with	each	and	every	point	of	the	region	of	space	occupied	by	a
body,	and	ascribe	field	quantities	such	as	density,	velocity,	and	so	on,	to	these	particles.	The	justification
for	this	procedure	is	to	some	extent	based	on	statistical	mechanical	theories	of	gases,	liquids	and	solids,
but	rests	mainly	on	its	success	in	describing	and	predicting	the	mechanical	behaviour	of	material	in	bulk.

Mechanics	is	the	science	which	deals	with	the	interaction	between	force	and	motion.	Consequently,	the
variables	which	occur	in	continuum	mechanics	are,	on	the	one	hand,	variables	related	to	forces	(usually
force	per	unit	area	or	per	unit	volume,	rather	than	force	itself)	and,	on	the	other	hand,	kinematic	variables
such	as	displacement,	velocity	and	acceleration.	In	rigid-body	mechanics,	the	shape	of	a	body	does	not
change,	and	so	the	particles	which	make	up	a	rigid	body	may	only	move	relatively	to	one	another	in	a	very
restricted	way.	A	rigid	body	is	a	continuum,	but	it	is	a	very	special,	idealized	and	untypical	one.
Continuum	mechanics	is	more	concerned	with	deformable	bodies,	which	are	capable	of	changing	their
shape.	For	such	bodies	the	relative	motion	of	the	particles	is	important,	and	this	introduces	as	significant
kinematic	variables	the	spatial	derivatives	of	displacement,	velocity,	and	so	on.



The	equations	of	continuum	mechanics	are	of	two	main	kinds.	Firstly,	there	are	equations	which	apply
equally	to	all	materials.	They	describe	universal	physical	laws,	such	as	conservation	of	mass	and	energy.
Secondly,	there	are	equations	which	describe	the	mechanical	behaviour	of	particular	materials;	these	are
known	as	constitutive	equations.

The	problems	of	continuum	mechanics	are	also	of	two	main	kinds.	The	first	is	the	formulation	of
constitutive	equations	which	are	adequate	to	describe	the	mechanical	behaviour	of	various	particular
materials	or	classes	of	materials.	This	formulation	is	essentially	a	matter	for	experimental	determination,
but	a	theoretical	framework	is	neeeded	in	order	to	devise	suitable	experiments	and	to	interpret
experimental	results.	The	second	problem	is	to	solve	the	constitutive	equations,	in	conjunction	with	the
general	equations	of	continuum	mechanics,	and	subject	to	appropriate	boundary	conditions,	to	confirm	the
validity	of	the	constitutive	equations	and	to	predict	and	describe	the	behaviour	of	materials	in	situations
which	are	of	engineering,	physical	or	mathematical	interest.	At	this	problem-solving	stage	the	different
branches	of	continuum	mechanics	diverge,	and	we	leave	this	aspect	of	the	subject	to	more	comprehensive
and	more	specialized	texts.



2

Introductory	matrix	algebra

2.1	Matrices
In	this	chapter	we	summarize	some	useful	results	from	matrix	algebra.	It	is	assumed	that	the	reader	is
familiar	with	the	elementary	operations	of	matrix	addition,	multiplication,	inversion	and	transposition.
Most	of	the	other	properties	of	matrices	which	we	will	present	are	also	elementary,	and	some	of	them	are
quoted	without	proof.	The	omitted	proofs	will	be	found	in	standard	texts	on	matrix	algebra.

An	m	x	n	matrix	A	is	an	ordered	rectangular	array	of	mn	elements.	We	denote

(2.1)

so	that	Aij	is	the	element	in	the	ith	row	and	the	jth	column	of	the	matrix	A.	The	index	i	takes	values	1,	2,	.	.
.	,	m,	and	the	index	j	takes	values	1,	2,	.	.	.	,	n.	In	continuum	mechanics	the	matrices	which	occur	are
usually	either	3	x	3	square	matrices,	3	×	1	column	matrices	or	1	x	3	row	matrices.	We	shall	usually	denote
3	x	3	square	matrices	by	bold-face	roman	capital	letters	(A,	B,	C,	etc.)	and	3	x	1	column	matrices	by
bold-face	roman	lower-case	letters	(a,	b,	c,	etc.).	A	1	x	3	row	matrix	will	be	treated	as	the	transpose	of	a
3	x	1	column	matrix	(aT,	bT,	cT,	etc.).	Unless	otherwise	stated,	indices	will	take	the	values	1,	2	and	3,
although	most	of	the	results	to	be	given	remain	true	for	arbitrary	ranges	of	the	indices.

A	square	matrix	A	is	symmetric	if

(2.2)

and	anti-symmetric	if



(2.3)

where	AT	denotes	the	transpose	of	A.

The	3	x	3	unit	matrix	is	denoted	by	I,	and	its	elements	by	δij.	Thus

(2.4)

where

(2.5)

Clearly	δij	=	δji.	The	symbol	δij	is	known	as	the	Kronecker	delta.	An	important	property	of	δij	is	the
substitution	rule:

(2.6)

The	trace	of	a	square	matrix	A	is	denoted	by	tr	A,	and	is	the	sum	of	the	elements	on	the	leading
diagonal	of	A.	Thus,	for	a	3	x	3	matrix	A,

(2.7)

In	particular,



(2.8)

With	a	square	matrix	A	there	is	associated	its	determinant,	det	A.	We	assume	familiarity	with	the
elementary	properties	of	determinants.	The	determinant	of	a	3	x	3	matrix	A	can	be	expressed	as

(2.9)

where	the	alternating	symbol	eijk	is	defined	as:
a.	 eijk	=	1	if	(i,	j,	k)	is	an	even	permutation	of	(1,	2,	3)	(i.e.	e123	=	e231	=	e312	=	1);
b.	 eijk	=–1	if	(i,	j,	k)	is	an	odd	permutation	of	(1,	2,	3)	(i.e.	e321	=	e132	=	e213	=–1);
c.	 eijk	=	0	if	any	two	of	i,	j,	k	are	equal	(e.g.	e112	=	0,	e333	=	0).

It	follows	from	this	definition	that	eijk	has	the	symmetry	properties

(2.10)

The	condition	det	A	≠	0	is	a	necessary	and	sufficient	condition	for	the	existence	of	the	inverse	A–1	of
A.

A	square	matrix	Q	is	orthogonal	if	it	has	the	property

(2.11)

It	follows	that	if	Q	is	orthogonal,	then

(2.12)

and



(2.13)

Our	main	concern	will	be	with	proper	orthogonal	matrices,	for	which

det	Q	=1

If	Q1	and	Q2	are	two	orthogonal	matrices,	then	their	product	Q1	Q2	is	also	an	orthogonal	matrix.

2.2	The 	summation	convention
A	very	useful	notational	device	in	the	manipulation	of	matrix,	vector	and	tensor	expressions	is	the
summation	convention.	According	to	this,	if	the	same	index	occurs	twice	in	any	expression,	summation
over	the	values	1,	2	and	3	of	that	index	is	automatically	assumed,	and	the	summation	sign	is	omitted.	Thus,
for	example,	in	(2.7)	we	may	omit	the	summation	sign	and	write

tr	A	=	Aii

Similarly,	the	relations	(2.6)	are	written	as

δijAjk	=	Aik,	δijAkj	=	Aki

and	from	(2.8),

δii	=	3

Using	this	convention,	(2.9)	becomes

(2.14)

The	conciseness	introduced	by	the	use	of	this	notation	is	illustrated	by	the	observation	that,	in	full,	the
right-hand	side	of	(2.14)	contains	36	=	729	terms,	although	because	of	the	properties	of	eijk	only	six	of
these	are	distinct	and	non-zero.

Some	other	examples	of	the	use	of	summation	convention	are	the	following:



a.	 If	A	=	(Aij),	B	=	(Bij),	then	the	element	in	the	ith	row	and	jth	3	column	of	the	product	AB	is	
AikBkj,	which	is	written	as	AikBki.

b.	 Suppose	that	in	(a)	above,	B	=	AT.	Then	Bij	=	Aji,	and	so	the	element	in	the	ith	row	and	jth	column	of
AAT	is	AikAjk.	In	particular,	if	A	is	an	orthogonal	matrix	Q	=	(Qij)	we	have	from	(2.12)

(2.15)

c.	 A	linear	relation	between	two	column	matrices	x	and	y	has	the	form

(2.16)

which	may	be	written	as

(2.17)

If	A	is	non-singular,	then	from	(2.16),	y	=	A–1x.	In	particular,	if	A	is	an	orthogonal	matrix	Q,	then

d.	 The	trace	of	AB	is	obtained	by	setting	i	=	j	in	the	last	expression	in	(a)	above;	thus

(2.18)

By	a	direct	extension	of	this	argument

tr	ABC	=	AijBjkCki,



and	so	on.
e.	 If	a	and	b	are	column	matrices	with

then	aTb	is	a	1	×	1	matrix	whose	single	element	is

(2.19)

f.	 If	a	is	as	in	(e)	above,	and	A	is	a	3	x	3	matrix,	then	Aa	is	a	3	x	1	column	matrix,	and	the	element	in
its	ith	row	is

	Airar,	which	is	written	as	Airar.
g.	 Two	useful	relations	between	the	Kronecker	delta	and	the	alternating	symbol	are

(2.20)

These	can	be	verified	directly	by	considering	all	possible	combinations	of	values	of	i,	j,	p,	q,	r	and
s.	Actually,	(2.20)	are	consequences	of	a	more	general	relation	between	δij	and	eijk,	which	can	also
be	proved	directly,	and	is

(2.21)

From	(2.14)	and	(2.21)	we	can	obtain	the	useful	relation

(2.22)



An	index	on	which	a	summation	is	carried	out	is	called	a	dummy	index.	A	dummy	index	may	be
replaced	by	any	other	dummy	index,	for	example	Aii	=	Ajj.	However,	it	is	important	always	to	ensure	that,
when	the	summation	convention	is	employed,	no	index	appears	more	than	twice	in	any	expression,
because	the	expression	is	then	ambiguous.

In	the	remainder	of	this	book	it	is	to	be	assumed,	unless	the	contrary	is	stated,	that	the	summation
convention	is	being	employed.	This	applies,	in	subsequent	chapters,	to	indices	which	label	vector	and
tensor	components	as	well	as	those	which	label	matrix	elements.

2.3	Eigenvalues	and	e igenvectors
In	continuum	mechanics,	and	in	many	other	subjects,	we	frequently	encounter	homogeneous	algebraic
equations	of	the	form

(2.23)

where	A	is	a	given	square	matrix,	x	an	unknown	column	matrix	and	λ	an	unknown	scalar.	In	the
applications	which	appear	in	this	book,	A	will	be	a	3	x	3	matrix.	We	therefore	confine	the	discussion	to
the	case	in	which	A	is	a	3	x	3	matrix,	although	the	generalization	to	n	×	n	matrices	is	straightforward.
Equation	(2.23)	can	be	written	in	the	form

(2.24)

and	the	condition	for	(2.24)	to	have	non-trivial	solutions	for	x	is

(2.25)

This	is	the	characteristic	equation	for	the	matrix	A.	When	the	determinant	is	expanded,	(2.25)	becomes	a
cubic	equation	for	λ,	with	three	roots	λ1,	λ2,	λ3	which	are	called	the	eigenvalues	of	A.	For	the	present	we
assume	that	λ1,	λ2	and	λ3	are	distinct.	Then,	for	example,	the	equation

(A–λ1I)x=	0

has	a	non-trivial	solution	x(1),	which	is	indeterminate	to	within	a	scaler	multiplier.	The	column	matrix	x(1)
is	the	eigenvector	of	A	associated	with	the	eigenvalue	λ1;	eigenvectors	x(2)	and	x(3)	associated	with	the



eigenvalues	λ2	and	λ3	are	defined	similarly.

Since	λ1,	λ2,	λ3	are	the	roots	of	(2.25),	and	the	coefficient	of	λ3	on	the	left	of	(2.25)	is	-1,	we	have

(2.26)

This	is	an	identity	in	λ,	so	it	follows	by	setting	λ	=	0	that

(2.27)

Now	suppose	that	A	is	a	real	symmetric	matrix.	There	is	no	a	priori	reason	to	expect	λ1	and	x(1)	to	be
real.	Suppose	they	are	complex,	with	complex	conjugates	 1and	 (1)	.	Then

(2.28)

Transposing	(2.28)	and	taking	its	complex	conjugate	gives

(2.29)

Now	multiply	(2.28)	on	the	left	by	 (1)Tand	(2.29)	on	the	right	by	x(1),	and	subtract.	This	gives

(2.30)

Since	x(1)	is	a	non-trivial	solution	of	(2.24),	 (1)Tx(1)	≠	0,	and	so	λ1	=	 1Hence	the	eigenvalues	of	a	real
symmetric	matrix	are	real.

Also	from	(2.28),



(2.31)

and	similarly

(2.32)

Now	transpose	(2.31)	and	subtract	the	resulting	equation	from	(2.32).	This	gives

(2.33)

Hence	the	eigenvectors	associated	with	two	distinct	eigenvalues	λ1	and	λ2	of	a	symmetric	matrix	A	have
the	property	x(1)Tx(2)	=	0.	Two	column	matrices	with	this	property	are	said	to	be	orthogonal.	In	general,	if
the	eigenvalues	are	distinct,	then

(2.34)

By	appropriate	choice	of	the	scalar	multiplier,	the	eigenvector	x(1)	can	be	normalized	so	that	x(1)Tx(1)	=
1.	In	general,	we	can	normalize	the	eigenvectors	so	that

(2.35)

Strictly	speaking,	the	right-hand	sides	of	(2.34)	and	(2.35)	are	1	x	1	matrices,	but	for	most	purposes	they
may	be	treated	as	scalars.	Now	construct	a	3	x	3	matrix	P	whose	rows	are	the	transposes	of	the
normalized	eigenvectors	x(1),	x(2),	x(3):

(2.36)



Then	it	follows	from	(2.34)	and	(2.35)	that	PPT	=	I,	and	so	P	is	an	orthogonal	matrix.	Also,	using	(2.28)
and	analogous	relations	for	x(2)	and	x(3),

(2.37)

and	hence,	from	(2.35),	(2.36)	and	(2.37),

(2.38)

Thus	PAPT	is	a	diagonal	matrix	with	the	eigenvalues	of	A	as	the	elements	on	its	leading	diagonal.

It	can	be	shown	that	if	A	is	symmetric	and	λ1	=	λ2	≠	λ3,	then	the	normalized	eigenvector	x(3)	is	uniquely
determined	and	x(1)	and	x(2)	may	be	any	two	column	matrices	orthogonal	to	x(3).	If	x(1)	and	x(2)	are	chosen
to	be	mutually	orthogonal	then	the	results	(2.33)–(2.38)	remain	valid.	If	λ1	=	λ2	=	λ3,	then	A	is	diagonal.
Any	column	matrix	with	at	least	one	non-zero	element	is	an	eigenvector	and	the	results	remain	true,	though
trivial,	if	x(1),	x(2)	and	x(3)	are	chosen	as	any	three	mutually	orthogonal	normalized	column	matrices.

From	(2.23)	it	follows	that

(2.39)

Hence	if	λ	is	an	eigenvalue	of	A,	and	x	is	the	corresponding	eigenvector,	then	λ2	is	an	eigenvalue	of	A2,
and	x	is	the	corresponding	eigenvector.	More	generally,	λn	is	an	eigenvalue	of	An,	and	x	is	the
corresponding	eigenvector.	If	A	is	non-singular,	this	result	holds	for	negative	as	well	as	for	positive
integers	n.

2.4	The 	Cayley–Hamilton	theorem
From	(2.38),	we	see	that

tr	PAPT	=	λ1,	+	λ2	+	λ3,	tr	(PAPT)2	=	

Now	since	P	is	orthogonal,	it	follows	from	(2.15)	that



Hence

(2.40)

From	(2.25)	and	(2.26)

λ3–(λ1	+	λ2	+	λ3)λ2	+	λ2λ3	+	λ3λ1	+	λ1λ2)λ–λ1λ2λ3	=	0

Hence,	from	(2.27)	and	(2.40),	the	characteristic	equation	can	be	expressed	in	the	form

(2.41)

The	Cayley–Hamilton	theorem	states	that	a	square	matrix	satisfies	its	own	characteristic	equation;	thus
for	any	3	x	3	matrix	A,

(2.42)

The	theorem	may	be	proved	in	several	ways.	Proofs	will	be	found	in	standard	algebra	texts.

2.5	The 	polar	decomposition	theorem
A	matrix	A	is	positive	definite	if	xTAx	is	positive	for	all	non-zero	values	of	the	column	matrix	x.	A
necessary	and	sufficient	condition	for	A	to	be	positive	definite	is	that	the	eigenvalues	of	A	are	all
positive.

The	polar	decomposition	theorem	states	that	a	non-singular	square	matrix	F	can	be	decomposed,
uniquely,	into	either	of	the	products



(2.43)

where	R	is	an	orthogonal	matrix	and	U	and	V	are	positive	definite	symmetric	matrices.	We	outline	the
proof	for	3	x	3	matrices,	which	is	the	case	we	require.	The	generalization	to	n	×	n	matrices	is
straightforward.

Let	C	=	FTF,	and	let	 	=	FxThen	C	is	symmetric,	and	also

But	 is	a	sum	of	squares,	and	so	is	positive	for	all	non-zero	column	matrices	 	,	and	hence	xTCx	is
positive	for	all	non-zero	x.	Thus	C	is	positive	definite,	and	has	positive	eigenvalues;	we	denote	these	by	
	,	 ,	 	,	where,	without	loss	of	generality,	λ1,	λ2	and	λ3	are	positive.	By	the	results	of	Section	2.3,	if

PT	denotes	the	matrix	whose	columns	are	the	normalized	eigenvectors	of	C,	then	P	is	orthogonal	and

We	define

(2.44)

Then	U	is	symmetric	and	positive	definite,	and	also,	since	P	is	orthogonal,

(2.45)

We	further	define	R	=	FU–1.	Then	in	order	to	prove	the	existence	of	the	first	decomposition	it	is	only
necessary	to	show	that	R	is	orthogonal.	Now	from	(2.43)	and	(2.45),



RTR	=	U–1FTFU–1	=	U–1CU–1	=	U–1U2U–1	=	I

and	so	R	is	indeed	orthogonal.	The	matrix	V	is	then	defined	by	V	=	RURT
.

To	prove	uniqueness,	suppose	there	exists	another	decomposition	F	=	R1U1,	where	R1	is	orthogonal
and	U1	is	positive	definite.	Then	 and

Hence

However,	the	only	one	of	these	matrices	U1	which	is	positive	definite	is	the	one	in	which	the	positive
signs	are	taken.	Hence	U1	=	U.	The	uniqueness	of	R	and	V	then	follows	from	their	definitions.

The	above	proof	proceeds	by	constructing	the	matrices	U,	R	and	V	which	correspond	to	a	given	matrix
F.	Thus,	in	principle	it	gives	a	method	of	determining	U,	R	and	V.	In	practice,	the	calculations	are
cumbersome,	even	for	a	3	x	3	matrix	F.	Fortunately,	for	applications	in	continuum	mechanics	it	is	usually
sufficient	to	know	that	the	unique	decompositions	exist,	and	it	is	not	often	necessary	to	carry	them	out
explicitly.



3

Vectors	and	cartesian	tensors

3.1	Vectors
We	assume	familiarity	with	basic	vector	algebra	and	analysis.	In	the	first	part	of	this	chapter	we	define
the	notation	and	summarize	some	of	the	more	important	results	so	that	they	are	available	for	future
reference.

We	consider	vectors	in	three-dimensional	Euclidean	space.	Such	vectors	will	(with	a	few	exceptions
which	will	be	noted	as	they	occur)	be	denoted	by	lower-case	bold-face	italic	letters	(a,	b,	x,	etc.).	We
make	a	distinction	between	column	matrices,	which	are	purely	algebraic	quantities	introduced	in	Chapter
2,	and	vectors,	which	represent	physical	quantities	such	as	displacement,	velocity,	acceleration,	force,
momentum,	and	so	on.	This	distinction	is	reflected	in	our	use	of	roman	bold-face	type	for	column	matrices
and	italic	bold-face	type	for	vectors.

The	characteristic	properties	of	a	vector	are:	(a)	a	vector	requires	a	magnitude	and	a	direction	for	its
complete	specification,	and	(b)	two	vectors	are	compounded	in	accordance	with	the	parallelogram	law.
Thus	two	vectors	a	and	b	may	be	represented	in	magnitude	and	direction	by	two	lines	in	space,	and	if
these	two	lines	are	taken	to	be	adjacent	sides	of	a	parallelogram,	the	vector	sum	a+b	is	represented	in
magnitude	and	direction	by	the	diagonal	of	the	parallelogram	which	passes	through	the	point	of
intersection	of	the	two	lines.

Suppose	there	is	set	up	a	system	of	rectangular	right-handed	cartesian	coordinates	with	origin	O.	Let	e1,
e2,	e3	denote	vectors	of	unit	magnitude	in	the	directions	of	the	three	coordinate	axes.	Then	e1,	e2,	e3	are
called	base	vectors	of	the	coordinate	system.	By	virtue	of	the	parallelogram	addition	law,	a	vector	a	can
be	expressed	as	a	vector	sum	of	three	such	unit	vectors	directed	in	the	three	coordinate	directions.	Thus

(3.1)

where	in	the	last	expression	(and	in	future,	whenever	it	is	convenient)	the	summation	convention	is
employed.	The	quantities	ai	(i	=1,	2,	3)	are	the	components	of	a	in	the	specified	coordinate	system;	they
are	related	to	the	magnitude	a	of	a	by



(3.2)

In	particular,	a	vector	may	be	the	position	vector	x	of	a	point	P	relative	to	O.	Then	the	components	x1,	x2,
x3	of	x	are	the	coordinates	of	P	in	the	given	coordinate	system,	and	the	magnitude	of	x	is	the	length	OP.

The	scalar	product	a	·	b	of	the	two	vectors	a,	b	with	respective	magnitudes	a,	b,	whose	directions	are
separated	by	an	angle	θ,	is	the	scalar	quantity

(3.3)

If	a	and	b	are	parallel,	then	a	·	b	=	ab,	and	if	a	and	b	are	at	right	angles,	a	·	b	=	0.	In	particular,

That	is,

(3.4)

The	vector	product	a	×	b	of	a	and	b	is	a	vector	whose	direction	is	normal	to	the	plane	of	a	and	b,	in	the
sense	of	a	right-handed	screw	rotating	from	a	to	b,	and	whose	magnitude	is	ab	sin	θ.	In	terms	of
components,	a	×	b	can	conveniently	be	written	as

(3.5)

where	it	is	understood	that	the	determinant	expansion	is	to	be	by	the	first	row.	By	using	the	alternating
symbol	eijk,	(3.5)	can	be	written	as

(3.6)



The	triple	scalar	product	(a	x	b)	·	c	is	given	in	components	as

(3.7)

3.2	Coordinate 	transformation
A	vector	is	a	quantity	which	is	independent	of	any	coordinate	system.	If	a	coordinate	system	is	introduced
the	vector	may	be	represented	by	its	components	in	that	system,	but	the	same	vector	will	have	different
components	in	different	coordinate	systems.	Sometimes	the	components	of	a	vector	in	a	given	coordinate
system	may	conveniently	be	written	as	a	column	matrix,	but	this	matrix	only	specifies	the	vector	if	the
coordinate	system	is	also	specified.

Suppose	the	coordinate	system	is	translated	but	not	rotated,	so	that	the	new	origin	is	O′,	where	O′	has
position	vector	x0	relative	to	O.	Then	the	position	vector	x′	of	P	relative	to	O′	is

x′	=	x–x0.

In	a	translation	without	rotation,	the	base	vectors	e1,	e2,	e3	are	unchanged,	and	so	the	components	ai	of	a
vector	a	are	the	same	in	the	system	with	origin	O′	as	they	were	in	the	system	with	origin	O.

Now	introduce	a	new	rectangular	right-handed	cartesian	coordinate	system	with	the	same	origin	O	as
the	original	system	and	base	vectors	ē1,	ē2,	ē3.	The	new	system	may	be	regarded	as	having	been	derived
from	the	old	by	a	rigid	rotation	of	the	triad	of	coordinate	axes	about	O.	Let	a	vector	a	have	components	ai
in	the	original	coordinate	system	and	components	āi	in	the	new	system.	Thus

(3.8)

Now	denote	by	Mij	the	cosine	of	the	angle	between	ēi	and	ej,	so	that

(3.9)



Then	Mij	(i,	j	=	1,	2,	3)	are	the	direction	cosines	of	ēi	relative	to	the	first	coordinate	system,	or,
equivalently,	Mij	are	the	components	of	ēi	in	the	first	system.	Thus

(3.10)

It	is	geometrically	evident	that	the	nine	quantities	Mij	are	not	independent.	In	fact,	since	ēi	are	mutually
orthogonal	unit	vectors,	we	have,	as	in	(3.4)	ēi	·	ēj	=	δij.	However,	from	(3.4)	and	(3.10),

Hence

(3.11)

Since	δij	=	δji,	(3.11)	represents	a	set	of	six	relations	between	the	nine	quantities	Mij.	Now	regard	Mij	as
the	elements	of	a	square	matrix	M.	Then	(3.11)	is	equivalent	to	the	statement

(3.12)

Thus	M	=	(Mij)	is	an	orthogonal	matrix;	that	is,	the	matrix	which	determines	the	new	base	vectors	in	terms
of	the	old	base	vectors	is	an	orthogonal	matrix.	For	a	transformation	from	one	right-handed	system	to
another	right-handed	system,	M	is	a	proper	orthogonal	matrix.	The	rows	of	M	are	the	direction	cosines	of
ēi	in	the	first	coordinate	system.

Since	M	is	orthogonal,	the	reciprocal	relation	to	(3.10)	is

(3.13)

and	so	the	columns	of	M	are	the	direction	cosines	of	the	ej	in	the	coordinate	system	with	base	vectors	ēi.

Now	from	(3.8)	and	(3.13),



Thus

(3.14)

This	gives	the	new	components	ā¡	of	a	in	terms	of	its	old	components	aj,	and	the	elements	of	the
orthogonal	matrix	M	which	determines	the	new	base	vectors	in	terms	of	the	old.	Similarly,	from	(3.8)	and
(3.10)

(3.15)

In	particular,	if	a	is	the	position	vector	x	of	the	point	P	relative	to	the	origin	O,	then

(3.16)

where	x¡	and	x̄i	are	the	coordinates	of	the	point	P	in	the	first	and	second	coordinate	systems	respectively.

The	transformation	law,	(3.14)	and	(3.15),	is	a	consequence	of	the	parallelogram	law	of	addition	of
vectors,	and	can	be	shown	to	be	equivalent	to	this	law.	Thus	a	vector	can	be	defined	to	be	a	quantity	with
magnitude	and	direction	which:	(a)	compounds	according	to	the	parallelogram	law,	or	equivalently,	(b)
can	be	represented	by	a	set	of	components	which	transform	as	(3.14)	under	a	rotation	of	the	coordinate
system.

In	the	foregoing	discussion	we	have	admitted	only	rotations	of	the	coordinate	system,	so	that	M	is	a
proper	orthogonal	matrix	(det	M	=	1).	If	we	also	consider	transformations	from	a	right-handed	to	a	left-
handed	coordinate	system,	for	which	M	is	an	improper	orthogonal	matrix	(det	M	=–1),	then	it	becomes
necessary	to	distinguish	between	vectors,	whose	components	transform	according	to	(3.14),	and	pseudo-
vectors,	whose	components	transform	according	to	the	rule

(3.17)

Examples	of	pseudo-vectors	are	the	vector	product	a	×	b	of	two	vectors	a	and	b,	the	angular	velocity



vector,	the	infinitesimal	rotation	vector	(Section	6.7)	and	the	vorticity	vector	(Section	6.9).	The
distinction	between	vectors	and	pseudo-vectors	only	arises	if	left-handed	coordinate	systems	are
introduced,	and	it	will	not	be	of	importance	in	this	book.

It	is	evident	from	the	definition	of	the	scalar	product	a·bthat	its	value	must	be	independent	of	the	choice
of	the	coordinate	system.	To	confirm	this	we	observe	from	(3.14)	that

(3.18)

A	quantity	such	as	aibi,	whose	value	is	independent	of	the	coordinate	system	to	which	the	components	are
referred,	is	an	invariant	of	the	vectors	a	and	b.

As	the	vector	product	is	also	defined	geometrically,	it	must	have	a	similar	invariance	property.	In	fact,
from	(2.22),	(3.10)	and	(3.14)	we	have

(3.19)

provided	that	det	M	=	+1.

The	reader	will	observe	the	advantages	of	using	the	summation	convention	in	equations	such	as	(3.18)
and	(3.19).	Not	only	does	this	notation	allow	lengthy	sums	to	be	expressed	concisely	(for	example,	the
third	expression	in	(3.18)	represents	a	sum	of	27	terms)	but	it	also	reveals	the	structure	of	these
complicated	expressions	and	suggests	the	ways	in	which	they	may	be	simplified.

3.3	The 	dyadic 	product
There	are	some	physical	quantities,	apart	from	quantities	which	can	be	expressed	as	scalar	or	vector
products,	which	require	the	specification	of	two	vectors	for	their	description.	For	example,	to	describe
the	force	acting	on	a	surface	it	is	necessary	to	know	the	magnitude	and	direction	of	the	force	and	the
orientation	of	the	surface.	Some	quantities	of	this	kind	can	be	described	by	a	dyadic	product.

The	dyadic	product	of	two	vectors	a	and	b	is	written	a	⊗	b.	It	has	the	properties

(3.20)



where	α	is	a	scalar.	It	follows	that	in	terms	of	the	components	of	a	and	b,	a	⊗	b	may	be	written

(3.21)

We	note	that,	in	general,	a	⊗	b	≠	b	⊗	a.	The	form	of	(3.21)	is	independent	of	the	choice	of	coordinate
system,	for

(3.22)

The	dyadic	products	ei	⊗	ej	of	the	base	vectors	ei	are	called	unit	dyads.
In	addition	to	(3.20),	the	essential	property	of	a	dyadic	product	is	that	it	forms	an	inner	product	with	a

vector,	as	follows

(3.23)

Since	there	is	no	possibility	of	ambiguity,	the	brackets	on	the	left-hand	sides	of	(3.23)	may	be	omitted	and
we	can	write

(3.24)

Hence	(3.24)	can	be	written	in	terms	of	components	as

(3.25)



Formally,	a	·	b	may	be	interpreted	as	the	scalar	product	even	when	a	or	b	form	part	of	a	dyadic	product.

The	concept	of	a	dyadic	product	can	be	extended	to	products	of	three	or	more	vectors.	For	example,	a
triadic	product	of	the	vectors	a,	b	and	c	is	written	a	⊗	b	⊗	c	and	can	be	expressed	in	component	form	as
aibjckei	⊗	ej	⊗	ek.

3.4	Cartesian	tensors
We	define	a	second-order	cartesian	tensor	to	be	a	linear	combination	of	dyadic	products.	As	a	dyadic
product	is,	by	(3.21),	itself	a	linear	combination	of	unit	dyads,	a	second-order	cartesian	tensor	A	can	be
expressed	as	a	linear	combination	of	unit	dyads,	so	that	it	takes	the	form

(3.26)

As	a	rule,	we	shall	use	bold-face	italic	capitals	to	denote	cartesian	tensors	of	second	(and	higher)	order.
As	the	only	tensors	which	will	be	considered	in	this	book	until	Chapter	11	will	be	cartesian	tensors,	we
shall	omit	the	adjective	‘cartesian’.	In	Chapters	3-10,	the	term	‘tensor’	means	‘cartesian	tensor’.

The	coefficients	Aij	are	called	the	components	of	A.	(Wherever	possible,	tensor	components	will	be
denoted	by	the	same	letter,	in	italic	capitals,	as	is	used	to	denote	the	tensor	itself.)	By	the	manner	of	its
definition,	a	tensor	exists	independently	of	any	coordinate	system.	However,	its	components	can	only	be
specified	after	a	coordinate	system	has	been	introduced,	and	the	values	of	the	components	depend	on	the
choice	of	the	coordinate	system.	Suppose	that	in	a	new	coordinate	system,	with	base	vectors	ēi,	A	has
components	Āij.	Then

(3.27)

However,	from	(3.13),

Hence

(3.28)

This	is	the	transformation	law	for	components	of	second-order	tensors.	It	depends	on	the	composition



rule	(3.20)	and	can	be	shown	to	be	equivalent	to	this	rule.	Thus	(3.28)	may	be	used	to	formulate	an
alternative	definition	of	a	second-order	tensor.	In	order	to	identify	a	second-order	tensor	as	such,	it	is
sufficient	to	show	that	in	any	transformation	from	one	rectangular	cartesian	coordinate	system	to	another,
the	components	transform	according	to	(3.28).	In	continuum	mechanics,	tensors	are	usually	recognized	by
the	property	that	their	components	transform	in	this	manner.

More	generally,	a	cartesian	tensor	of	order	n	can	be	expressed	in	components	as

(3.29)

and	its	components	transform	according	to	the	rule

(3.30)

Thus	a	vector	can	be	interpreted	as	a	tensor	of	order	one.	A	scalar,	which	has	a	single	component	which
is	unchanged	in	a	coordinate	transformation,	can	be	regarded	as	a	tensor	of	order	zero.	Nearly	all	of	the
tensors	we	encounter	in	this	book	will	be	of	order	zero	(scalars),	one	(vectors),	or	two.

The	inverse	relation	to	(3.28)	is

(3.31)

and	the	inverse	of	(3.30)	is

(3.32)

Suppose	that	A	=	Aijei	⊗	ej	=	Āpqēp	⊗	ēq	is	a	second-order	tensor,	and	that	Aij	=	Aji.	Then	from	(3.28),

(3.33)



Thus	the	property	of	symmetry	with	respect	to	interchange	of	tensor	component	indices	is	preserved	under
coordinate	transformations,	and	so	is	a	property	of	the	tensor	A.	A	tensor	A	whose	components	have	the
property	A¡j	=	Aji	(in	any	coordinate	system)	is	a	symmetric	second-order	tensor.	Many	of	the	second-
order	tensors	which	occur	in	continuum	mechanics	are	symmetric.

Similarly,	if	Aij	=–Aji,	then	Āij	=–Āji,	and	A	is	an	antisymmetric	second-order	tensor.

Let	us	denote	 	=	A	ji	and	 Then	from	(3.28),

(3.34)

Hence	the	set	of	components	Aji	also	transform	as	the	components	of	a	second-order	tensor.	Thus	from	the
tensor	A	=	Aijej	⊗	ej	we	can	form	a	new	tensor	Aj¡ei	⊗	ej	which	we	denote	by	AT	and	call	the	transpose
of	A.	The	tensor	A	+	AT	is	symmetric	and	the	tensor	A–AT	is	anti-symmetric.	Since

(3.35)

any	second-order	tensor	can	be	decomposed	into	the	sum	of	a	symmetric	and	an	anti-symmetric	tensor,
and	this	decomposition	is	unique.

3.5	Isotropic 	tensors
The	tensor	I	=	δijei	⊗	ej	is	called	the	unit	tensor.	In	terms	of	another	set	of	base	vectors	ēi,	we	have,	from
(3.13),

Thus	the	tensor	I	has	the	property	that	its	components	are	δij	in	any	coordinate	system.	A	tensor	whose
components	are	the	same	in	any	coordinate	system	is	called	an	isotropic	tensor.	It	can	be	shown	that	the
only	isotropic	tensors	of	order	two	are	of	the	form	pI,	where	p	is	a	scalar.	Such	tensors	are	sometimes
called	spherical	tensors.

Similarly,	it	can	be	verified	that	the	alternating	tensor

(3.36)



is	an	isotropic	tensor	of	order	three,	provided	that	only	coordinate	transformations	which	correspond	to
proper	orthogonal	matrices	(that	is,	rotations)	are	allowed.	Any	third-order	isotropic	tensor	is	a	multiple
of	(3.36).	There	are	three	linearly	independent	fourth-order	isotropic	tensors,	which	may	be	taken	to	be

and	so	the	most	general	fourth-order	isotropic	tensor	has	the	form

(3.37)

where	A,	μ	and	ν	are	scalars.

3.6	Multiplication	of	tensors
Let	a	=	ai	ei	and	B	=	Bije¡	⊗	ej	be	a	vector	and	a	second-order	tensor	respectively,	with	respective
components	ai	and	Bij	in	a	coordinate	system	with	base	vectors	ei.	Suppose	that	in	a	new	system	with	base

vectors	ēi	=	M¡jej,	a	and	B	have	components	āi	and	 respectively,	so	that

In	addition,	let	Cijk	=	aiBjk,	and	consider	the	tensor

C	=	Cijkei	⊗	ei	⊗	ek

The	components	of	C	referred	to	base	vectors	ē¡	are	 	,	where

(3.38)

The	tensor	C	is	called	the	outer	product	of	the	vector	a	and	the	tensor	B	(in	that	order),	and	is	written	a
⊗	B.	Equation	(3.38)	shows	that	the	components	of	C	are	related	to	those	of	a	and	B	in	the	same	way	in
any	coordinate	system.

Similarly,	if	A	and	B	are	second-order	tensors	with	respective	components	Aij	and	Bij	in	the	system



with	base	vectors	ei,	then	the	outer	product	D	=	A	⊗	B	is	the	fourth-order	tensor	with	components	Dijkl	=
AijBkl	in	this	system,	and	under	a	coordinate	transformation	the	components	of	D	transform	to	

Outer	products	of	three	or	more	tensors	or	vectors	are	formed	in	a	similar	way,	and	the	extension	to
tensors	of	higher	order	is	direct.	The	outer	product	of	a	tensor	of	order	m	with	a	tensor	of	order	n	is	a
tensor	of	order	m	+	n	(vectors	are	regarded	as	tensors	of	order	one).	The	dyadic	product	of	two	vectors	is
the	outer	product	of	those	vectors.

Contraction.	Now	consider	a	third-order	tensor	C¡jke¡	⊗	ej	⊗	ek.	The	components	Cijk	transform
according	to	the	rule

We	now	sum	on	the	last	two	indices	of	 	;	that	is,	we	form	the	three	sums

Formally,	this	is	accomplished	by	setting	the	second	and	third	indices	of	Cijk	equal	to	each	other.	Then

(3.39)

Thus	the	components	Cprr	transform	as	the	components	of	a	vector.	More	generally,	if	Dij...p...q...rs	are
components	of	a	tensor	of	order	n,	and	we	sum	on	any	pair	of	its	indices	so	as	to	form,	for	example,
Dij...p...p...rs,	the	resulting	quantities	are	the	components	of	a	tensor	of	order	n–2.	This	operation	of
reducing	the	order	of	a	tensor	by	two	by	summing	on	a	pair	of	indices	is	called	contraction	of	the	tensor.
In	particular,	if	Aij	are	components	of	a	second-order	tensor,	then	Aii	is	a	scalar.

A	contraction	may	be	performed	on	indices	of	two	tensors	which	are	factors	in	an	outer	product.	Thus
if	ai	are	components	of	a	vector	a,	and	Bij	are	components	of	a	second-order	tensor	B,	then	aiBij	are
components	of	a	vector,	and	so	are	Bijaj.	We	call	these	vectors	inner	products	of	a	and	B,	and	write

(3.40)

Note	that	a·B	=	B·a	only	if	B	is	a	symmetric	tensor.



Inner	products	of	second-	and	higher-order	tensors	are	formed	in	a	similar	way.	Let	A	and	B	be
second-order	tensors	with	components	Aij	and	Bij	respectively.	From	them	we	can	form	various	inner
products,	which	are	second-order	tensors;	for	example,

(3.41)

We	note,	for	example,	that

(A	·	B)T	=	BT	·	AT

As	a	special	case,	the	tensors	A	and	B	may	be	the	same	tensor.	The	tensor	A	·	A	is	denoted	by	A2.

If	there	exists	a	tensor	A–1	such	that

(3.42)

then	A–1	is	called	the	inverse	tensor	to	A.

If	the	tensors	AT	and	A–1	are	equal,	so	that

(3.43)

then	A	is	said	to	be	an	orthogonal	tensor.

By	using	the	polar	decomposition	theorem	(Section	2.5),	the	components	Fij	of	a	second-order	tensor	F
can	(provided	that	det	(Fij)	≠	0)	be	decomposed	uniquely	in	the	forms

Fij	=	Rik	Ukj,	Fij	=	VikRkj

where	Rik	are	elements	of	an	orthogonal	matrix,	and	Uij	and	Vij	are	elements	of	positive	definite
symmetric	matrices.	We	define	the	second-order	tensors	R,	U	and	V	to	be



R	=	Rijei	⊗	ej,	U	=	Uijei	⊗	ej,	V	=	Vijei	⊗	ej

Then	R	is	an	orthogonal	tensor	and	U	and	V	are	symmetric	tensors,	and

R	·	U	=	RikUkjei	⊗	ej	=	Fije¡	⊗	ej	=	F

and

V	·	R	=	VikRkje¡	⊗	ej	=	Fije¡	⊗	ej	=	F

Thus	the	tensor	F	can	be	decomposed	into	either	of	the	inner	products

(3.44)

3.7	Tensor	and	matrix	notation
Relations	between	tensor	quantities	may	be	expressed	either	in	direct	form,	as	relations	between	scalars
α,	β,	.	.	.	,	vectors	a,	b,	...	,	and	tensors	A,	B,	.	.	.	;	or	in	component	form,	as	relations	between	scalars	α,
β,	.	.	.	,	vector	components	ai,	bi,	...	,	and	tensor	components	Aij,	Bij,	.	.	.	.	The	direct	notation	has	the
advantage	that	it	emphasizes	that	physical	statements	are	independent	of	the	choice	of	the	coordinate
system.	However,	this	advantage	is	not	entirely	lost	when	the	component	notation	is	used,	because
relations	in	component	notation	must	be	written	in	such	a	way	that	they	preserve	their	form	under
coordinate	transformations.	The	component	form,	used	in	conjunction	with	the	summation	convention,	is
often	convenient	for	carrying	out	algebraic	manipulations,	and	in	considering	specific	problems	it	is
always	necessary	at	some	stage	to	introduce	a	coordinate	system	and	components.	Some	examples	of	the
interchange	between	the	different	forms	are	given	in	Table	3.1.	In	this	book	we	employ	both	notations,	as
convenient.

When	it	is	necessary	to	transform	components	from	one	coordinate	system	to	another,	it	is	often
convenient	to	introduce	matrix	notation.	Suppose	that	a	is	a	vector	and	A	is	a	second-order	tensor.	Let	a
and	A	have	components	ai	and	Aij	respectively	in	a	coordinate	system	with	base	vectors	ei,	and
components	āi	and	Ā¡j	respectively	in	a	coordinate	system	with	base	vectors	ēi,	where,	as	in	(3.10),	ēi	=
Mijej	and	Mij	are	elements	of	an	orthogonal	matrix	M.	Then	the	transformation	rules	(3.14)	and	(3.28)	for
the	components	of	a	and	A	are



(3.45)

The	components	ai	and	āi	may	be	arranged	as	the	elements	of	two	3	x	1	column	matrices	a	and	ā,	thus

(3.46)

and	the	components	Aij	and	Āij	may	be	arranged	as	elements	of	two	3	x	3	matrices	A	and	Ā,	thus

(3.47)

Then	the	transformation	rules	(3.45)	may	be	written	in	matrix	notation	as

(3.48)

Since	M	is	orthogonal,	we	immediately	obtain	the	reciprocal	relations

(3.49)

Matrix	notation	is	also	useful	in	carrying	out	algebraic	manipulations	which	involve	components	of
vector	and	tensor	products.	In	Table	3.1	we	list	a	number	of	examples	of	vector	and	tensor	equations
expressed	in	direct	notation,	component	notation	and	matrix	notation.	In	Table	3.1,	α	is	a	scalar,	a	and	b
are	vectors	with	components	ai	and	bi	respectively,	and	A,	B,	C,	D,	are	second-order	tensors	with
components	Aij,	Bij,	Cij,	Dij	respectively.	Also	a	and	b	are	3	x	1	column	matrices	with	elements	ai	and	bi
respectively,	and	A,	B,	C,	D	are	3	×	3	matrices	with	elements	Aij,	Bij,	Cij,	Dij	respectively.

Table	3.1	Examples	of	tensor	and	matrix	notation

Direct	 tensor 	nota ti on Tensor 	component	nota ti on Matr ix	nota ti on



α	=	a•b α	=	aibi (α)	=	aTb

A	=	a	⊗	b Aij	=	aibj A	=	abT

b	=	A	•	a bi	=	Aijaj b	=	Aa

b	=	a	·	A bj	=	aiAij bT	=	aT	A

α	=	a•A• α	=	aiAijbj (α)	=	aT	Ab

C	=	A	•	B Cij	=	AikBkj C	=	AB

C	=	A	•	BT Cij	=	AikBjk C	=	ABT

D	=	A•B•C Dij	=	AikBkmCmj D	=	ABC

Since	AA-1	=	A-1	A	=	I,	it	follows	that	if	A	is	the	matrix	of	components	of	A,	then	A-1	is	the	matrix	of
components	of	A-1,	in	the	same	coordinate	system.	Hence	the	tensor	A-1	exists	only	if	det	A	≠	0.

It	is	important	not	to	confuse	the	vector	a	with	the	column	matrix	a,	nor	the	tensor	A	with	the	square
matrix	A.	In	a	given	coordinate	system,	the	matrix	a	serves	to	describe	the	vector	a.	However,	the	vector
is	represented	by	different	matrices	in	different	coordinate	systems,	whereas	the	vector	itself	is
independent	of	the	coordinate	system.	Similarly,	the	matrix	A	describes	the	tensor	A	in	a	given	coordinate
system,	but	A	has	different	matrix	representations	in	different	coordinates,	although	A	itself	is	independent
of	the	coordinate	system.

3.8	Invariants	of	a 	second-order	tensor
Let	A	be	a	second-order	tensor	with	components	Aij	in	the	coordinate	system	with	base	vectors	ei	and
components	Āij	in	the	coordinate	system	with	base	vectors	ēi	=	Mijej.	Also,	let	A	=	(Aij),	Ā	=	(Āij)	and	M
=	(Mij).	Suppose	that	λ	is	an	eigenvalue	of	Ā,	so	that

det	(Ā	-	λI)	=	0

Then	Ā	=	MAMT	and	M	is	an	orthogonal	matrix.	Therefore,

det	{M(A	-	λI)MT}	=	0

and	hence



det	M	det	(A	-	λI)	det	M	=	0

However,	since	M	is	an	orthogonal	matrix,	(det	M)2	=1,	and	so

det	(A	-	λI)	=	0

Hence	λ	is	also	an	eigenvalue	of	A.	Thus	the	eigenvalues	of	the	matrix	of	components	of	A	are
independent	of	the	coordinate	system	to	which	these	components	are	referred.	The	eigenvalues	are
intrinsic	to	the	tensor	A;	if	A	is	symmetric	they	are	real	numbers	(cf.	Section	2.3)	and	they	are	then	called
the	principal	components	or	the	principal	values	of	A.	We	denote	the	principal	values	of	A	by	A1,	A2	and
A3.	If	A1,	A2	and	A3	are	all	positive,	then	A	is	a	positive	definite	tensor.

Suppose	that	A	is	symmetric.	If	A1,	A2	and	A3	are	distinct,	then	the	normalized	eigenvectors	x(1),	x(2)

and	x(3)	of	A	are	unique	and	mutually	orthogonal,	and

Ax(i)	=	Aix(i)	(i	=1,	2,	3;	no	summation)

Also,	since	M	is	an	orthogonal	matrix,	it	follows	that

Hence,	if	the	vectors	xi	are	defined	as

(3.50)

then	we	have

A	·	xi	=	Aixi	(no	summation)

Let	us	refer	A	to	a	coordinate	system	in	which	xi	are	the	base	vectors,	so	that	we	now	identify	ēi,	with
xi.	Then,	from	(3.50),	the	matrix	P	of	the	transformation	from	coordinates	with	base	vectors	ei	to
coordinates	with	base	vectors	xi	is	(Pij),	where



Therefore	(cf.	Section	2.3)	from	(2.38)	and	(3.48),

(3.51)

Thus	there	exists	a	coordinate	system	in	which	the	matrix	of	components	of	a	symmetric	second-order
tensor	A	is	a	diagonal	matrix	whose	diagonal	elements	are	the	principal	values	of	A.	This	coordinate
system	has	base	vectors	xi.	Its	axes	are	the	principal	axes	of	A,	and	their	directions	are	the	principal
directions	of	A.

These	results	remain	valid	if	A1,	A2	and	A3	are	not	all	distinct.	If	A1	=	A2	≠	A3,	then	the	vector	x3	is
uniquely	determined,	and	x1	and	x2	may	be	taken	to	be	any	two	unit	vectors	which	are	orthogonal	to	each
other	and	to	x3.	If	A1	=	A2	=	A3,	then	the	principal	axes	may	be	taken	to	be	any	three	mutually	orthogonal
axes,	and	A	is	a	spherical	tensor.

If,	for	example,	the	principal	axis	determined	by	x3	coincides	with	the	base	vector	e3,	then	A13	=	0,
A23=0.	Conversely,	if	A13	=	A23	=	0,	then	the	direction	of	x3	is	a	principal	direction.

It	follows	from	(2.39)	that	the	principal	values	of	A2	are	 ,	 	and	 .	More	generally,	the
principal	values	of	An	are	 ,	 	and	 .	This	holds	for	negative	as	well	as	positive	integers	n
provided	that	A1,	A2	and	A3	are	all	non-zero.	The	principal	axes	of	An	coincide	with	those	of	A.

It	was	emphasized	above	that	the	principal	values	of	A	are	independent	of	the	choice	of	the	coordinate
system;	they	are	invariants	of	the	tensor	A.	Invariants	play	an	important	role	in	continuum	mechanics.	It
can	be	shown	that	if	A	is	symmetric	then	A1,	A2	and	A3	are	basic	invariants	in	the	sense	that	any	invariant
of	A	can	be	expressed	in	terms	of	them.	In	many	applications	it	is	more	convenient	to	choose	as	the	basic
invariants	three	symmetric	functions	of	A1,	A2	and	A3	rather	than	the	principal	values	themselves.	Three
such	symmetric	functions	are

(3.52)

These	three	quantities	are	clearly	invariants	and	they	are	independent	in	the	sense	that	no	one	of	them	can
be	expressed	in	terms	of	the	other	two.

The	convenience	of	the	set	(3.52)	results	partly	because	they	can	be	calculated	from	the	tensor
components	in	any	coordinate	system	without	going	through	the	tedious	calculation	of	A1,	A2	and	A3.	We



see	from	(3.51)	that

However,	since	P	is	orthogonal,

(3.53)

Thus	the	first	of	the	invariants	(3.52)	is	equal,	in	any	coordinate	system,	to	the	trace	of	the	matrix	of
components	of	A.	Similarly,

(3.54)

and	in	a	similar	way	it	follows	that

Since	tr	A	is	independent	of	the	choice	of	the	coordinate	system,	we	can	without	ambiguity	define	tr	A
=	tr	A.	Similarly,	we	define	tr	A2=	tr	A2	and	tr	A	3	=	tr	A3,	so	that	the	set	of	invariants	(3.52)	may	be
expressed	as

(3.55)

Only	matrix	multiplications	are	needed	in	order	to	calculate	the	set	(3.55).

Another	set	of	symmetric	functions	of	A1,	A2	and	A3	is	{I1,	I2,	I3},	where

(3.56)



These	are	clearly	invariant	quantities.	I2	can	be	expressed	in	terms	of	components	of	Ā	as	follows:

For	I3	we	have

Hence	without	ambiguity	we	may	define	det	A	=	det	A	=	I3,	and	a	set	of	three	independent	invariants	of	A
(and	the	set	usually	used	in	practice)	is	{I1,	I2,	I3},	where

(3.57)

From	(2.42)	we	see	that	the	Cayley-Hamilton	theorem	for	A	can	be	expressed	as

(3.58)

By	taking	the	trace	of	(3.58),	and	remembering	that	tr	I	=	3,	there	follows	an	alternative	expression	for	I3
=	det	A:

(3.59)

3.9	Deviatoric 	tensors
The	tensor



(3.60)

has	the	property	that	its	first	invariant,	tr	A′,	is	zero.	Thus,	if	A′	is	symmetric,	it	has	only	five	independent
components,	and	only	two	independent	non-zero	invariants.	A	tensor	whose	trace	is	zero	is	called	a
deviatoric	tensor	and	A′	is	called	the	deviator	of	A.	It	is	sometimes	useful	in	continuum	mechanics	to
decompose	a	tensor	into	the	sum	of	its	deviator	and	a	spherical	tensor,	as	follows:

(3.61)

The	two	non-zero	invariants	of	A′	are

(3.62)

After	some	manipulation	it	can	be	shown	from	(3.57)	and	(3.60)	that

(3.63)

Thus	 	and	 	can	be	expressed	in	terms	of	I1,	I2	and	I3.	Alternatively,	I2	and	I3	can	be	expressed	in
terms	of	I1.	 	and	 ,	and	so	{I1,	I2,	 	}	may	be	adopted	as	a	set	of	basic	invariants	for	A	which	is
equivalent	to	the	set	{I1,	I2,	I3}.

3.10	Vector	and	tensor	calculus
We	assume	familiarity	with	elementary	vector	analysis,	and	give	only	a	summary,	without	proof,	of	results
which	will	be	needed.

If	φ(x1,	x2,	X3)	is	a	scalar	function	of	the	coordinates	then

(3.64)



is	the	gradient	of	φ	and	is	a	vector.	grad	φ	is	a	vector	whose	direction	is	normal	to	a	level	surface	φ(x1,
x2,	x3)	=	constant	and	whose	magnitude	is	the	directional	derivative	of	φ	in	the	direction	of	this	normal.

If	a(x1,	x2,	x3)	=	ai(xj)ei	is	a	vector	function	of	the	coordinates	then

(3.65)

is	the	divergence	of	a	and	is	a	scalar.	Also

(3.66)

is	the	curl	of	a	and	is	a	vector.	In	the	symbolic	determinant	in	(3.66)	the	expansion	is	to	be	carried	out	by
the	first	row.

In	continuum	mechanics	we	make	frequent	use	of	the	divergence	theorem	(or	Gauss’s	theorem)	which
states	that	if	the	vector	field	a	has	continuous	first-order	partial	derivatives	at	all	points	of	a	region	ℛ
bounded	by	a	surface	 ,	then

(3.67)

where	dV	and	dS	are	elements	of	volume	and	of	surface	area	respectively,	and	n	is	the	outward	normal	to	
.	In	terms	of	components,	(3.67)	takes	the	form

(3.68)

The	divergence	theorem	can	also	be	applied	to	tensors.	For	example,	if	A	is	a	second-order	tensor	with



components	Aij	then

(3.69)

and	analogous	results	hold	for	tensors	of	higher	order.



4

Particle	kinematics

4.1	Bodies	and	the ir	configurations
Kinematics	is	the	study	of	motion,	without	regard	to	the	forces	which	produce	it.	In	this	chapter	we
discuss	the	motion	of	individual	particles	(although	these	particles	may	form	part	of	a	continuous	body)
without	reference	to	the	motion	of	neighbouring	particles.	The	deformation,	or	change	of	shape,	of	a	body
depends	on	the	motion	of	each	particle	relative	to	its	neighbours,	and	will	be	analysed	in	Chapters	6	and
9.

We	introduce	a	fixed	rectangular	cartesian	coordinate	system	with	origin	O	and	base	vectors	ei.
Throughout	Chapters	4	to	10	all	motion	will	be	motion	relative	to	this	fixed	frame	of	reference	and,	unless
otherwise	stated,	all	vector	and	tensor	components	are	components	in	the	coordinate	system	with	base
vectors	ei.	Time	is	measured	from	a	fixed	reference	time	t	=	0.	Suppose	(see	Fig.	4.1)	that	at	t	=	0	a	fixed
region	of	space	ℛ0,	which	may	be	finite	or	infinite	in	extent,	is	occupied	by	continuously	distributed
matter;	that	is,	we	suppose	that	each	point	of	ℛ0	is	occupied	by	a	particle	of	matter.	The	material	within
ℛ0	at	t	=	0	forms	a	body	which	is	denoted	by	ℬ.	Let	X	be	the	position	vector,	relative	to	O,	of	a	typical
point	Po	within	ℛ0.	Then	the	components	XR	of	X,	in	the	chosen	coordinate	system,	are	the	coordinates	of
the	position	occupied	by	a	particle	of	ℬ	at	t	=	0.	Each	point	of	the	region	ℛ0	corresponds	to	a	particle	of
the	body	ℬ,	and	ℬ	is	the	assemblage	of	all	such	particles.
Suppose	that	the	material	which	occupies	the	region	ℛ0	at	t	=	0	moves	so	that	at	a	subsequent	time	t	it

occupies	a	new	continuous	region	of	space	ℛ,	and	that	the	material	is	now	continuously	distributed	in	ℛ.
This	is	termed	a	motion	of	the	body	ℬ.	We	make	the	assumption	(which	is	an	essential	feature	of
continuum	mechanics)	that	we	can	identify	individual	particles	of	the	body	ℬ;	that	is,	we	assume	that	we
can	identify	a	point	of	ℛ	(denoted	by	P)	with	position	vector	x,	which	is	occupied	at	t	by	the	particle
which	was	at	P0	at	the	time	t	=	0.	Then	the	motion	of	ℬ	can	be	described	by	specifying	the	dependence	of
the	positions	x	of	the	particles	of	ℬ	at	time	t	on	their	positions	X	at	time	t	=0;	that	is,	by	equations	of	the
form

(4.1)

for	all	X	in	ℛ0,	and	all	x	in	ℛ.	If	xi	denote	the	components	of	x	(that	is,	the	coordinates	of	points	in	ℛ),
then	(4.1)	may	be	written	in	component	form	as



(4.2)

Figure	4.1	Reference	and	current	configurations	of	the	body	ℬ

A	given	particle	of	the	body	ℬ	may	be	distinguished	by	its	coordinates	XR	at	t	=	0.	Thus	the
coordinates	XR	serve	as	‘labels’	with	which	to	identify	the	particles	of	ℬ;	a	particular	particle	retains	the
same	values	of	XR	throughout	a	motion.	The	coordinates	xi,	on	the	other	hand,	identify	points	of	space
which	in	general	are	occupied	by	different	particles	at	different	times.	Accordingly,	the	coordinates	XR
are	termed	material	coordinates	and	the	coordinates	xi	are	termed	spatial	coordinates.	The	set	of
positions	of	the	particles	of	ℬ	at	a	given	time	specified	a	configuration	of	ℬ.	The	configuration	of	ℬ	at
the	reference	time	t	=	0	is	its	reference	configuration.	Its	configuration	at	time	t	is	its	current
configuration	at	t.

As	far	as	possible	we	shall	denote	scalar,	vector	and	tensor	quantities	evaluated	in	the	reference
configuration	by	capital	letters	and	corresponding	quantities	evaluated	in	the	current	configuration	by
lower-case	letters.	Occasionally	we	shall	employ	the	index	zero	(as,	for	example,	in	ρ0)	for	quantities
evaluated	in	the	reference	configuration.	This	convention	regarding	the	use	of	capital	and	lower-case
letters	will	extend	also	to	indices	of	vector	and	tensor	components.	Components	of	vectors	and	tensors
which	transform	with	the	coordinates	XR	will	have	capital	letter	indices	(AR,	CRS,	etc.)	and	components
which	transform	with	the	coordinates	xi	will	have	lower-case	indices	(ai,	Tij,	etc.).	Occasionally	the
convention	that	capital	and	lower-case	letters	relate	to	the	reference	and	current	configurations
respectively	will	conflict	with	the	notation	established	in	Chapter	3;	thus	in	this	and	subsequent	chapters
X	is	a	position	vector	despite	the	convention	that	vectors	are	normally	represented	by	lower-case	italic
letters.

For	physically	realizable	motions	it	is	possible	in	principle	to	solve	(4.2)	for	XR	in	terms	of	xi	and	t,
which	gives	equations	of	the	form



(4.3)

Equations	(4.3)	give	the	coordinates	XR	in	the	reference	configuration	of	the	particle	which	occupies	the
position	xi	in	the	current	configuration	at	time	t.

Problems	in	continuum	mechanics	may	be	formulated	either	with	the	material	coordinates	XR	as
independent	variables,	in	which	case	we	employ	the	material	description	of	the	problem,	or	with	the
spatial	coordinates	xi	as	independent	variables,	in	which	case	we	employ	the	spatial	description.	Often
the	terms	‘Lagrangian’	and	‘Eulerian’	are	used	in	place	of	‘material’	and	‘spatial’	respectively.	In	the
material	description	attention	is	focused	on	what	is	happening	at,	or	in	the	neighbourhood	of,	a	particular
material	particle.	In	the	spatial	description	we	concentrate	on	events	at,	or	near	to,	a	particular	point	in
space.	The	mathematical	formulation	of	general	physical	laws	and	the	description	of	the	properties	of
particular	materials	is	often	most	easily	accomplished	in	the	material	description,	but	for	the	solution	of
particular	problems	it	is	frequently	preferable	to	use	the	spatial	description.	It	is	therefore	necessary	to
employ	both	descriptions,	and	to	relate	them	to	each	other.	In	principle	it	is	possible	to	transform	a
problem	from	the	material	to	the	spatial	description	or	vice	versa	by	using	(4.2)	or	(4.3).	In	practice	the
transition	is	not	always	accomplished	easily.

4.2	Displacement	and	ve loc ity
The	displacement	vector	u	of	a	typical	particle	from	its	position	X	in	the	reference	configuration	to	its
position	x	at	time	t	is

(4.4)

In	the	material	description	u	is	regarded	as	a	function	of	X	and	t,	so	that

(4.5)

and	in	the	spatial	description	u	is	regarded	as	a	function	of	x	and	t,	so	that

(4.6)

The	representation	(4.5)	determines	the	displacement	at	time	t	of	the	particle	defined	by	the	material



coordinates	XR.	The	representation	(4.6)	determines	the	displacement	which	has	been	undergone	by	the
particle	which	occupies	the	position	x	at	time	t.

The	velocity	vector	v	of	a	particle	is	the	rate	of	change	of	its	displacement.	Since	XR	are	constant	at	a
fixed	particle	it	is	convenient	to	employ	the	material	description	so	that,	from	(4.5),

(4.7)

where	the	differentiations	are	performed	with	X	held	constant.	In	terms	of	the	components	vi	of	v,	(4.7)
may	be	written	as

(4.8)

The	result	of	performing	the	differentiation	(4.7)	or	(4.8)	is	to	express	the	velocity	components	as
functions	of	XR	and	t;	that	is,	they	give	the	velocity	at	time	t	of	the	particle	which	was	at	X	at	t	=	0.	We
frequently	need	to	employ	the	spatial	description	in	which	we	are	concerned	with	the	velocity	at	the	point
x.	To	do	so	it	is	necessary	to	express	vi	in	terms	of	xi	by	using	the	relations	(4.3).	This	is	illustrated	by	the
following	example:

Example	4.1.	A	body	undergoes	the	motion	defined	by

(4.9)

where	a	is	constant.	Find	the	displacement	and	velocity,	in	both	the	material	and	spatial	descriptions.

From	(4.5)	we	have

(4.10)

This	gives	the	displacement	at	time	t	in	the	material	description.	To	obtain	the	displacement	in	the	spatial



description,	we	substitute	for	X1	from	(4.9)	into	(4.10),	which	gives

(4.11)

For	the	velocity,	we	differentiate	(4.9)	with	respect	to	t	with	XR	fixed	to	obtain,	in	the	material
description,

(4.12)

This	is	the	velocity	of	the	particle	which	occupied	X	at	t	=	0.	For	the	spatial	description,	we	eliminate	X1
from	(4.9)	and	(4.12)

(4.13)

and	this	gives	the	velocity	of	the	particle	which	instantaneously	occupies	the	point	x	at	time	t.

4.3	Time	rates	of	change
Suppose	that	φ	is	some	quantity	which	varies	throughout	a	body	in	space	and	in	time.	We	can	regard	φ	as
a	function	of	t	and	of	either	the	material	coordinates	XR	or	the	spatial	coordinates	xi.	Thus

(4.14)

In	considering	rates	of	change	of	φ	we	are	usually	interested	in	how	φ	varies	with	time	following	a	given
particle.	For	example,	in	Section	4.4	we	shall	discuss	acceleration,	which	is	the	rate	of	change	of	velocity
of	a	particle.	The	appropriate	quantity	to	measure	the	rate	of	change	of	φ	following	the	particle	XR	is
∂G(XR,	t)/∂t,	which	gives	the	rate	of	change	of	φ	with	XR	held	constant.	On	the	other	hand,	∂g(xi,	t)/∂t
denotes	the	rate	of	change	of	φ	with	constant	xi	(that	is,	at	a	fixed	point	in	space)	and	this	is	a	different
quantity.

We	adopt	the	conventional	notations	Dφ/Dt	or	 	for	the	rate	of	change	of	φ	following	a	given	particle,



so	that

(4.15)

However,	φ	may	be	given	in	the	spatial	description,	so	it	is	necessary	to	express	Dφ/Dt	in	terms	of
derivatives	of	g(xi,	t).	From	(4.2)	and	(4.14)	we	have

Hence,	by	differentiating	with	respect	to	t	with	XR	constant,

By	using	the	summation	convention,	this	is	written	concisely	as

(4.16)

Now	by	using	(4.8),	Dφ/Dt	may	be	written	in	the	simpler	form

(4.17)

or	alternatively,	in	vector	notation,	as



(4.18)

where	the	gradient	is	taken	with	respect	to	spatial	coordinates	xi.

Figure	4.2	The	change	of	φ	following	a	particle

The	above	is	a	formal	derivation	of	the	formula	for	Dφ/Dt.	To	give	it	a	physical	interpretation	we	refer
to	Fig.	4.2.	Consider	the	change	in	φ	following	a	particle.	Suppose	that	in	the	time	interval	t	to	t	+	δt,	φ	(at
the	particle	with	coordinates	xi	at	t)	changes	its	value	from	φ	to	φ	+	δφ.	During	this	time	interval	the
particle	moves	from	xi	to	xi	+	υi	δt,	where	v	is	the	velocity	of	the	particle	at	some	time	between	t	and	t	+
δt	(any	necessary	continuity	conditions	are	assumed	to	be	satisfied).	Thus	we	have	to	compare	the	value
of	φ	at	xi	and	t,	given	as	g(xi,	t),	with	its	value	at	xi	+	υi	δt	and	t	+	δt,	which	is	g(xi	+	Vi	δt,	t	+	δt).	Thus

Then	by	applying	the	mean-value	theorem	and	proceeding	to	the	limit	δt	→	0	in	the	usual	way,	it	follows
that

which	is	(4.17).

The	derivative	Dφ/Dt	is	called	the	material	derivative	or	the	convected	derivative	of	φ.

Although	it	is	logical	in	(4.14)	to	use	the	different	symbols	G	and	g	for	the	two	functions	which
describe	the	dependence	of	φ	on	the	two	sets	of	independent	variables	(XR,	t)	and	(xi,	t),	it	is	found	in
practice	that	this	procedure	can	lead	to	a	confusing	proliferation	of	symbols.	In	future	we	shall	adopt	the
convention	of	using	the	same	symbol	to	denote	a	dependent	variable	and	a	function	which	determines	that
variable	and,	where	there	is	a	possibility	of	confusion,	the	arguments	of	functions	will	be	explicitly
included	to	demonstrate	which	independent	variables	are	being	employed.	Thus,	in	place	of	(4.15)	we
shall	write



(4.19)

and	in	place	of	(4.17)	and	(4.18)	we	shall	write

(4.20)

The	explicit	inclusion	of	the	arguments	makes	it	clear	that	in	(4.19),	φ	is	regarded	as	a	function	of	XR	and	t
and	that	in	(4.20),	Φ	is	regarded	as	a	function	of	xi	and	t.

4.4	Acce leration
The	acceleration	of	a	particle	is	the	rate	of	change	of	velocity	of	that	particle;	that	is,	it	is	the	material
derivative	of	the	velocity.	We	denote	the	acceleration	vector	by	f,	and	its	components	by	fi.

Thus,	in	the	material	description,

(4.21)

or,	in	vector	notation

(4.22)

These	relations	give	f	in	material	coordinates.	To	find	the	acceleration	in	terms	of	spatial	coordinates	it	is
necessary	to	express	material	coordinates	XR	in	terms	of	spatial	coordinates	xi.	Frequently	this
information	is	not	explicitly	available.



Although	(4.21)	give	the	simplest	expressions	for	fi,	they	are	not	the	most	generally	useful,	because	it	is
often	required	to	express	the	acceleration	components	in	terms	of	derivatives	of	the	velocity	components,
when	the	velocity	components	are	expressed	in	spatial	coordinates	x¡.	Thus,	from	the	results	of	Section
4.3,

(4.23)

The	physical	interpretation	of	this	expression	is	as	follows.	In	an	increment	of	time	δt	the	particle	which
at	time	t	has	coordinates	xk	moves	to	xk	+	υk	δt.	Hence	the	velocity	components	of	this	particle	change
from	υi(xk,	t)	to	υi(xk	+	υk	δt,	t	+	δt).	Thus	the	change	in	v	at	a	particle	is	given	by

and	(4.23)	follows	by	applying	the	mean-value	theorem	and	proceeding	to	the	limit	δt	→	0.	The
expression	(4.23)	gives	fi	in	terms	of	the	spatial	coordinates	xi.

Example	4.2.	To	illustrate	the	equivalence	of	the	expressions	(4.21)	and	(4.23)	for	fi,	consider	the	motion
(4.9).	This	gives	(Example	4.1)

By	taking	the	first	expression	for	υ1,	we	find	from	(4.21)	that

(4.24)

If	υ1	is	given	in	the	spatial	description	as	2x1a2t/(1+a2t2),	we	obtain	from	(4.23),



(4.25)

The	expressions	for	f1	given	by	(4.24)	and	(4.25)	are	the	same	because,	from	(4.9),	x1	=	X1(1	+	a2t2).

4.5	Steady	motion.	Partic le 	paths	and	streamlines
A	motion	is	said	to	be	steady	if	the	velocity	at	any	point	is	independent	of	time,	so	that	v	=	v(x).
Conditions	approximating	to	steady	motion	are	achieved	in	many	practical	situations;	for	example,	in	flow
of	a	fluid	through	a	pipe	at	a	uniform	rate,	or	flow	past	a	fixed	obstacle	with	uniform	velocity	at	a	large
distance	from	the	obstacle.

A	motion	may	be	unsteady	in	relation	to	a	fixed	coordinate	system	but	steady	relative	to	suitably	chosen
moving	axes.	For	example,	the	flow	past	an	aeroplane	moving	at	constant	velocity	through	a	uniform
atmosphere	is	unsteady	relative	to	fixed	coordinates,	but	is	steady	relative	to	axes	which	are	fixed	in
relation	to	the	aeroplane	and	move	with	it.

The	equations	(4.2),	xi	=	xi	(XR,	t),	give	the	successive	positions	xi	of	the	particle	XR,	with	t	serving	as
a	parameter.	Thus	they	are	parametric	equations	of	the	path	of	the	particle	XR.	In	differential	form,	(4.2)
gives

and	this	can	be	expressed	in	spatial	coordinates	as

(4.26)

The	streamlines	at	time	t	are	space	curves	whose	tangents	are	everywhere	directed	along	the	direction
of	the	velocity	vector.	Thus	they	are	given,	in	terms	of	a	parameter	τ,	by	the	equations

(4.27)

In	general,	the	particle	paths	and	streamlines	do	not	coincide.	However,	if	the	motion	is	steady,	so	that



v	is	independent	of	t,	then	(4.26)	and	(4.27)	represent	the	same	families	of	curves,	and	then	the	particle
paths	and	streamlines	are	coincident.

4.6	Problems
1.	A	motion	of	a	fluid	is	given	by	the	equations

Find	the	velocity	and	acceleration	of:	(a)	the	particle	which	was	at	the	point	(1,	1,	1)	at	the	reference	time
t	=	0,	and	(b)	the	particle	which	occupies	the	point	(1,	1,	1)	at	time	t.	Explain	why	this	motion	becomes
physically	unrealistic	as	t	→	1.

2.	The	velocity	in	a	steady	helical	flow	of	a	fluid	is	given	by

υ1	=–Ux2,	v2	=	Ux1,	υ3	=	V

where	U	and	V	are	constants.	Show	that	div	v	=	0	and	find	the	acceleration	of	the	particle	at	x.	Also
determine	the	streamlines.

3.	The	velocity	at	a	point	x	in	space	in	a	body	of	fluid	in	steady	flow	is	given	by

where	U,	V	and	a	are	constants.	Show	that	div	v	=	0	and	find	the	acceleration	of	the	particle	at	x.	Also
determine	the	streamlines.

4.	An	electromagnetic	fluid	is	subjected	to	a	decaying	electric	field	of	magnitude	φ	=	r-1e-At,	where	
	and	A	is	constant.	The	velocity	of	the	fluid	is	 	Determine:	(a)

the	rate	of	change	of	φ	at	t	=1	1	of	the	particle	which	occupies	the	point	with	coordinates	(2,–2,	1);	(b)	the
acceleration	of	the	same	particle	at	the	same	time;	(c)	the	position	of	the	same	particle	at	all	subsequent
times	t.	Write	down	the	differential	equations	of	the	streamlines	and	show	that	at	each	instant	x2/x3	is
constant	along	a	given	streamline.

5.	Given	the	velocity	field

with	a1,	a2,	b1,	b2	and	c	constants,	show	that	the	x2	component	of	the	acceleration	at	t	=	0	is	(a1b1	+	b1b2



—	b1)X1	+	( 	+	b1a2	—	b2)X2,	where	X	denotes	the	position	vector	at	t	=	0.	In	the	case	a1	=	A,	a2	=	0,	b1
=	0,	b2	=	2A,	c	=	3A,	obtain	the	particle	paths	and	the	streamlines,	and	show	that	in	this	case	they
coincide.



5

Stress

5.1	Surface 	traction
In	this	chapter	we	consider	the	forces	acting	in	the	interior	of	a	continuous	body.	Suppose	that	part	of	a
body	ℬ	occupies	a	region	ℛ	which	has	surface	 	as	illustrated	in	Fig.	5.1.	Let	P	be	a	point	on	the	surface
,	n	a	unit	vector	directed	along	the	outward	normal	to	 	at	P,	and	δS	the	area	of	an	element	of	 	which

contains	P.	We	assume	that	 	and	ℛ	possess	any	necessary	smoothness	and	continuity	properties;	for
example,	it	is	assumed	that	the	normal	to	 	is	uniquely	defined	at	P.

It	is	also	assumed	that	on	the	surface	element	with	area	δS,	the	material	outside	ℛ	exerts	a	force

(5.1)

on	the	material	inside	ℛ.	The	force	δp	is	called	the	surface	force	and	t(n)	the	mean	surface	traction
transmitted	across	the	element	of	area	δp	from	the	outside	to	the	inside	of	ℛ.	A	similar	force,	equal	in
magnitude	but	opposite	in	direction	to	δp,	and	a	similar	surface	traction,	equal	in	magnitude	but	opposite
in	direction	to	t(n),	is	transmitted	across	the	element	with	area	δS	from	the	inside	to	the	outside	of	ℛ.
Clearly	t(n)	will	depend	on	the	position	of	P	and	the	direction	of	n.	It	is	further	assumed	that	as	δS	→	0,

t(n)	tends	to	a	finite	limit	which	is	independent	of	the	shape	of	the	element	with	area	δS.	Henceforth	the
symbol	t(n)	is	used	to	denote	the	limit

(5.2)

and	we	omit	the	adjective	‘mean’	and	call	t(n)	the	surface	traction	at	the	point	P	on	the	surface	with
normal	n.

The	assumptions	made	above	are	plausible,	but	they	are	of	a	physical	nature	and	can	only	be	justified
to	the	extent	that	conclusions	based	on	them	agree	with	observations	of	what	happens	to	real	materials.	It
is	possible	for	couples	as	well	as	forces	to	be	transmitted	across	a	surface.	Such	couples	are	of	interest



but	are	beyond	the	scope	of	this	book.	In	practice	their	influence	is	restricted	to	rather	special	situations.

Figure	5.1	Surface	traction

It	is	important	to	remember	that	in	general	t(n)	does	not	coincide	in	direction	with	n.	The	force
transmitted	across	a	surface	does	not	necessarily	act	in	the	direction	normal	to	the	surface.

5.2	Components	of	stress
At	P,	there	is	a	vector	t(n)	associated	with	each	direction	through	P.	In	particular,	given	a	system	of
rectangular	cartesian	coordinates	with	base	vectors	ei,	there	is	such	a	vector	associated	with	the	direction
of	each	of	the	base	vectors.	Let	t1	be	the	surface	traction	associated	with	the	direction	of	e1,	from	the
positive	to	the	negative	side	(that	is,	t1	is	the	force	per	unit	area	exerted	on	the	negative	side	of	a	surface
normal	to	the	x1-axis	by	the	material	on	the	positive	side	of	this	surface;	see	Fig.	5.2).	Surface	traction
vectors	t2	and	t3	are	similarly	defined	in	relation	to	the	directions	of	e2	and	e3.

Now	resolve	the	vectors	t1,	t2	and	t3	into	components	in	the	coordinate	system	with	base	vectors	ei,	as
follows:

(5.3)



Figure	5.2	The	surface	traction	vector	t1

These	equations	may	be	written	in	matrix	form	as

(5.4)

or,	using	the	summation	convention,	as

(5.5)

Since	ei	·	ej	=	δij,	it	follows	from	(5.5)	that

(5.6)

The	quantities	Tij	are	called	stress	components.	The	component	T11,	for	example,	is	the	component	of
t1	in	the	direction	of	e1.	T11	is	positive	if	the	material	on	the	x1-positive	side	of	the	surface	on	which	t1
acts	(a	surface	normal	to	the	x1-axis)	is	pulling	the	material	on	the	x1-negative	side.	The	material	is	then
in	tension	in	the	x1	direction.	The	material	on	the	negative	side	of	the	surface	is	pulling	in	the	opposite
direction	on	the	material	on	the	positive	side.	If	the	material	on	each	side	of	the	surface	pushes	against
that	on	the	other,	T11	is	negative,	and	the	material	is	said	to	be	in	compression	in	the	x1	direction.	The
components	T11,	T22	and	T33	are	called	normal	or	direct	stress	components.	The	remaining	components
T12,	T13,	etc.,	are	called	shearing	stress	components.	All	the	stress	components	can	be	illustrated	as	the



components	of	forces	acting	on	the	faces	of	a	unit	cube,	as	shown	in	Fig.	5.3.

5.3	The 	traction	on	any	surface
Suppose	that	the	stress	components	Tij	are	known	at	a	given	point	P.	We	consider	how	we	may	determine
the	surface	traction	on	an	arbitrary	surface	through	P.	For	this	we	examine	the	forces	acting	on	the
elementary	tetrahedron	illustrated	in	Fig.	5.4.	We	wish	to	find	the	traction	t(n)	on	a	surface	normal	to	n	at
P.	In	the	tetrahedron	shown	in	Fig.	5.4,	PQ1,	PQ2,	PQ3	are	parallel	to	the	three	coordinate	axes,	and
Q1Q2Q3	is	normal	to	n.	We	denote	by–t1,–t2,–t3	the	mean	surface	tractions	on	the	faces	PQ2Q3,	PQ3Q1,
and	PQ1Q2	respectively.	The	minus	signs	arise	because	we	wish	to	consider	the	forces	acting	on	the
tetrahedron,	so	that,	for	example,–t1	is	the	traction	exerted	on	the	surface	PQ2Q3	by	material	to	the	left	of
this	surface,	on	material	to	the	right	of	the	surface;	that	is,	by	the	material	outside	the	tetrahedron	on	the
material	inside	the	tetrahedron.	Similarly,	t(n)	denotes	che	mean	surface	traction	on	Q1Q2Q3	exerted	by
material	on	the	side	towards	which	n	is	directed	(the	outside	of	the	tetrahedron)	onto	the	other	side.	Let
the	area	of	Q1Q2Q3	be	δS	and	the	volume	of	PQ1Q2Q3	be	δV.	Then	the	areas	of	the	other	faces	are

(5.7)

where	ni	are	the	components	of	n;	that	is,	ni	are	the	directior	cosines	of	the	direction	of	n.

Figure	5.3	Components	of	the	forces	on	three	faces	of	a	unit	cube.	Opposite	forces	act	on	the	opposite
faces

The	forces	exerted	on	the	tetrahedron	across	its	four	faces	are



–t1	δS1,–t2	δS2,–t3	δS3,	t(n)	δS

Figure	5.4	Forces	acting	on	an	elementary	tetrahedron

It	is	also	supposed	that	there	is	a	body	force	whose	mean	value	over	the	tetrahedron	is	b	per	unit	mass,	or
ρb	per	unit	volume,	where	ρ	is	the	density.	The	most	common	example	of	a	body	force	is	a	gravitational
force,	but	there	are	other	possibilities.

We	now	assume	that	for	any	part	of	a	body,	and	in	particular	for	the	elementary	tetrahedron	PQ1Q2Q3,
the	rate	of	change	of	momentum	is	proportional	to	the	resultant	force	acting.	Although	this	is	a	natural
assumption	to	make,	it	is	a	new	assumption	which	is	stronger	than	Newton’s	second	law,	for	Newton’s
law	applies	only	to	bodies	as	a	whole.	Moreover,	it	is	an	assumption	which	cannot	be	verified	directly	by
experiment,	for	it	is	impossible	to	make	direct	measurements	of	internal	surface	tractions;	their	existence
and	magnitudes	can	only	be	inferred	from	observations	of	other	quantities.	Nevertheless,	the
consequences	of	this	assumption	(which	is	sometimes	called	Cauchy’s	law	of	motion)	are	so	well
verified	that	it	is	hardly	open	to	question.

For	the	tetrahedron	PQ1Q2Q3,	Cauchy’s	law	gives



–t1	δS1–t2	δS2–t3	δS3	+	t(n)	δS	+	ρb	δV	=	ρf	δV

With	(5.7),	this	may	be	written	as

Now,	with	n	and	the	point	P	fixed,	let	the	tetrahedron	shrink	in	size	but	retain	its	shape.	Thus	δS	→	0,	and
in	this	limit	all	quantities	are	evaluated	at	P,	so	that	t1,	t2,	t3	and	t(n)	become	tractions	at	P,	and	ρ,	b	and	f
are	evaluated	at	P.	Also,	since	δV	is	proportional	to	the	cube,	and	δS	is	proportional	to	the	square,	of	the
linear	dimensions	of	the	tetrahedron,	δV/δS	→	0	as	δS	→	0.	Thus	in	this	limit,

(5.8)

where	the	last	relation	makes	use	of	(5.5).	This	gives	the	traction	on	any	surface	with	unit	normal	n	in
terms	of	the	stress	components	Tij.	The	components	tj(n)	of	t(n)	are	given	by

(5.9)

The	easiest	way	to	calculate	t(n)	is	to	use	(5.9)	in	the	matrix	form

(5.10)

A	numerical	example	is	given	in	Example	5.1	in	Section	5.6.

5.4	Transformation	of	stress	components
The	stress	components	Tij	were	defined	in	Section	5.2	in	relation	to	the	coordinate	system	with	base
vectors	ei.	The	choice	of	a	different	coordinate	system	will	lead	to	a	different	set	of	stress	components.
We	now	examine	the	relationship	between	the	stress	components	Tij	associated	with	base	vectors	ei,	and

stress	components	 	at	the	same	point	but	referred	to	a	new	coordinate	system	with	base	vectors	ēi,



where

(5.11)

and	M	=	(Mij)	is	an	orthogonal	matrix.

In	(5.8),	we	may	as	a	special	case	choose	n	to	be	ē1.	From	(5.11),	the	components	of	ē1	referred	to

base	vectors	ei	are	M11,	M12	and	M13.	We	denote	by	 	the	traction	on	a	surface	normal	to	ē1.	Then,	from
(5.8)	(with	ni	=	M1i)	and	(5.11),

We	define	 	and	 	in	a	similar	way,	and	obtain	similar	relations	for	them.	The	general	relation	is

(5.12)

However,	the	stress	components	 	referred	to	base	vectors	eq,	are	defined	by	the	relation	analogous	to

(5.5)	as	the	components	of	 ,	referred	to	base	vectors	ēq,	so	that

(5.13)

Hence,	by	comparing	(5.12)	and	(5.13),

(5.14)

This	is	just	the	transformation	law	(3.28)	for	the	components	of	a	second-order	tensor.	Hence	there	exists
a	second-order	tensor	T	=	Tij	ei,	⊗	ej	whose	components	are	Tij	in	the	coordinate	system	with	base
vectors	ei	and	 ij	in	the	system	with	base	vectors	ēi.	T	is	called	the	Cauchy	stress	tensor,	and	it
completely	describes	the	state	of	stress	of	a	body.	Some	other	stress	tensors	will	be	considered	briefly	in



Section	9.5,	but	we	shall	not	use	them	in	this	book,	and	so	we	shall	refer	to	T	as	simply	the	stress	tensor.

Equation	(5.14)	is	an	important	result,	because	it	shows	that	Tij	are	components	of	a	tensor,	so	we
briefly	recapitulate	the	steps	which	lead	to	(5.14).	They	are:
a.	 define	Tij	by	(5.3),	using	base	vectors	ei;
b.	 derive	the	expression	(5.8)	for	the	traction	on	a	surface	with	normal	n;
c.	 take	n	to	be	the	new	base	vectors	ē1,	ē2,	ē3	in	turn,	and	so	obtain	(5.12);
d.	 resolve	the	traction	on	the	new	coordinate	surfaces	in	the	directions	of	the	new	coordinate	axes	to

define	 	as	in	(5.13),	and	compare	with	(5.12).

If	T	=	(Tij),	and	 ,	then	(5.14)	may	be	written	in	matrix	notation	as

(5.15)

Thus	the	calculation	of	stress	components	in	a	new	coordinate	system	can	be	carried	out	by	matrix
multiplications,	and	this	is	usually	the	most	convenient	way	to	perform	such	calculations.	A	numerical
example	is	given	in	Problem	1	in	Section	5.10.

Since	it	is	now	established	that	Tij	are	components	of	a	tensor,	equation	(5.9)	can	be	expressed	in
direct	notation	as

(5.16)

5.5	Equations	of	equilibrium
We	now	consider	that	the	body	ℬ	is	in	equilibrium.	The	notation	of	Section	5.1	is	used	(see	Fig.	5.1).	ℛ
is	an	arbitrary	region	in	ℬ	and	 	is	the	surface	of	ℛ,	with	unit	normal	n.	We	assume	that	in	equilibrium
the	resultant	force,	and	the	resultant	couple	about	O,	acting	on	the	material	in	ℛ	are	zero.	The	forces
acting	on	the	material	in	ℛ	are	of	two	kinds:	there	are	the	surface	forces	acting	across	 	whose	resultant
is	the	integral	of	t(n)	over	 ,	and	body	forces	ρb	per	unit	volume	whose	resultant	is	the	integral	of	ρb
through	ℛ.	Thus	the	condition	for	the	resultant	force	to	be	zero	is

(5.17)



Similarly,	the	resultant	couple	about	O	is	zero	if

(5.18)

where	x	denotes	the	position	vector	relative	to	O.

In	terms	of	components,	(5.17)	and	(5.18)	may	be	written	(with	the	aid	of	(5.9))	as

(5.19)

(5.20)

We	next	transform	the	surface	integrals	into	volume	integrals	by	use	of	the	divergence	theorem	(Section
3.10).	It	is	assumed	that	Tij	have	continuous	first	derivatives.	Then	(5.19)	and	(5.20)	become

(5.21)

(5.22)

However,	these	relations	must	hold	in	every	region	ℛ	which	lies	in	ℬ.	Hence	the	integrands	must	be	zero
throughout	ℬ,	for	if	they	were	not,	it	would	be	possible	to	find	a	region	ℛ	for	which	(5.21)	or	(5.22)	was
violated.	Hence,	throughout	ℬ,



(5.23)

(5.24)

However,	∂ϰp/∂ϰr	=	δpr,	and	so	(5.24)	may	be	written	as

and,	by	using	(5.23),	this	reduces	to

ejpqTpq	=	0

which	implies	that

(5.25)

Equation	(5.23)	is	the	equation	of	equilibrium.	Equations	(5.25)	show	that	in	equilibrium	the	stress
tensor	is	a	symmetric	tensor.	In	Section	7.5	it	will	be	shown	that	(5.25)	also	holds	for	a	body	in	motion;
we	anticipate	this	result	and	henceforth	treat	T	as	a	symmetric	tensor.	Equation	(5.23)	is	given	in	full	in
(5.37).

5.6	Princ ipal	stress	components, 	princ ipal	axes	of	stress	and	stress
invariants
In	general,	the	surface	traction	t(n)	associated	with	a	direction	n	through	a	point	P	will	not	act	in	the
direction	of	the	vector	n;	the	traction	will	have	a	tangential	(shearing)	component	on	the	surface	normal	to
n	as	well	as	a	normal	component.	However,	it	may	happen	that	for	certain	special	directions	n	the
traction	t(n)	does	act	in	the	direction	n.	We	investigate	this	possibility.

If	t(n)	and	n	have	the	same	direction,	then



t(n)	=	Tn

where	T	is	the	magnitude	of	t(n).	From	(5.16),	remembering	that	T	is	symmetric,	this	may	be	written	as

n	·	T	=	Tn

or,	in	components,	as

niTij	=	Tnj

that	is,

(Tij–Tδij)ni	=	0

Hence	(Section	3.8),	T	is	one	of	the	three	principal	components	T1,	T2	and	T3	of	T,	and	n	determines
the	corresponding	principal	axis.	Let	the	unit	vectors	in	the	directions	of	the	principal	axes	be	n1,	n2	and
n3.	If	these	three	orthogonal	vectors	are	taken	as	base	vectors	at	P	then,	referred	to	these	axes,	the	matrix
of	the	stress	components	is	a	diagonal	matrix	with	diagonal	elements	T1,	T2	and	T3.	The	principal
components	are	the	roots	of	the	equation

(5.26)

where	Tij	are	the	stress	components	referred	to	any	coordinate	system.	In	general,	the	principal	directions
vary	from	point	to	point,	so	that	it	is	not	usually	possible	to	find	a	rectangular	cartesian	coordinate	system
in	which	the	matrix	of	stress	components	is	a	diagonal	matrix	everywhere.

Let	T1,	T2	and	T3	be	ordered	so	that	T1	≥	T2	≥	T3.	It	is	shown	in	Example	5.2	that,	as	the	orientation	of	a
surface	through	P	varies,	T1	is	the	greatest,	and	T3	is	the	least,	normal	component	of	the	traction	on	the
surface.	This	property	can	be	used	to	give	an	alternative	definition	of	the	principal	stress	components	and
principal	axes	of	stress.

If	(5.26)	has	two	or	three	equal	roots,	the	above	statements	remain	true,	but	the	principal	axes	are	not
uniquely	defined.



Example	5.1.	The	components	of	the	stress	tensor	at	a	point	P	are	given	in	appropriate	units	by

Find:
(i)	the	traction	t	at	P	on	the	plane	normal	to	the	x1-axis;
(ii)	the	traction	t	at	P	on	the	plane	whose	normal	has	direction	ratios	1:–1:2;
(iii)	the	traction	t	at	P	on	the	plane	through	P	parallel	to	the	plane	2x1–2x2–x3	=	0;
(iv)	the	normal	component	of	the	traction	on	the	plane	(iii);
(v)	the	principal	stress	components	at	P;
(vi)	the	directions	of	the	principal	axes	of	stress	through	P.

(i)	The	plane	normal	to	the	x1-axis	has	unit	normal	(1,	0,	0).	Hence	the	traction	components	on	this
plane	are	given	by	(5.10)	as

(ii)	The	unit	normal	is	(1,–1,	2)/√6.	Hence

(iii)	The	unit	normal	is	 .	Hence

(iv)	The	required	component	is	n·t	=	 	{2	×	(-	5)	-	2	×	(-10)	-	1	×	(-7)}	=	 	.

(v)	The	principal	components	are	solutions	of



which	gives	T1	=10,	T2	=	0,	T3	=	-4.

(vi)	The	principal	direction	corresponding	to,	for	example,	T1	=	10	is	given	by	the	solution	of

which	give	the	direction	ratios	n1	:	n2	:	n3	=	3:6:5.	Similarly,	the	direction	ratios	of	the	other	two
principal	directions	are–2:1:0	and	1:2:–3	(note	that	these	directions	are	mutually	orthogonal).

Example	5.2.	Prove	that	as	the	orientation	of	a	surface	through	P	varies,	T1	is	the	greatest,	and	T3	is	the
least,	normal	component	of	traction	on	the	surface	(assume	that	T1,	T2	and	T3	are	all	different).

Choose	the	coordinate	axes	to	coincide	with	the	principal	axes	of	T,	so	that	the	matrix	of	stress
components	takes	the	form

The	normal	component	of	traction	on	a	surface	with	unit	normal	n	is	Tijninj,	which,	when	T	has	the	given

diagonal	form,	reduces	to	T	=	T1 	+	T2 	+	T3 	.	Hence	we	require	extremal	values	of	T	for	variations

of	n1,	n2	and	n3,	subject	to	the	constraint	 	=	1.	These	extrema	are	given	by

where	σ	is	a	Lagrangian	multiplier.	The	solutions	of	these	equations	are
(i)	n	=	(±1	0	0)T,	T	=	T1;
(ii)	n	=	(0	±1	0)T,	T	=	T2;
(iii)	n	=	(0	0	±1)T,	T	=	T3.

Since	T1>T2>T3,	(i)	gives	the	maximum	and	(iii)	gives	the	minimum	values	of	T.



As	T	is	a	symmetric	second-order	tensor,	the	discussion	of	Section	3.8	shows	that	T	has	three
independent	invariants.	We	denote	these	by	J1,	J2,	and	J3,	where

Note	that	the	definition	of	J2	is	not	quite	consistent	with	that	of	I2	in	(3.57),	because	there	is	a	difference
of	sign,	which	it	is	found	convenient	to	introduce.

5.7	The 	stress	deviator	tensor
It	is	often	useful	to	decompose	T	in	the	following	way:

(5.28)

where	S	is	the	stress	deviator	tensor.	If	Sij	denote	the	components	of	S,	then

(5.29)

where

(5.30)

and	hence

(5.31)

and



(5.32)

If	Sij	=	0,	then	the	stress	has	the	form	Tij	=–pδij.	This	is	called	a	pure	hydrostatic	state	of	stress,	and	p
is	the	hydrostatic	pressure.	The	negative	sign	arises	because	we	conventionally	regard	pressure,	which
causes	compression,	as	positive,	but	we	define	compressive	stress	as	negative.

The	principal	axes	of	S	are	the	same	as	those	of	T.	If	the	principal	components	of	S	are	S1,	S2,	S3,	then

(5.33)

and

(5.34)

Because	S1,	S2	and	S3	satisfy	(5.33),	there	are	only	two	basic	invariants	of	S.	These	are	taken	to	be	
and	 ,	where

(5.35)

The	invariants	 	and	 	can	be	expressed	in	terms	of	J1,	J2	and	J3	by,	in	(3.63),	replacing	I1,	I2,	I3,

and 	by	J1,–J2,	J3,	 	and	 	respectively.	It	is	sometimes	convenient	to	adopt	J1,	 	and	 	as	a	set	of
basic	invariants	of	T.

5.8	Shear	stress
The	normal	stress	component	on	a	surface	normal	to	the	x1-axis	is	T11	(see	Fig.	5.3).	The	shear	stress	on
this	surface	is	the	resultant	of	the	other	two	components	T12e2	and	T13e3	of	the	traction	on	the	surface.
Hence	the	shear	stress	has	magnitude	 ,	and	acts	in	a	direction	which	lies	in	the	surface.

For	a	general	surface	with	unit	normal	vector	n,	the	normal	component	of	the	traction	t(n)	has	magnitude



n	·	t(n)	=	ninjTij.	The	shear	stress	on	this	surface	is	the	component	of	t(n)	normal	to	n,	namely

t(n)	—	(n	·	t(n))n	=	Trsnr(δsj	—	nsnj)ej

Suppose	that	the	principal	stress	components	are	ordered	so	that	T1	≥	T2	≥	T3,	and	let	the	corresponding
unit	vectors	in	the	directions	of	the	principal	axes	be	n1,	n2	and	n3.	Then	it	can	be	shown	that,	as	n	varies
at	point	P,	the	magnitude	of	the	shear	stress	on	the	surface	normal	to	n	reaches	a	maximum	value	 	(T1	-
T3)	when	n	lies	along	either	of	the	bisectors	of	the	angle	between	n1	and	n3.	The	proof	resembles	that	of

Example	5.2	and	is	left	as	an	exercise	(Problem	9).	Note	that	 	(T1	-	T3)	=	 	(S1	-	S3),	and	that	in	a
hydrostatic	state	of	stress	T1	=	T2	=	T3,	and	then	the	shear	stress	is	zero	on	any	surface.

5.9	Some	simple 	states	of	stress
(a)	Hydrostatic	pressure.	Suppose	that

Tij	=–pδij

that	is,

(5.36)

Then	we	have	a	state	of	hydrostatic	pressure.	The	stress	components	take	the	form	(5.36)	in	any
rectangular	cartesian	coordinate	system,	and	any	three	mutually	orthogonal	directions	may	be	regarded	as
principal	directions.	This	is	the	state	of	stress	in	any	fluid	in	equilibrium	(that	is,	in	hydrostatics),	or	in	an
inviscid	fluid	whether	it	is	in	equilibrium	or	not.	The	pressure	p	is,	in	general,	a	function	of	position.

In	the	remaining	examples,	body	forces	will	be	regarded	as	negligible	and	we	seek	stress	states	which
satisfy	the	equilibrium	equations	(5.23),	which	are

(5.37)



Since	these	are	three	equations	for	the	six	components	of	stress,	they	are	insufficient	to	determine	the
solution	to	any	problem.	Nevertheless,	they	must	be	satisfied	for	any	body	in	equilibrium,	and	it	is	of
interest	to	examine	some	stress	states	which	satisfy	them.	When	the	body	force	is	neglected,	they	are
satisfied	if	the	Tij	are	all	constants,	in	which	case	the	stress	is	homogeneous.	The	next	two	examples	are
in	this	category.

(b)	Uniform	tension	or	compression	in	the	x1	direction	is	given	by

(5.38)

where	σ	is	constant.	This	gives	the	stress	in	a	uniform	cylindrical	bar	with	generators	parallel	to	the	x1-
axis,	no	forces	applied	to	its	lateral	surfaces,	and	uniform	forces	σ	per	unit	area	applied	to	plane	ends
normal	to	the	generators.	If	σ	is	positive,	the	bar	is	in	tension,	and	if	σ	is	negative,	the	bar	is	in
compression.	The	principal	stress	directions	are	the	x1	direction	and	any	two	directions	orthogonal	to
each	other	and	to	the	x1	direction.

(c)	Uniform	shear	stress	in	the	x1	direction	on	planes	x2	=	constant	arises	if

(5.39)

where	τ	is	constant.	This	may	occur,	for	example,	in	laminar	shear	flow	of	a	viscous	fluid,	when	the	fluid
flows	in	the	x1	direction	by	shearing	on	the	planes	x2	=	constant.	The	principal	axes	of	stress	have	the
directions	of	the	x3-axis	and	the	two	bisectors	of	the	x1	-	and	x2-axes.

(d)	Pure	bending.	Let

(5.40)

where	c	is	constant.	This	approximates	the	stress	in	a	prismatic	beam,	with	generators	parallel	to	the	x1-
axis,	which	is	bent	by	end	couples	applied	to	its	ends	and	acting	about	axes	parallel	to	the	x3-axis.	The



plane	x2	=	0	is	chosen	so	that	the	resultant	force	on	each	end	is	zero.	If	c	>	0	the	region	x2	>	0	of	the	beam
is	in	tension,	and	the	region	x2	<	0	is	in	compression.	The	principal	stress	directions	are	as	in	(b)	above.

(e)	Plane	stress.	If

(5.41)

and	T11,	T22	and	T12	are	functions	only	of	x1	and	x2,	we	have	a	state	of	plane	stress.	In	the	absence	of	body
forces,	the	equilibrium	equations	reduce	to

(5.42)

This	is	the	approximate	state	of	stress	in	a	thin	flat	plate	lying	parallel	to	the	x3-plane,	and	subject	to
forces	acting	in	its	plane.	The	x3	direction	is	a	principal	direction;	the	other	two	principal	directions	are
in	the	plane	of	the	plate.

(f)	Pure	torsion.	Suppose	that

(5.43)

where	r2 .	This	corresponds	to	the	state	of	stress	in	a	circular	cylindrical	bar	whose	axis	coincides
with	the	x3-axis	and	which	is	twisted	by	couples	acting	about	the	axis	of	the	cylinder	and	applied	to	the
ends	of	the	cylinder,	with	no	forces	acting	on	the	curved	surfaces.	The	principal	directions	are	the	radial
direction	and	the	bisectors	of	the	tangential	and	axial	directions.

5.10	Problems
1.	The	components	of	the	stress	tensor	in	a	rectangular	cartesian	coordinate	system	x1,	x2,	x3	at	a	point	P
are	given	in	appropriate	units	by



Find:	(a)	the	traction	at	P	on	the	plane	normal	to	the	x1-axis;	(b)	the	traction	at	P	on	the	plane	whose
normal	has	direction	ratios	1:–3:2;	(c)	the	traction	at	P	on	a	plane	through	P	parallel	to	the	plane	x1	+	2x2
+	3x3	=	1;	(d)	the	principal	stress	components	at	P;	(e)	the	directions	of	the	principal	axes	of	stress	at	P.
Verify	that	the	principal	axes	of	stress	are	mutually	orthogonal.

The	coordinates	 	are	related	to	x1,	x2,	x3	by

Verify	that	this	transformation	is	orthogonal,	and	find	the	components	of	the	stress	tensor	defined	above	in
the	new	coordinate	system.	Use	the	answer	to	check	the	answers	to	(d)	and	(e)	above.

2.	In	plane	stress	(T13	=	T23	=	T33	=	0)	show	that	if	the	 -	and	 	-axes	are	obtained	by	rotating	the	x1-
and	x2-axes	through	an	angle	α	about	the	x3-axis,	then

3.	If,	in	appropriate	units

find	the	principal	components	of	stress,	and	show	that	the	principal	directions	which	correspond	to	the
greatest	and	least	principal	components	are	both	perpendicular	to	the	x2-axis.

4.	A	cantilever	beam	with	rectangular	cross-section	occupies	the	region–a	≤	x1	≤	a,–h	≤	x2	≤	h,	0	≤	x3	≤	l.
The	end	x3	=	l	is	built-in	and	the	beam	is	bent	by	a	force	P	applied	at	the	free	end	x3	=	0	and	acting	in	the
x2	direction.	The	stress	tensor	has	components



where	A,	B	and	C	are	constants.	(a)	Show	that	this	stress	satisfies	the	equations	of	equilibrium	with	no
body	forces	provided	2B	+	C	=	0;	(b)	determine	the	relation	between	A	and	B	if	no	traction	acts	on	the
sides	x2	=	±h;	(c)	express	the	resultant	force	on	the	free	end	x3	=	0	in	terms	of	A,	B	and	C	and	hence,	with
(a)	and	(b),	show	that	C	=–3P/4ah3.

5.	The	stress	in	the	cantilever	beam	of	Problem	4	is	now	given	by

where	C	and	D	are	constants.	(a)	Show	that	this	stress	satisfies	the	equations	of	equilibrium	with	no	body
forces;	(b)	show	that	the	traction	on	the	surface	x2	=–h	is	zero;	(c)	find	the	magnitude	and	direction	of	the
traction	on	the	surface	x2	=	h,	and	hence	the	total	force	on	this	surface;	(d)	find	the	resultant	force	on	the
surface	x3	=	l.	Prove	that	the	traction	on	this	surface	exerts	zero	bending	couple	on	it	provided	that	C(5l2–
2h2)	+	5D	=	0.

6.	The	stress	components	in	a	thin	plate	bounded	by	x1	=	±L	and	x2	=	±h	are	given	by

where	W	and	m	are	constants.	(a)	Verify	that	this	stress	satisfies	the	equations	of	equilibrium,	with	no
body	forces;	(b)	find	the	tractions	on	the	edges	x2	=	h	and	x1	=–L;	(c)	find	the	principal	stress	components
and	the	principal	axes	of	stress	at	(0,	h,	0)	and	at	(L,	0,	0).

7.	A	solid	circular	cylinder	has	radius	a	and	length	L,	its	axis	coincides	with	the	x3-axis,	and	its	ends	lie
in	the	planes	x3	=–L	and	x3	=	0.	The	cylinder	is	subjected	to	axial	tension,	bending	and	torsion,	such	that
the	stress	tensor	is	given	by



where	α,	β,	γ	and	δ	are	constants.	(a)	Verify	that	these	stress	components	satisfy	the	equations	of
equilibrium	with	no	body	forces;	(b)	verify	that	no	traction	acts	on	the	curved	surface	of	the	cylinder;	(c)
find	the	traction	on	the	end	x3	=	0,	and	hence	show	that	the	resultant	force	on	this	end	is	an	axial	force	of
magnitude	πa2β,	and	that	the	resultant	couple	on	this	end	has	components	( )	about
the	x1-,	x2-	and	x3-axes;	(d)	for	the	case	in	which	bending	is	absent	(γ	=	0,	δ	=	0)	find	the	principal	stress
components.	Verify	that	two	of	these	components	are	equal	on	the	axis	of	the	cylinder,	but	that	elsewhere
they	are	all	different	provided	that	α≠0.	Find	the	principal	stress	direction	which	corresponds	to	the
intermediate	principal	stress	component.

8.	A	cylinder	whose	axis	is	parallel	to	the	x3-axis	and	whose	normal	cross-section	is	the	square–a	≤	x1	≤
a,–a	≤	x2	≤	a,	is	subjected	to	torsion	by	couples	acting	over	its	ends	x3	=	0	and	x3	=	L.	The	stress
components	are	given	by	T13	=	∂ѱ/∂x2,	T23	=	—∂ѱ/∂x1,	T11	=	T12	=	T22	=	T33	=	0,	where	ψ	=	ψ(x1,	x2).	(a)
Show	that	these	stress	components	satisfy	the	equations	of	equilibrium	with	no	body	forces;	(b)	show	that
the	difference	between	the	maximum	and	minimum	principal	stress	components	is	
,	and	find	the	principal	axis	which	corresponds	to	the	zero	principal	stress	component;	(c)	for	the	special	

	show	that	the	lateral	surfaces	are	free	from	traction	and	that	the	couple	acting
on	each	end	face	is	32a6/9.

9.	Let	n	be	a	unit	vector,	t(n)	the	traction	on	the	surface	normal	to	n,	and	S	the	magnitude	of	the	shear	stress
on	this	surface,	so	that	S	is	the	component	of	t(n)	perpendicular	to	n.	Prove	that	as	n	varies,	S	has
stationary	values	when	n	is	perpendicular	to	one	of	the	principal	axes	of	stress,	and	bisects	the	angle
between	the	other	two.	Prove	also	that	the	maximum	and	minimum	values	of	S	are	 .



6

Motions	and	deformations

6.1	Rigid-body	motions
We	employ	the	notation	introduced	in	Section	4.1,	in	which	the	particles	of	a	body	are	labelled	by	their
coordinates	XR	in	a	reference	configuration	at	the	reference	time	t	=	0.	If	at	a	later	time	t	the	particle	XR
has	coordinates	xi,	then	the	equations

(6.1)

describe	a	motion	of	the	body;	they	give	the	position	of	each	particle	at	time	t.	In	Chapter	4	we	were
mainly	concerned	with	the	kinematics	of	individual	particles.	In	this	chapter	we	consider	how	a	particle
moves	in	relation	to	its	neighbouring	particles.

In	a	rigid-body	motion	the	body	ℬ	moves	without	changing	its	shape.	The	distance	between	any	two
particles	of	ℬ	does	not	change	during	a	rigid-body	motion;	neither	does	the	angle	between	the	two	lines
joining	a	particle	to	two	other	particles.

Translation.	A	translation	is	a	rigid-body	motion	of	a	body	in	which	every	particle	undergoes	the	same
displacement;	thus	the	motion	is	described	by	the	equations

(6.2)

where	the	vector	c	is	independent	of	position	and	depends	only	on	t.

Rotation.	Consider	a	motion	in	which	ℬ	rotates	in	the	anti-clockwise	direction	through	an	angle	α	(which
may	depend	on	t)	about	the	x3-axis.	Thus,	in	Fig.	6.1,	the	particle	initially	at	a	typical	point	P0	moves	to
the	point	P,	such	that	NP0	=	NP	and	the	angle	between	NP0	and	NP	is	α.	Then	by	elementary	geometry



(6.3)

or,	in	tensor	notation

(6.4)

where	the	components,	referred	to	base	vectors	ei,	of	the	tensor	Q	are	given	by

(6.5)

It	is	easily	verified	that	Q	is	an	orthogonal	tensor,	and	so	we	also	have

(6.6)



Figure	6.1	Rotation	about	the	x3-axis

Now	consider	a	more	general	rotation	in	which	ℬ	rotates	about	an	arbitrary	axis	through	the	origin	O.
The	direction	of	the	axis	is	defined	by	a	unit	vector	n,	and	the	angle	of	rotation	is	α	in	the	sense	of	the
rotation	of	a	right-handed	screw	travelling	in	the	direction	of	n.	We	refer	to	Fig.	6.2.	Let	OQ	represent	the
axis	of	rotation	and	let	X	be	the	position	vector	of	a	typical	point	P0	in	ℬ.	In	the	rotation,	the	particle
which	is	initially	at	P0	moves	to	P,	with	position	vector	x.	Hence	P0	and	P	lie	in	a	plane	normal	to	n;
suppose	that	this	plane	intersects	OQ	at	N.	Then	NP0	=	NP,	and	α	=	∠P0NP,	and	the	position	vector	of	N
relative	to	O	is	cn,	where,	from	Fig.	6.2,

(6.7).



Figure	6.2	Rotation	about	an	arbitrary	axis

We	also	denote	by	y0	and	y	the	position	vectors	of	P0	and	P	respectively,	relative	to	N.	Thus

(6.8)

Since	y	and	y0	have	the	same	magnitude,	it	follows	from	Fig.	6.2	that

y	=	y0	cos	α	+	n	×	y0	sin	α

Hence,	from	(6.7)	and	(6.8),

(6.9)

In	components,	(6.9)	may	be	written	as



(6.10)

or	as

Xi	=	QiRXR

where

(6.11)

It	is	evident	that	rotating	ℬ	about	a	given	axis	through	a	given	angle	is	equivalent	to	holding	ℬ	fixed	and
rotating	the	coordinate	system	about	the	same	axis	through	the	same	angle	but	in	the	opposite	sense.	Thus
it	follows	from	the	results	of	Section	3.2	that,	if	Q	is	any	proper	orthogonal	tensor,	the	relation	x	=	Q	·	X,
and	the	inverse	relation	X	=	QT	·	x,	represent	a	rigid-body	rotation.	The	components	of	any	proper
orthogonal	tensor	can	be	represented	in	the	form	(6.11).

It	can	be	shown	that	any	rigid-body	motion	is	a	combination	of	a	translation	and	a	rotation	about	an	axis
through	any	point.	In	particular,	if	the	axis	of	rotation	passes	through	O,	then	any	rigid-body	motion	is
described	by	equations	of	the	form	or

(6.12)

where	c1(t)	=–QT(t)c(t).

6.2	Extension	of	a 	material	 line 	e lement
In	a	general	motion	a	body	will	change	its	shape	as	well	as	its	position	and	orientation.	A	motion	in	which
a	change	of	shape	takes	place	is	called	a	deformation;	a	body	which	can	change	its	shape	is	deformable,
in	contrast	to	a	rigid	body	which	can	only	undergo	rigid-body	motions.	One	of	the	main	problems	in	the
analysis	of	deformation	is	to	separate	that	part	of	a	motion	which	corresponds	to	a	rigid-body	motion
from	the	part	which	involves	deformation.

In	a	deformation,	there	are	changes	in	distance	between	particles,	whereas	in	a	rigid-body	motion	there
are	no	such	changes.	We	therefore	begin	by	examining	the	extension	or	stretch	of	a	material	line	element.



Consider	a	segment	P0Q0	of	a	straight	line	lying	in	the	body	ℬ	in	its	reference	configuration,	such	that
P0Q0	has	length	δL	and	is	aligned	in	the	direction	of	a	unit	vector	A,1	as	illustrated	in	Fig.	6.3.	Thus	if	P0
has	coordinates	 ,	then	Q0	has	coordinates	 .	The	particles	which	lie	on	P0Q0	at	time	t	=	0
form	a	segment	of	a	material	curve,	and	after	a	motion	these	particles	will	in	general	lie	on	a	new	curve	in
space.	The	motion	is	described	by	the	relations	(6.1),	and	we	wish	to	determine	the	length	and	orientation
of	the	material	line	element	after	the	motion.	Suppose	that	t	the	particles	initially	at	P0	and	Q0	move	to	P
and	Q	respectively,	and	that	the	line	segment	PQ	has	length	δl	and	the	direction	of	a	unit	vector	a.	Thus	if
P	has	coordinates	 ,	then	Q	has	coordinates	 	Since	P	was	initially	at	P0,	it	follows	from	(6.1)
that	(omitting	the	argument	t)

and	since	Q	was	initially	at	Q0,	it	follows	similarly	that

Figure	6.3	Extension	of	a	material	line	element

Hence,	by	Taylor’s	theorem,	since	the	AR	are	of	order	one,



Thus,	in	the	limit	as	δL	→	0

(6.13)

The	differential	coefficient	dl/dL	is	the	ratio	of	the	final	and	initial	lengths	of	an	infinitesimal	material
line	element	initially	situated	at	 	and	initially	oriented	in	the	direction	of	A.	This	ratio	is	called	the
extension	ratio	or	stretch	ratio	of	the	line	element	and	is	denoted	by	λ.	Hence	(6.13)	becomes

(6.14)

where,	since	 	is	a	general	particle,	we	now	replace	 	by	XR.	By	squaring	each	side	of	(6.14)	and
summing	on	the	index	i,	we	obtain

However,	a	is	a	unit	vector,	so	a¡a¡	=	1,	and	therefore

(6.15)

When	λ	is	determined	from	(6.15),	the	orientation	a	of	the	line	element	in	the	deformed	configuration	is
then	given	by	(6.14).

If	the	deformation	is	described	by	equations	of	the	form

XR	=	XR	(xi,	t)	or	X	=	X(x,	t)

which	give	the	reference	coordinates	XR	of	the	particle	which	occupies	xi	at	time	t,	then	in	a	similar	way
we	may	determine	the	stretch	ratio	λ,	and	the	orientation	A	in	the	reference	configuration,	of	a	line	element
which	has	the	direction	a	in	the	deformed	configuration.	In	essence,	it	is	only	necessary	to	interchange	X



and	x,	A	and	a,	and	δL	and	δl,	in	the	above	argument.	Details	are	left	to	the	reader	(Problem	6.1);	the	main
results	are

(6.16)

(6.17)

6.3	The 	deformation	gradient	tensor
The	nine	quantities	∂xi/∂XR,	appeared	naturally	in	the	analysis	of	Section	6.2.	They	are	called	the
deformation	gradients.	It	is	clear	that	these	quantities	must	be	involved	in	the	description	of	how	a
particle	moves	in	relation	to	neighbouring	particles,	and	so	they	are	of	importance	in	the	analysis	of
deformation.

We	denote

(6.18)

Then	FiR	are	components	of	a	second-order	tensor,	which	is	called	the	deformation	gradient	tensor	and
is	denoted	by	F.	To	confirm	that	FiR	are	components	of	a	tensor,	we	introduce	a	new	rectangular	cartesian
coordinate	system	by	a	rotation	of	the	axes	defined	by	the	orthogonal	matrix	M.	Then	in	the	new	system,	X
and	x	have	components	XR	and	x̅i	respectively,	where

Then



Since	the	components	FiR	conform	to	the	tensor	transformation	law,	F	is	a	second-order	tensor.	In	general,
F	is	not	a	symmetric	tensor.	By	the	results	of	Section	3.4,	FT	is	also	a	second-order	tensor,	and	so	is	F–1
provided	that	det	F≠0	(we	shall	show	in	Section	7.2	that	there	are	physical	reasons	for	assuming	that	det
F	≠	0).	Since

F–1	is	the	tensor	whose	components	are	 	where

(6.19)

The	main	results	of	Section	6.2	can	now	be	stated	in	direct	tensor	notation.	Equation	(6.14)	may	be
expressed	in	the	form

(6.20)

and	(6.15)	as

(6.21)

Similarly,	(6.16)	and	(6.17)	may	be	written,	respectively,	as

(6.22)

(6.23)

For	the	calculation	of	a,	A	and	λ	it	is	often	convenient	to	use	matrix	notation.	If,	in	a	fixed	coordinate



system,	the	components	of	A	are	written	as	a	column	matrix	A,	those	of	a	as	a	column	matrix	a,	those	of	F
as	a	square	matrix	F,	and	those	of	F–1	as	a	square	matrix	F–1,	then	(6.20)-(6.23)	give

(6.24)

(6.25)

If	there	is	no	motion,	then	Xi	=	Xi,	FIR	=	δiR,	and	F	=	I.

The	components	of	the	displacement	vector	u	are	given	by	ui	=	xi	—	Xi.	The	displacement	gradients	are

(6.26)

and	so	they	are	components	of	the	tensor	F–I.	This	tensor	is	called	the	displacement	gradient	tensor.	If
there	is	no	motion,	then	its	components	are	all	zero.

Although	the	tensor	F	is	important	in	the	analysis	of	deformation,	it	is	not	itself	a	suitable	measure	of
deformation.	This	is	because	a	measure	of	deformation	should	have	the	property	that	it	does	not	change
when	no	deformation	takes	place;	therefore	it	must	be	unchanged	in	a	rigid-body	motion.	F	does	not	have
this	property;	in	fact	in	the	rigid-body	motion	(6.12),	we	have	F	=	Q(t).

6.4	F inite 	deformation	and	strain	tensors
We	define	a	new	tensor	C	as

(6.27)

so	that	the	components	CRS	of	C	are	given	by

(6.28)



Since	C	is	the	inner	product	of	FT	and	F,	it	is	a	second-order	tensor;	this	can	also	be	verified	directly	by
examining	the	effect	of	a	coordinate	transformation	on	the	components	CRS.	From	(6.28)	it	is	evident	that
CRS	=	CSR,	so	that	C	is	a	symmetric	tensor.

From	(6.15)	and	(6.21)	the	extension	ratio	of	a	material	line	element	with	direction	A	in	the	reference
configuration	is	given	by

(6.29)

Thus	a	knowledge	of	C	enables	the	extension	ratio	of	any	line	element	to	be	calculated.	Consider	an
elementary	material	triangle	bounded	by	three	material	line	elements.	Knowledge	of	the	stretch	of	these
line	elements	completely	determines	the	shape	of	the	triangle	(though	not	its	orientation)	in	a	deformed
configuration.	Hence	the	components	CRS	at	a	particle	determine	the	local	deformation	in	the
neighbourhood	of	that	particle.

For	the	rigid-body	motion	(6.12),	F	=	Q(t)	and	so

(6.30)

Hence	C	has	the	constant	value	I	throughout	a	rigid-body	motion.	Thus	C	is	essentially	connected	with	the
deformation,	rather	than	the	rigid	motion,	of	a	body,	and	is	a	suitable	measure	of	the	deformation.	C	is
called	the	right	Cauchy-Green	deformation	tensor.

C	is	not	a	unique	measure	of	deformation.	Trivially,	any	tensor	function	of	C	(such	as	C2	or	C–1)	will
serve	as	such	a	measure.	It	is	sometimes	convenient	to	employ	the	measure	C–1,	which	is	given	in	terms	of
F	by

(6.31)

The	components	 	of	C–1	are	given	by



(6.32)

Another	class	of	deformation	measures	is	based	on	the	alternative	expression	(6.17)	for	λ.	If	we	denote

(6.33)

then	B	is	the	left	Cauchy-Green	deformation	tensor.	If	B	and	B–1	have	components	Bij	and	
respectively,	then

(6.34)

and	(6.17)	becomes

(6.35)

Hence	a	knowledge	of	B–1,	or	equivalently	of	B,	is	sufficient	to	determine	the	local	deformation	in	the
neighbourhood	of	a	point	in	the	deformed	configuration.	It	is	easy	to	verify	that	B=	I	in	a	rigid-body
motion.

The	Lagrangian	strain	tensor	y	and	the	Eulerian	strain	tensor	η	are	defined	by2

(6.36)

(6.37)

Both	of	these	tensors	are	suitable	measures	of	deformation.	They	have	the	properties	that	γ	=	0	and	η	=	0
in	a	rigid-body	motion;	that	is,	they	reduce	to	zero	tensors	when	there	is	no	deformation.

If	the	deformation	is	defined	by	(6.1),	which	gives	the	dependence	of	x	on	X,	then	it	is	straightforward
to	calculate	F	and	natural	to	use	C,	B	or	γ	as	a	deformation	measure.	The	components	of	these	tensors



will	then	be	obtained	as	functions	of	the	material	coordinates	XR,	and	so	they	describe	the	deformation	in
the	neighbourhood	of	a	given	particle.	If	the	deformation	is	described	by	equations	which	give	the
dependence	of	X	on	x,	then	it	is	easier	to	calculate	F–1	and	the	natural	deformation	measures	are	C–1,	B–1
and	η;	the	components	of	these	tensors	are	obtained	as	functions	of	spatial	coordinates	xi,	and	so	they
describe	the	deformation	which	has	taken	place	in	the	neighbourhood	of	a	given	point.

The	expressions	for	the	components	γRS	of	γ	and	ηij	of	η	are	often	given	in	terms	of	the	displacement
gradients.	Since

u	=	x—X

we	have

Hence,	from	(6.28)	and	(6.36),

(6.38)

so	that,	for	example,

and

Similarly,



and	it	follows	from	(6.34)	and	(6.37)	that

(6.39)

and	so,	for	example,

The	calculation	of	the	deformation	and	strain	tensor	components	for	a	given	deformation	is	most	easily
carried	out	using	matrix	operations.	We	denote

(6.40)

Then	the	principal	formulae	are

(6.41)

The	tensors	C,	C–1,	B,	B–1,	γ	and	η	are	all	symmetric	second-order	tensors,	so	they	all	have	real
principal	components	and	orthogonal	principal	directions.	Consideration	of	these	is	deferred	to	Chapter
9.

6.5	Some	simple 	f inite 	deformations
(a)	Uniform	extensions.	Suppose	a	body,	say	a	long	bar	of	uniform	cross-section,	is	extended	uniformly
in	the	direction	of	the	x1-axis	to	a	length	λ1	times	its	original	length.	Then,	if	the	particle	at	the	origin	is



fixed	in	position,	x1	=	λ1X1.	This	defines	a	uniform	extension	in	the	x1	direction.	If	the	body	undergoes
uniform	extensions	in	all	three	coordinate	directions,	the	deformation	is	described	by	the	equations

(6.42)

where	λ1	λ2,	λ3	are	constants,	or	possibly	functions	of	t.	Some	special	cases	of	(6.42)	are	of	interest.	If	λ2
=	λ3,	then	the	body	undergoes	a	uniform	expansion	or	contraction	in	all	directions	transverse	to	the	x1
direction.	If	λ1	=	λ2	=	λ3,	the	body	undergoes	a	uniform	expansion	or	contraction	in	all	directions;	this	is
called	a	uniform	dilation.	If	λ1	=	 	and	λ3	=	1,	then	areas	are	conserved	in	planes	normal	to	the	x3
direction,	and	the	deformation	is	a	pure	shear.

For	the	deformation	(6.42),	we	readily	obtain	from	(6.40)	and	(6.41)

(6.43)

(b)	Simple	shear.	In	this	deformation,	parallel	planes	are	displaced	relative	to	each	other	by	an	amount
proportional	to	the	distance	between	the	planes	and	in	a	direction	parallel	to	the	planes.	For	example,	the
simple	shear	deformation	illustrated	in	Fig.	6.4	is	described	by	the	equations

(6.44)

Here	the	planes	X2	=	constant	are	the	shear	planes	and	the	X1	direction	is	the	shear	direction.	The	angle	γ
is	a	measure	of	the	amount	of	shear.	Note	that	a	simple	shear	involves	no	change	in	volume	of	any	portion
of	the	body.	For	the	deformation	(6.44),	we	find	from	(6.40)	and	(6.41)	that



(6.45)

The	components	of	γ	and	η	follow	from	(6.41).

Figure	6.4	Simple	shear

(c)	Homogeneous	deformations.	These	are	motions	of	the	form	or

(6.46)

where	ci	and	AiR	are	constants,	or	functions	of	time.	Cases	(a)	and	(b)	above	are	special	cases	of	(6.46).
In	the	motion	(6.46),	F	=	A.	The	expressions	for	CRS,	Bij,	and	so	on,	follow	from	(6.41),	and	we	observe



that	in	a	homogeneous	deformation	all	the	deformation	and	strain	tensors	are	independent	of	the
coordinates	xi	or	XR.

Homogeneous	deformations	have	a	number	of	properties	including	the	following:
(i)	Material	surfaces	which	form	planes	in	the	reference	configuration	deform	into	planes;	two	parallel
planes	deform	into	two	parallel	planes.

(ii)	Material	curves	which	form	straight	lines	in	the	reference	configuration	deform	into	straight	lines;
two	parallel	straight	lines	deform	into	two	parallel	straight	lines.

(iii)	A	material	surface	which	forms	a	spherical	surface	in	the	reference	configuration	is	deformed	into
an	ellipsoidal	surface.

The	proof	of	these	and	other	similar	results	is	straightforward.	As	an	example	we	prove	(i).	The	equation
satisfied	by	the	material	coordinates	XR	of	particles	which	initially	lie	on	a	plane	with	unit	normal	n	and
perpendicular	distance	p	from	the	origin	is

n·X	=	p

After	deformation,	the	same	particles	lie	on	a	surface	such	that	their	position	vectors	x	are	related	to	X	by
(6.46).	Hence

n	·	A–1·	(x	—	c)	=	p

This	is	the	equation	of	a	plane	whose	normal	is	in	the	direction	of	the	vector	n	·	A–1	(it	is	assumed	that
det	A	≠	0).

(d)	Plane	strain.	The	deformation	defined	by

x1	=	x1(X1	X2),

x2	=	x2(X1,	X2),

x3	=	X3

is	called	a	plane	strain.	The	planes	x3	=	constant	are	the	deformation	planes.	Particles	which	initially	lie
in	a	given	deformation	plane	remain	in	that	plane,	and	their	displacement	is	independent	of	the	X3
coordinate.	Deformations	which	approximate	to	plane	strain	occur	in	many	problems	of	practical	interest.

(e)	Pure	torsion.	This	deformation	is	most	easily	described	in	terms	of	cylindrical	polar	coordinates	R,



Φ,	Z	and	r,	φ,	z	defined	by

(6.47)

Then	a	pure	torsion	is	defined	by

(6.48)

where	ψ	is	constant	or	a	function	of	time.	In	this	deformation,	planes	normal	to	the	Z-axis	rotate	about	the
Z-axis	by	an	amount	which	is	proportional	to	Z.	The	deformation	is	most	easily	visualized	in	terms	of	the
twisting	of	a	circular	cylindrical	rod	whose	axis	lies	along	the	Z-axis.	There	are	no	volume	changes	and
the	deformation	is	not	homogeneous.

Figure	6.5	Pure	flexure

(f)	Pure	flexure.	The	deformation	illustrated	in	Fig.	6.5	is	described	by

(6.49)



This	represents	the	bending	of	a	rectangular	block	into	a	sector	of	a	circular	cylindrical	tube.	The	material
surfaces	X1	=	constant,	which	are	parallel	planes	in	the	reference	configuration,	become	concentric
circular	cylindrical	surfaces	in	the	deformed	configuration,	and	the	material	planes	X2	=	constant	are
deformed	from	a	family	of	parallel	planes	into	a	family	of	radial	planes	each	containing	the	z-axis.

6.6	Infinitesimal	strain
Many	common	materials	experience	only	small	changes	of	shape	when	forces	of	reasonable	magnitudes
are	applied	to	them.	Such	materials	include	the	usual	structural	materials	like	metals,	concrete	and	wood.
In	applications	involving	materials	of	this	kind	a	great	simplification	can	be	achieved	by	approximating
the	finite	and	exact	strain	tensors	introduced	in	Section	6.4	by	the	approximate	infinitesimal	strain	tensor.

The	approximation	we	introduce	is	that	all	components	of	the	displacement	gradient	tensor	(which	are
dimensionless	quantities)	are	numerically	small	compared	to	one.	Thus	we	assume

(6.50)

and	neglect	the	squares	and	products	of	these	quantities.

Now,	since	ui	=	xi–Xi,

However,	by	the	binomial	expansion,

I—F—1	=	I	—	{I	+	(F—I)}—1	=	I	—	{I—	(F—I)	+	(F—I)2	—	(F—I)3	+	.	.	.}

Hence

and	so,	since	F	—	I	=	(∂ui/∂XR),

(6.51)



Therefore,	to	first	order	in	the	displacement	gradients,	∂ui/∂xj	≃	∂ui/∂Xj,	and	it	is	immaterial	whether	the
displacement	gradients	are	formed	by	differentiation	with	respect	to	material	coordinates	XR	or	to	spatial
coordinates	xi.	To	this	order	of	approximation,	it	follows	from	(6.38)	and	(6.39)	that

(6.52)

The	tensor	E	whose	components	Eij	are	defined	as

(6.53)

is	called	the	infinitesimal	strain	tensor.	Thus

Both	γ	and	η	reduce	to	E	to	the	approximation	in	which	squares,	products	and	higher	powers	of	the
displacement	gradients	are	neglected.	From	(6.26)	it	follows	that

(6.54)

This	relation	is	exact	and	involves	no	approximation.	Since	F	is	a	second-order	tensor,	E	is	a	second-
order	tensor,	and	clearly	E	is	symmetric.

The	tensor	E	cannot	be	an	exact	measure	of	deformation,	because	it	does	not	remain	constant	in	a	rigid-
body	rotation.	To	illustrate	this,	consider	the	rotation	(6.3)	through	α	about	the	X3-axis.	For	this	motion
we	find	that



Thus	E11	and	E22	are	not	zero.	However,	they	are	of	second	order	in	the	small	angle	α,	and	so	are
neglected	in	the	small	displacement	gradient	approximation.

Although	the	infinitesimal	strain	tensor	is	not	an	exact	measure	of	deformation,	it	often	provides	an
excellent	approximation	to	such	a	measure.	Typically,	for	deformations	of	structural	materials,	Eij	are	of
order	0.001	or	less,	and	the	approximation	neglects	this	compared	with	one.	The	classical	theory	of	linear
elasticity,	with	its	numerous	successful	applications,	is	constructed	on	the	basis	of	this	approximation.
The	advantage	of	the	infinitesimal	strain	tensor	is	that,	unlike	γRS	and	ηij,	the	components	Eij	are	linear	in
the	displacement	components	ui.	This	means	that	the	techniques	of	linear	analysis	can	be	applied	to	the
solution	of	boundary-value	problems	in,	for	example,	the	linear	theory	of	elasticity.

The	geometrical	interpretation	of	E11	is	illustrated	in	Fig.	6.6.	The	line	element	P0Q0	of	length	δL
initially	lies	parallel	to	the	X1-axis.	Since	the	rotation	of	the	line	element	is	small,	its	extension,	to	first
order	in	δL,	is

(6.55)

Hence,	to	first	order,	E11	is	the	extension	per	unit	initial	length	of	a	line	element	which	is	initially	parallel
to	the	X1-axis.

A	similar	geometrical	interpretation	of	E23	is	illustrated	in	Fig.	6.7.	Suppose	that	P0Q0	and	P0R0	are
line	elements	which	are	initially	parallel	to	the	X2-	and	X3-axes.	Then,	by	similar	arguments,	the	angles	θ1
and	θ2	shown	in	Fig.	6.7	are

(6.56)

Hence	2E23	=	 	is,	to	first	order,	the	decrease	during	the	deformation	in	the	angle	between	the
initially	orthogonal	material	line	elements	P0Q0	and	P0R0.

The	tensor	E	possesses	the	usual	properties	shared	by	all	symmetric	second-order	tensors.	It	has	an
orthogonal	triad	of	principal	axes;	if	these	are	chosen	as	coordinate	axes	then	the	matrix	of	components	of
E	has	diagonal	form.	The	corresponding	diagonal	elements	E1,	E2,	E3	are	principal	components	of



infinitesimal	strain.	Symmetric	functions	of	E1,	E2	and	E3	are	invariants	of	the	infinitesimal	strain	tensor.

Figure	6.6	Geometrical	interpretation	of	E11

Figure	6.7	Geometrical	interpretation	of	E23

Because	the	components	Eij	are	derived	from	the	three	displacement	components	ui,	the	Eij	are	not	fully
independent,	but	must	satisfy	relations	obtained	by	eliminating	ui	between	them.	It	can	be	verified	by
direct	substitution	from	(6.53)	that	Eij	satisfy	the	strain	compatibility	relations



(6.57)

(6.58)

and	the	four	similar	relations	obtained	by	cyclic	permutations	of	the	indices	1,	2,	3.	These	six
compatibility	relations	are	themselves	not	completely	independent,	for	it	can	be	verified,	again	by	direct
substitution,	that

(6.59)

and	there	are	two	similar	relations	obtained	by	cyclic	permutation	of	the	indices	1,	2,	3.	The	finite	strain
components	γRS	and	ηij	are	also	subject	to	compatibility	conditions,	but	these	conditions	are	much	more
complicated	in	form.

6.7	Infinitesimal	rotation
In	(6.9)	and	(6.10)	we	gave	formulae	which	describe	a	finite	rigid-body	rotation	through	the	angle	α	about
an	axis	n.	For	an	infinitesimal	rotation,	sin	α	≃	α	and	cos	α	≃	1,	and	to	this	order	of	approximation
(6.10)	gives

and	hence

(6.60)

Thus	an	infinitesimal	rotation	is	described	by	an	anti-symmetric	tensor.	We	note	that	this	rotation	is	also
described	in	magnitude	and	direction	by	the	vector	αn,	and	observe	the	connections	between	the



components	of	the	vector	and	those	of	the	tensor.

Now	consider	a	general	infinitesimal	motion	with	deformation	gradient	tensor	F.	We	define	the
infinitesimal	rotation	tensor	Ω	and	its	components	Ωij	as	follows:

(6.61)

Clearly	Ω	is	a	second-order	anti-symmetric	tensor,	and	so	it	can	represent	an	infinitesimal	rotation.	The
displacement	gradient	tensor	F–I	is	now	decomposed	into	its	symmetric	and	anti-symmetric	parts	as
follows:

(6.62)

This	expresses	any	infinitesimal	motion	as	the	sum	of	an	infinitesimal	deformation,	represented	by	E,	and
an	infinitesimal	rotation,	represented	by	Ω.

The	infinitesimal	rotation	vector	ω	is	defined	by

(6.63)

Then	it	follows	from	(6.61)	and	(6.63)	that

(6.64)



(6.65)

Further	discussion	of	the	rotation	will	be	given	in	Section	9.2.

The	assumption	that	∂ui/∂XR,	≪	1	carries	the	implication	that	both	the	strain	and	the	rotation	are	small.
It	is	possible	to	envisage	and	to	realize	situations	in	which	the	strain	components	are	everywhere	small
but	some	material	elements	undergo	large	rotations.	This	may	occur,	for	example,	in	the	bending	of	a	long
thin	flexible	rod.	Individual	elements	of	the	rod	change	shape	only	slightly,	but	the	rotations	and
displacements	can	be	large.	Such	problems	require	careful	formulation,	and	will	not	be	discussed	here.

6.8	The 	rate-of-deformation	tensor
In	many	problems	in	continuum	mechanics	the	kinematic	property	of	greatest	interest	is	not	the	change	of
shape	of	a	body	but	the	rate	at	which	this	change	is	taking	place.	This	is	especially	the	case	in	fluid
mechanics,	where	it	is	usually	required	to	find	the	fluid	flow	in	a	particular	region	of	space,	and	the	shape
of	the	body	of	fluid	at	a	reference	time	is	rarely	relevant.

We	therefore	begin	this	section	by	investigating	the	rate	of	extension	of	a	material	line	element;	that	is,
the	rate	of	change	of	λ	for	a	fixed	material	line	element.	The	starting	point	is	equation	(6.15)

(6.66)

which	gives	λ	in	terms	of	material	coordinates	XR	and	the	direction	cosines	AR	of	the	line	element	in	the
reference	configuration.	It	is	convenient	to	begin	with	(6.66)	despite	the	fact	that	eventually	we	wish	to
express	Dλ/Dt	in	terms	of	spatial	coordinates	xi	and	the	direction	cosines	ai	of	the	line	element	at	time	t	in
the	current	configuration.

We	differentiate	(6.66)	with	respect	to	t,	with	XR	held	constant.	Since	Dxi(XR,	t)/Dt	=	υi(XR,	t),	this
gives

(6.67)

To	introduce	derivatives	of	υi	with	respect	to	spatial	coordinates	we	use	relations	of	the	form

and	thereby	express	(6.67)	in	the	form



An	interchange	of	the	dummy	indices	i	and	j	in	the	final	term	then	gives

Next	we	twice	employ	the	relation	(6.14)	to	introduce	ai	in	place	of	AR,	and	so	obtain

(6.68)

Now	λ—1	Dλ/Dt	is	the	rate	of	extension,	per	unit	current	length,	of	a	material	line	element	with	current
direction	cosines	ai.	For	any	given	direction	a	this	extension	rate	is,	from	(6.68),	given	by	aiaiDij,	where

(6.69)

The	quantities	Dij	are	the	components,	referred	to	base	vectors	ei,	of	the	rate-of-deformation	tensor	D
(other	common	names	are	the	rate-of-strain	or	strain-rate	tensor).	Note	that	Dij	is	linear	in	the	velocity
components	υi,	and	that	this	linearity	is	exact	and	we	have	not	made	any	approximation	in	deriving	it.	We
also	observe	that	the	right	side	of	(6.68)	involves	only	quantities	measured	in	the	current	configuration,
although	we	have	made	use	of	a	reference	configuration	in	order	to	derive	(6.68).

The	rate-of-deformation	tensor	D	has	properties	which	in	almost	every	respect	(but	with	an	important
exception	noted	below)	are	analogous	to	those	of	the	infinitesimal	strain	tensor	E.	It	is	readily	verified
that	D	is	a	second-order	symmetric	tensor.	Referred	to	its	principal	axes	as	coordinate	axes,	the	matrix	of
components	of	D	has	diagonal	form	with	principal	components	D1,	D2.	and	D3.	The	largest	and	smallest
of	the	principal	components	are	extremal	values	of	the	extension	rate	for	variations	of	the	direction	a.
Symmetric	functions	of	D1,	D2	and	D3	are	invariants	of	D.	The	components	Dij	obey	compatibility
relations	which	are	precisely	analogous	to	the	relations	(6.57),	(6.58)	and	(6.59)	satisfied	by	Eij,	except
that	differentiation	must	be	with	respect	to	spatial	coordinates	xi	and	these	may	not	be	replaced	by
material	coordinates	XR.

The	tensor	D	differs	from	the	tensor	E	in	that	it	is	an	exact	measure	of	deformation	rate,	whereas	it	was
emphasized	in	Section	6.6	that	E	can	never	be	an	exact	measure	of	deformation.	The	fact	that	Dij	are



linear	in	the	velocity	components	is	a	fortunate	circumstance	which	simplifies	the	solution	of	problems	in
fluid	mechanics.

6.9	The 	ve loc ity	gradient	and	spin	tensors
The	deformation-rate	tensor	D	can	be	identified	as	the	symmetric	part	of	the	velocity	gradient	tensor	L,
whose	components	Lij	are	given	by

(6.70)

The	anti-symmetric	part	of	L	is	denoted	by	W,	and	the	components	of	W	by	Wij,	so	that

(6.71)

and

(6.72)

It	is	straightforward	to	verify	that	L	and	W	are	second-order	tensors.

The	tensor	W	is	called	the	spin	or	vorticity	tensor,	and	it	has	properties	analogous	to	those	of	the
infinitesimal	rotation	tensor,	except	that	no	approximation	is	involved	in	its	derivation	or	use.	It	is	a
measure	of	the	rate	of	rotation	of	an	element;	the	expressions	(6.72)	decompose	L	into	the	deformation
rate	D	and	the	spin	W	The	spin	may	also	be	described	by	the	vorticity	vector	w,	defined	by

(6.73)

By	relations	similar	to	(6.64)	and	(6.65)	we	have	the	following	connections	between	W	and	w:



(6.74)

In	a	rigid-body	rotation	with	angular	speed	ω	about	an	axis	through	O	with	unit	vector	n,	the	velocity	is
given	by

(6.75)

Hence,	in	such	a	motion,	w	=	2ωn,	and

Thus	D	vanishes	in	a	rigid-body	rotation.	Moreover,	if	a	general	motion	is	modified	by	superposing	on	it
the	rigid-body	rotation	(6.75),	then	D	is	the	same	in	the	modified	motion	as	it	was	in	the	original	motion.
This	confirms	that	D	is	unaffected	by	superposed	rotations,	and	is	therefore	a	suitable	measure	of	the
deformation	rate.

The	material	time	derivative	of	FiR	is	given	by

Thus

(6.76)

In	the	case	of	small	displacement	gradients,	we	have	F–1≃	I,	and	then

(6.77)

6.10	Some	simple 	f lows



(a)	Simple	shearing	flow.	If	the	planes	x2	=	constant	are	the	shear	planes,	and	the	x1	direction	is	the
direction	of	shear,	then

υ1	=	sx2,	υ2	=	0,	υ3	=	0

where	s	is	constant,	is	a	simple	shearing	flow.	The	fluid	flows	in	straight	lines	in	the	x1	direction,	with
speed	proportional	to	its	distance	from	the	plane	x2	=	0.	For	this	flow

(b)	Rectilinear	flow.	In	rectilinear	flow	the	material	flows	in	parallel	straight	lines;	this	may	(but	does	not
always)	occur	in	flow	down	a	pipe	of	uniform	cross-section,	or	in	flow	between	parallel	plates.	If	the
direction	of	flow	is	that	of	the	x3-axis,	then

υ1	=	0,	υ2	=	0,	υ3	=	f(x1,	x2,	x3)

and

and	the	remaining	components	Dij	and	Wij	are	zero.	If	the	velocity	is	independent	of	x3,	then	in	addition
D33	=	0.

(c)	Vortex	flow.	Flow	in	the	neighbourhood	of	a	vortex	line	lying	along	the	x3-axis	is	described	by

where	κ	is	a	constant.	Particles	travel	in	circles	around	the	x3-axis,	with	speed	inversely	proportional	to
the	distance	from	the	axis.	The	components	of	D	and	W	are



There	is	a	singularity	on	the	vortex	line.

(d)	Plane	flow.	If	the	velocity	is	of	the	form

υ1	=	υ1(x1,	x2,	t),	υ2	=	υ2(x1,	x2,	t),	υ3	=	0

the	particles	move	in	planes	parallel	to	x3	=	0,	and	the	velocity	is	independent	of	the	x3	coordinate.	The
non-zero	components	of	D	are	D11,	D22	and	D12,	and	these	are	functions	of	x1,	x2	and	t	only.	The	only	non-
zero	component	of	W	is	W12	=	—W21,	and	the	vorticity	vector	is	in	the	direction	of	the	x3-axis.	The	simple
shearing	and	vortex	flows	defined	above	are	special	cases	of	plane	flow.

6.11	Problems
1.	Prove	the	formulae	(6.16)	and	(6.17).

2.	A	body	undergoes	the	homogeneous	deformation	

	

Find:	(a)	the	direction	after	the	deformation	of	a	line	element	with	direction	ratios	1:1:1	in	the	reference
configuration;	(b)	the	stretch	of	this	line	element.

3.	Find	the	components	of	the	tensors	F,	C,	B,	F—1,	C—1,	B—1,	γ	and	η	for	the	deformation

x1	=	a1(X1	+	αX2),

x2	=	a2X2,

x3	=	a3X3

where	a1,	a2,	a3	and	α	are	constants.	Find	the	conditions	on	these	constants	for	the	deformation	to	be
possible	in	an	incompressible	material.	A	body	which	in	the	reference	configuration	is	a	unit	cube	with	its
edges	parallel	to	the	coordinate	axes	undergoes	this	deformation.	Determine	the	lengths	of	its	edges,	and



the	angles	between	the	edges,	after	the	deformation.	Sketch	the	deformed	body.

4.	A	circular	cylinder	in	its	reference	configuration	has	radius	A	and	its	axis	lies	along	the	X3-axis.	It
undergoes	the	deformation

Find	the	conditions	on	the	constants	λ,	μ	and	ψ	for	this	deformation	to	be	possible	in	an	incompressible
material.	A	line	drawn	on	the	surface	of	the	cylinder	has	unit	length	and	is	parallel	to	the	axis	of	the
cylinder	in	the	reference	configuration.	Find	its	length	after	the	deformation.	Find	also	the	initial	length	of
a	line	on	the	surface	which	has	unit	length	and	is	parallel	to	the	axis	after	the	deformation.

5.	Show	that	the	condition	for	a	material	line	element	to	be	unchanged	in	direction	during	a	deformation	is
(FiR	—	λδiR)AR	=	0.	Deduce	that	the	only	lines	which	do	not	rotate	in	the	simple	shear	deformation	(6.44)
are	lines	which	are	perpendicular	to	the	X2-axis.	For	the	deformation

x1	=	μ(X1	+	X2	tan	γ),

x2	=	µ—1X2,

x3	=	X3	(μ	≠	1)

show	that	there	are	three	directions	which	remain	constant.	Find	these	directions	and	the	corresponding
stretches.

6.	Prove	that	in	the	homogeneous	deformation	(6.46),	particles	which	after	the	deformation	lie	on	the
surface	of	a	sphere	of	radius	b	originally	lay	on	the	surface	of	an	ellipsoid.	Prove	that	this	ellipsoid	is	a
sphere	of	radius	a	if	a2AijAik	=	b2δjk.

7.	A	rod	of	circular	cross-section	with	its	axis	coincident	with	the	x3-axis	is	given	a	small	twist	so	that	its
displacement	is	given	by

u1	=	—ψx2x3,

u2	=	ψx1x3,

u3	=	0

where	ψ	is	constant.	Find	the	components	of	infinitesimal	strain	and	infinitesimal	rotation.	Show	that	one



of	the	principal	components	of	infinitesimal	strain	is	always	zero	and	find	the	other	two	principal
components.	Find	also	the	principal	axes	of	the	infinitesimal	strain	tensor.

8.	For	the	deformation

u3	=	CX3

where	A,	B	and	C	are	constants,	find	the	components	of	the	tensors	F,	E	and	Ω.	Also	find	the	principal
values	and	principal	axes	of	E.

9.	For	the	velocity	fields	given	in	Problems	2	and	3	of	Chapter	4,	find	the	components	of	the	tensors	L,	D
and	W.

10.	Prove	that	the	rate	of	change	of	the	angle	θ	between	two	material	line	elements	whose	direction	in	the
current	configuration	are	determined	by	unit	vectors	a	and	b	is	given	by

	sin	θ	=	(aiaj	+	bibj)Dij	cosθ	—	2aibjDij

Deduce	that	—2Dij	(i	≠	j)	is	the	rate	of	change	of	the	angle	between	two	material	line	elements	which
instantaneously	lie	along	the	xi-	and	xj-axes.

11.	An	incompressible	body	is	reinforced	by	embedding	in	it	two	families	of	straight	inextensible	fibres
whose	directions	in	the	reference	configuration	are	given	by	A1	=	cos	β,	A2	=	±sin	β,	A3	=	0,	where	β	is
constant.	The	body	undergoes	the	homogeneous	deformation

x1	=	

x2	=	

x3	=	µX3

where	α	and	µ	are	constants.	Show	that	the	condition	=	1	for	inextensibility	in	the	fibre	direction	requires
that	a2	cos2	(3	+	α—2	sin2	β	=	µ.	Deduce	that:	(a)	the	extent	to	which	the	body	can	contract	in	the	x3
direction	is	limited	by	the	inequality	µ≥sin	2β;	(b)	when	this	maximum	contraction	is	achieved,	the	two
families	of	fibres	are	orthogonal	in	the	deformed	configuration.



7

Conservation	laws

7.1	Conservation	laws	of	physics
Many	of	the	laws	of	classical	physics	can	be	expressed	in	the	form	of	a	statement	that	some	physical
quantity	is	conserved;	examples	of	such	quantities	are	mass,	electric	charge	and	momentum.	Laws	of	this
kind	are	general	statements	and	are	not	restricted	in	their	application	to	any	particular	material	or	class	of
materials.	The	mathematical	formulations	of	these	laws	are	therefore	equations	which	must	be	always
satisfied.	It	is	important	to	distinguish	such	equations	from	equations	(which	we	call	constitutive
equations)	which	describe	the	properties	of	particular	materials	or	classes	of	materials,	and	which	are
the	subject	of	Chapters	8	and	10.

We	note	in	passing	that	the	second	law	of	thermodynamics,	although	it	is	an	important	general	law	of
physics,	is	rather	different	from	the	conservation	laws	mentioned	above	in	that	it	is	expressed	as	an
inequality.	Continuum	thermodynamics	is	outside	the	scope	of	this	introductory	text	and	we	shall	not
discuss	it.

7.2	Conservation	of	mass
The	law	of	conservation	of	mass	will	be	formulated	in	two	different	forms.	We	first	consider	the	effect	of
a	finite	deformation	on	a	volume	element.

Deformation	of	a	volume	element.	The	notation	of	Sections	4.1	and	6.2-6.4	is	employed.	Consider	an
elementary	tetrahedron	in	the	reference	configuration	(Fig.	7.1)	such	that	its	vertices	P0,	Q0,	R0,	S0	have
position	vectors	X(0),	X(0)	+	δX(1),	X(0)	+	δX(2),	X(0)	+	δX(3),	with	coordinates

(7.1)

respectively.	The	volume	δV	of	P0Q0R0S0	is



(7.2)

Figure	7.1	Deformation	of	a	volume	element

In	a	deformation	the	particles	initially	at	P0,	Q0,	R0,	S0	move	to	P,	Q,	R,	S	with	position	vectors	x(0),	x(0)+

δx(1)	,	etc.,	and	coordinates	 	etc.,	respectively.	The	volume	δυ	of	the	tetrahedron	PQRS	is

The	deformation	is	defined	by	equations	of	the	form	xi	=	xi(XR,	t).	Hence

(7.3)

with	the	derivatives	evaluated	at	 	and	similar	relations	hold	for	 	and	 	Therefore	the
expression	for	δυ	becomes

By	using	the	algebraic	result	(2.22),	this	can	be	written	as



(7.4)

where	we	have	introduced	the	Jacobian

We	now	proceed	to	the	limit	 	(p	=	1,	2,	3),	so	that	the	initial	volume	of	the	tetrahedron	tends	to
zero.	Then	from	(7.2)	and	(7.4)

(7.5)

From	(6.18)	we	recognize	the	above	Jacobian	as	the	determinant	of	the	deformation	gradient	tensor	F,
so	that	(7.5)	can	be	written	as

(7.6)

If	the	material	is	incompressible,	then	dυ/dV	=	1,	and	hence	det	F	=	1.

By	expanding	det	F,	we	obtain

Hence,	in	the	case	of	small	displacement	gradients,



(7.7)

The	quantity	Eii	is	called	the	dilatation	and	is	denoted	by	Δ.	From	(7.7),	Δ	is	the	trace	of	the	infinitesimal
strain	tensor	and	so	is	the	first	invariant	of	that	tensor.	Thus

Δ	=	Eii	=	tr	E	=	E1	+	E2	+	E3

For	small	deformations,	Δ	is	a	measure	of	the	change	of	volume	per	unit	initial	volume	of	an	element.

Conservation	of	mass	—	Lagrangian	form.	Now	suppose	that	the	material	in	the	volume	element
P0Q0R0S0	has	mass	δm	in	the	reference	configuration.	Conservation	of	mass	requires	that	the	mass	of	the
material	in	the	material	volume	element	remains	constant	during	the	deformation.	Hence	the	initial	and
final	densities,	which	we	denote	by	ρ0	and	p	respectively,	are

Hence

(7.8)

and	this	is	the	required	statement	of	the	law	of	conservation	of	mass.	We	note	that	(7.8)	justifies	the
assumption	which	was	made	in	Section	6.3	that	det	F	≠	0,	for	if	det	F	=	0	then	the	density	is	either	zero	in
the	initial	configuration	or	infinite	in	the	deformed	configuration.

Conservation	of	mass	-	Eulerian	form.	Equation	(7.8)	expresses	the	law	of	conservation	of	mass	in	terms
of	deformation	gradients.	For	many	purposes	it	is	more	convenient	to	express	the	law	in	terms	of	the
velocity	components.	For	this	we	consider	an	arbitrary	region	ℛ	with	surface	S,	fixed	in	space	in	relation
to	a	fixed	frame	of	reference	(see	Fig.	7.2).	The	mass	conservation	law	is	expressed	in	the	form	that	the
rate	at	which	the	mass	contained	in	ℛ	increases	is	equal	to	the	rate	at	which	mass	flows	into	ℛ	over	S.
The	rate	at	which	mass	flows	over	an	element	of	surface,	of	area	dS,	is	p	dS	multiplied	by	the	normal
component	of	velocity.	Hence



(7.9)

where	∂ρ/∂t	is	the	rate	of	increase	of	ρ	at	a	fixed	point	in	ℛ.	The	negative	sign	on	the	right-hand	side
appears	because	n	denotes

Figure	7.2	The	region	ℛ

the	outward	normal	to	S.	By	applying	the	divergence	theorem	to	the	surface	integral,	we	obtain	from	(7.9)

(7.10)

Since	the	region	ℛ	is	arbitrary,	the	integrand	in	(7.10)	must	be	zero	everywhere,	for	otherwise	it	would
be	possible	to	construct	a	region	for	which	(7.10)	was	violated.	Hence

(7.11)

This	equation	is	often	called	the	continuity	equation.	By	introducing	the	components	of	υ	and	x,	(7.11)	is
readily	expressed	in	the	following	equivalent	forms:

(7.12)



(7.13)

(7.14)

where,	as	in	Section	4.3,	Dp/Dt	denotes	the	material	derivative	of	ρ,

If	the	material	is	incompressible,	then	ρ	is	constant	at	any	particle,	so	that	Dρ/Dt	=	0.	It	therefore
follows	from	(7.14)	that	the	incompressibility	condition	can	be	expressed	in	any	of	the	following
equivalent	forms:

(7.15)

The	device	of	converting	a	surface	integral	into	a	volume	integral	by	the	use	of	the	divergence	theorem
will	be	used	frequently	in	this	chapter.	Naturally	the	results	of	doing	this	are	valid	only	if	the	conditions
for	the	theorem	to	be	applicable	are	satisfied.	The	most	important	of	these	is	that	the	integrand	of	the
surface	integral	should	be	differentiable,	and	therefore	continuous.	Problems	do	arise	in	continuum
mechanics	in	which	density,	velocity,	stress	and	other	variables	are	discontinuous	across	certain	surfaces,
which	may	be	stationary	or	in	motion.	This	situation	arises	particularly	in	stress-wave	propagation
problems.	It	is	not	difficult	to	extend	the	theory	to	deal	with	such	cases,	and	for	some	problems	it	is
essential	to	do	so.	However,	in	this	text	it	is	always	assumed	that	necessary	smoothness	conditions	are
satisfied.

7.3	The 	material	t ime	derivative 	of	a 	volume	integral
Suppose	that	Φ	is	some	physical	quantity	(such	as	mass	or	energy)	associated	with	the	particles	of	a	body,
and	φ	is	the	amount	of	Φ	per	unit	mass.	Then	the	amount	of	Φ	per	unit	volume	is	ρΦ	and	the	amount	of	Φ
contained	in	a	fixed	region	ℛ	at	a	given	time	t	is



(7.16)

evaluated	at	t.	In	an	increment	of	time	δt,	the	value	of	0	at	a	given	point	or	at	a	given	particle	in	ℛ	will	(in
general)	change,	and	some	particles	will	travel	across	the	surface	S	of	ℛ,	transporting	(D	with	them.	The
rate	of	change	of	the	amount	of	(D	which	is	associated	with	the	particles	which	instantaneously	occupy	91
at	t	is	called	the	material	time	derivative	of	the	integral	(7.16)	and	is	denoted	as

(7.17)

The	rate	of	increase	of	the	amount	of	4)	within	the	fixed	region	91	is	equal	to	the	sum	of	the	rate	of
increase	of	associated	with	the	particles	instantaneously	within	ℛ,	together	with	the	net	rate	of	influx	of	Φ
into	ℛ.	Thus

By	applying	the	divergence	theorem	to	the	surface	integral,	and	rearranging,	we	obtain

(7.18)

If	φ	=	1,	the	integral	(7.16)	represents	the	mass	within	ℛ,	and	conservation	of	mass	requires	that	the
material	time	derivative	of	this	integral	is	zero.	Hence	the	integral	on	the	right	side	of	(7.18)	(with	φ	=	1)
must	have	the	value	zero	for	all	regions	ℛ,	and	so	the	integrand	on	the	right	side	is	zero.	Thus	we	again
obtain	the	continuity	equation	in	the	form	(7.11).

For	a	general	quantity	φ,	the	integrand	of	the	right	side	of	(7.18)	may	be	written	as

(7.19)

However,	by	(4.20)	and	the	continuity	equation	(7.11),	the	expression	(7.19)	is	just	ρ	Dφ/Dt.	Hence



(7.18)	takes	the	form

(7.20)

7.4	Conservation	of	linear	momentum
The	law	of	conservation	of	linear	momentum	for	a	particle	of	mass	m	states	that	the	rate	of	change	of	its
linear	momentum	is	equal	to	the	resultant	force	p	applied	to	it.	Thus

For	a	continuum,	this	statement	is	generalized	as	follows:	the	rate	of	change	of	linear	momentum	of	the
particles	which	instantaneously	lie	within	a	fixed	region	ℛ	is	proportional	to	the	resultant	force	applied
to	the	material	occupying	ℛ.	This	resultant	force	consists	of	the	resultant	of	the	body	forces	b	per	unit
mass	acting	on	the	particles	in	ℛ,	together	with	the	resultant	of	the	surface	tractions	t(n)	acting	on	the
surface	of	ℛ.	Hence	the	law	is	expressed	in	the	form

(7.21)

In	components,	after	making	use	of	(5.9),	this	takes	the	form

where	n	is	the	outward	normal	to	S.

We	now	use	(7.20)	with	φ	replaced	by	υj,	and	apply	the	divergence	theorem	to	the	surface	integral.
This	gives



By	the	usual	argument,	the	integrand	is	zero,	and	Dυj/Dt	=	fj,	where	f	is	the	acceleration	vector.	Hence

(7.22)

This	is	the	equation	of	motion	for	a	continuum.	It	reduces	to	the	equilibrium	equation	(5.23)	when	there	is
no	acceleration.

7.5	Conservation	of	angular	momentum
For	a	particle,	the	law	of	conservation	of	angular	momentum	states	that

where	p	is	the	resultant	applied	force	and	x	is	the	position	vector	from	an	arbitrarily	chosen	origin.	The
generalization	for	a	continuum,	analogous	to	(7.21),	is

or,	in	components,

(7.23)

In	the	usual	manner,	we	employ	(7.20)	with	φ	=	eijkxjυk,	transform	the	surface	integral	to	a	volume
integral,	and	equate	the	integrands	of	the	resulting	volume	integrals	on	the	two	sides	of	the	equation.	This
gives

(7.24)



Now

and

Hence	equation	(7.24)	can	be	written	as

(7.25)

However,	eijkυjυk	=	0,	and	the	expression	multiplied	by	xj	in	(7.25)	is	zero	by	the	equation	of	motion,	and
so	(7.25)	reduces	to

(7.26)

Thus	the	law	of	conservation	of	angular	momentum	leads	to	the	conclusion	that	the	stress	tensor	is	a
symmetric	tensor.

It	should	be	mentioned	that	in	writing	down	(7.23)	it	is	implicitly	assumed	that	no	distributed	body	or
surface	couples	act	on	the	material	in	ℛ.	If	such	body	or	surface	couples	do	act,	then	in	general	the
symmetry	of	T	no	longer	obtains.	However,	body	and	surface	couples	are	of	importance	only	in	rather
specialized	applications,	and	we	shall	not	consider	them.

7.6	Conservation	of	energy
The	kinetic	energy	K	of	the	material	which	instantaneously	occupies	a	fixed	region	ℛ	is	defined	to	be

(7.27)



This	is	the	natural	extension	to	a	continuum	of	the	usual	expression	for	the	kinetic	energy	of	a	particle	or
rigid	body.

The	kinetic	energy	of	a	continuum	is	only	part	of	its	energy.	The	remainder	is	called	the	internal	energy
E,	which	is	expressed	in	terms	of	the	internal	energy	density	e	by

(7.28)

The	statement	we	adopt	of	the	law	of	conservation	of	energy	is	as	follows:	the	material	time	derivative
of	K	+	E	is	equal	to	the	sum	of	the	rate	at	which	mechanical	work	is	done	by	the	body	and	surface	forces
acting	on	ℛ	and	the	rate	at	which	other	energy	enters	ℛ.
The	‘other	energy’	may	take	many	different	forms.	The	most	important	is	energy	due	to	heat	flux	across

S.	Other	possible	forms	are	energy	arising	from	chemical	changes	inside	ℛ,	energy	arriving	by	radiation,
electromagnetic	energy,	and	so	on.	We	shall	consider	only	the	heat	flux.

The	above	statement	of	the	law	is	not	particularly	helpful	on	its	own	because	it	can	be	regarded	as
being	merely	a	definition	of	E.	It	really	only	becomes	useful	when	some	further	properties	of	E	or	e	are
specified.	To	do	this	leads	into	the	consideration	of	constitutive	equations,	which	we	defer	until	Chapters
8	and	10.

If	qi	denote	the	components	of	the	heat-flux	vector	q	(that	is,	q	⋅	n	is	the	amount	of	heat	flowing	in	the
sense	of	the	unit	vector	n	across	a	surface	normal	to	n,	per	unit	area	per	unit	time),	then	the	mathematical
formulation	of	the	law	in	the	form	stated	above	is

(7.29)

The	negative	sign	in	the	last	term	arises	because	n	is	the	outward	normal	to	S,	and	we	require	the	influx
of	heat	on	the	right	of	the	equation.	By	employing	(7.20)	on	the	left	side,	transforming	the	surface	integral
to	a	volume	integral,	and	equating	the	integrands,	it	follows	from	(7.29),	by	the	argument	which	is	now
standard,	that

(7.30)

Now	Dυi/Dt	=	fi.	Hence,	after	rearrangement,	(7.30)	becomes



The	expression	in	brackets	is	zero,	by	the	equation	of	motion	(7.22),	and	so

(7.31)

By	interchanging	the	dummy	indices	i	and	j,	we	have	Tji	∂υi/∂xj	=	Tij	∂υj/∂xi,	and,	since	T	is	symmetric,
Tji	∂υi/∂xj	=	Tij	∂υ¡/∂Xj.Hence	by	(6.69),

and	(7.31)	may	be	written	as

(7.32)

This	is	the	energy	equation	for	a	continuum.	The	term	TijDij	can	be	interpreted	as	the	rate	of	working	of	the
stress.

To	make	further	progress	it	is	necessary	to	assign	further	properties	to	e	and	q.	For	example,	it	is	often
assumed	that	a	gas	has	a	caloric	equation	of	state,	e	=	e(ρ,	T),	where	T	is	temperature.	The	heat	flux	q	is
often	assumed	to	obey	Fourier’s	law	of	heat	conduction,

(7.33)

where	K	is	the	thermal	conductivity.	Such	statements	are	not	general	laws,	but	are	particular	to	certain
materials,	and	are	certainly	not	universally	true.

7.7	The 	princ iple 	of	virtual	work



The	principle	of	virtual	work	has	many	applications	in	continuum	mechanics.	Although	it	is	not	a
conservation	law,	it	is	convenient	to	introduce	it	here.	Suppose	there	is	defined	in	the	region	ℛ	a	stress
field	with	components	Tij	which	satisfy	the	equilibrium	equations

Also	suppose	to	be	defined	in	ℛ	a	velocity	field	with	components	υi	which	are	differentiable	with	respect
to	xi,	and	let

be	the	components	of	the	deformation-rate	tensor	derived	from	the	velocity	field	υi.

It	is	emphasized	that	Tij	and	υi	need	be	in	no	way	connected;	Tij	may	be	any	equilibrium	stress	field	and
υi	any	differentiable	velocity	field.

We	form	the	product	TijDij	and	integrate	it	over	the	region	ℛ.	Then,	using	(5.23)	and	the	symmetry
relations	Tij=Tji,	we	have

Finally,	by	an	application	of	the	divergence	theorem,	we	obtain



(7.34)

where	ni	are	the	direction	cosines	of	the	outward	normal	to	the	surface	S	of	ℛ	and	t(n)	is	the	surface-
traction	vector	on	S	which	corresponds	to	the	stress	components	Tij.

Equation	(7.34)	is	the	mathematical	expression	of	the	principle	of	virtual	work	for	a	continuum.	It
states	that	the	rate	of	working	of	the	stress	field	Tij	in	the	velocity	field	υi	is	equal	to	the	sum	of	the	rates
of	working	of	the	surface	and	body	forces	associated	with	Tij	in	the	same	field.

An	identical	argument	may	be	followed	with	υi	replaced	by	infinitesimal	displacement	components	ui
and	Dij	replaced	by	the	infinitesimal	strain	components	Eij.

The	relation	(7.34)	and	its	analogue	in	terms	of	infinitesimal	displacement	and	strain	form	the	basis	of
a	number	of	variational	theorems	in	particular	branches	of	continuum	mechanics.

7.8	Problems
1.	For	an	incompressible	Newtonian	viscous	fluid	in	which	Fourier’s	law	of	heat	conduction	is	satisfied,
Tij,	qi	and	e	are	given	by

Tij	=—pδij+2µDij,

qi	=—κ	∂T/∂xi,

e=CT

where	µ,	κ	and	C	are	constants	and	T	is	the	temperature.	Deduce	that	in	this	case	the	energy	equation
(7.32)	can	be	expressed	in	the	form

2.	A	singular	surface	is	a	surface	across	which	the	stress,	velocity	and	density	may	be	discontinuous.	By
considering	a	thin	cylindrical	region	which	encloses	part	of	a	singular	surface,	show	that	in	a	body	at	rest
in	equilibrium,	t(n)	is	continuous	across	a	stationary	singular	surface,	where	n	is	the	normal	to	the	singular
surface.

3.	Suppose	a	singular	surface	propagates	through	a	body	with	speed	V	relative	to	the	body,	in	the
direction	of	the	normal	to	the	surface.	Prove	that	the	quantities	ρV	and	ρVυ+t(n)	are	continuous	across	the
singular	surface.

4.	A	singular	surface	propagates	in	the	direction	of	a	unit	vector	n	with	speed	υ	relative	to	fixed
coordinates.	Show	that	if	u	is	continuous	across	the	singular	surface,	then	υ¡	+	υnj	∂ui/∂xj	is	also
continuous	across	the	singular	surface.



8

Linear	constitutive	equations

8.1	Constitutive 	equations	and	ideal	materials
The	results	given	so	far	in	this	book	apply	equally	to	all	materials.	In	themselves	they	are	insufficient	to
describe	the	mechanical	behaviour	of	any	particular	material.

To	complete	the	specification	of	the	mechanical	properties	of	a	material	we	require	additional
equations,	which	are	called	constitutive	equations.	These	are	equations	which	are	particular	to
individual	materials,	or	classes	of	materials,	and	they	serve	to	distinguish	one	material	from	another.	The
mechanical	constitutive	equation	of	a	material	specifies	the	dependence	of	the	stress	in	a	body	on
kinematic	variables	such	as	a	strain	tensor	or	the	rate-of-deformation	tensor.	Normally	thermodynamic
variables,	especially	temperature,	will	also	be	involved,	but	we	shall	make	only	brief	references	to	these.
Constitutive	equations	are	also	required	in	other	branches	of	continuum	physics,	such	as	continuum
thermodynamics	and	continuum	electrodynamics,	but	these	problems	are	outside	the	scope	of	this	book,
and	we	shall	only	discuss	constitutive	equations	for	the	stress.

The	mechanical	behaviour	of	real	materials	is	very	diverse	and	complex	and	it	would	be	impossible,
even	if	it	were	desirable,	to	formulate	equations	which	are	capable	of	determining	the	stress	in	a	body
under	all	circumstances.	Rather,	we	seek	to	establish	equations	which	describe	the	most	important
features	of	the	behaviour	of	a	material	in	a	given	situation.	Such	equations	can	be	regarded	as	defining
ideal	materials.	It	is	unlikely	that	any	real	material	will	conform	exactly	to	any	such	mathematical	model,
but	if	the	ideal	material	is	well	chosen	its	behaviour	may	give	an	excellent	approximation	to	that	of	the
real	material	which	it	models.	The	model	should	be	selected	with	the	application	as	well	as	the	material
in	mind,	and	the	same	real	material	may	be	represented	by	different	ideal	materials	in	different
circumstances.	For	example,	the	theory	of	incompressible	viscous	fluids	gives	an	excellent	description	of
the	behaviour	of	water	flowing	through	pipes,	but	is	useless	for	the	study	of	the	propagation	of	sound
waves	through	water,	because	for	sound-wave	propagation	a	model	which	takes	into	account	the
compressibility	of	water	is	essential.

Historically,	the	constitutive	equations	which	define	the	classical	ideal	materials	(linear	elastic	solids,
Newtonian	viscous	fluids,	etc.)	have	been	developed	separately.	In	applications	of	these	theories	this
separation	is	natural.	However,	at	the	formulative	stage	there	are	advantages	in	a	unified	approach	which
clarifies	relations	between	the	different	special	theories.	Also	it	is	possible	to	formulate	some	general
principles	which	should	be	followed	in	the	construction	of	constitutive	equations.

A	first	requirement	which	any	constitutive	equation	must	satisfy	is	that	of	dimensional	homogeneity:	the
dimensions	of	all	terms	in	a	constitutive	equation	must	be	the	same.	Since	a	constitutive	equation	always
includes	constants	or	functions	which	characterize	the	material	under	consideration,	and	these	quantities
have	dimensions,	the	dimensional	homogeneity	requirement	is	usually	not	difficult	to	satisfy.



Constitutive	equations	should	not	depend	on	the	choice	of	the	coordinate	system	(although	they	may	be
expressed	in	terms	of	components	relative	to	any	selected	coordinate	system).	They	therefore	take	the
form	of	relations	between	scalars,	vectors	and	tensors.

An	important	restriction	on	mechanical	constitutive	equations	is	the	requirement	that	the	stress	response
of	a	body	to	a	deformation	is	not	affected	by	rigid-body	motions,	so	that	the	stress	in	a	body	depends	only
on	the	change	of	shape	of	the	body	and	is	not	affected	(except	for	the	change	in	orientation	of	the	stress
field	relative	to	fixed	axes)	by	a	superposed	motion	in	which	the	body	moves	as	a	whole.	To	formalize
this	requirement	we	specify	that	if	a	body	undergoes	two	time-dependent	motions,	which	differ	from	each
other	by	a	time-dependent	rigid-body	motion,	then	the	same	stress	results	from	each	of	these	motions.	This
is	essentially	equivalent	to	saying	that	constitutive	equations	are	invariant	under	translations	and	rotations
of	the	frame	of	reference;	two	observers,	even	if	they	are	in	relative	motion,	will	observe	the	same	stress
in	a	given	body.

Materials	are	usually	regarded	as	either	solids	or	fluids,	and	fluids	are	subdivided	into	liquids	and
gases.	We	do	not	attempt	a	precise	definition	of	this	classification;	the	dividing	lines	are	not	always	clear
and	there	are	materials	which	possess	both	solid-like	and	fluid-like	properties.	The	characteristic
property	of	a	fluid	is	that	it	cannot	support	a	shearing	stress	indefinitely,	so	that	if	a	shearing	stress	is
applied	to	a	body	of	fluid	and	maintained,	the	fluid	will	flow	and	continue	to	do	so	as	long	as	the	stress
remains.	A	solid,	on	the	other	hand,	can	be	in	equilibrium	under	a	shear	stress.	Some	solids	possess	a
natural	configuration	which	they	adopt	in	a	stress-free	state	and	to	which	they	eventually	return	if	a	stress
is	imposed	and	then	removed;	if	a	natural	configuration	exists	it	is	usually	convenient,	though	not
essential,	to	adopt	it	as	the	reference	configuration.	Fluids	have	no	natural	configuration	and,	given
sufficient	time,	will	adapt	to	the	shape	of	any	container	in	which	they	are	placed.

8.2	Material	symmetry
Most	materials	possess	some	form	of	material	symmetry.	The	commonest	case	is	that	in	which	the
material	is	isotropic;	an	isotropic	material	possesses	no	preferred	direction	and	its	properties	are	the
same	in	all	directions.	It	is	impossible	to	detect	the	orientation	in	space	of	a	sphere	of	isotropic	material
by	performing	an	experiment	on	it.	Many	real	materials	are	isotropic	or	nearly	so;	these	include	common
fluids	like	air	and	water,	metals	in	their	usual	polycrystalline	form,	concrete,	sand	in	bulk,	and	so	on.
Other	common	materials	have	strong	directional	properties;	an	example	is	wood,	whose	properties	along
its	grain	are	quite	different	from	the	properties	across	the	grain.	Single	crystals	of	crystalline	materials
have	directional	properties	which	arise	because	their	atoms	are	arranged	in	regular	patterns,	and	this
gives	rise	to	the	various	classes	of	crystal	symmetry.	A	material	which	possesses	a	single	preferred
direction	at	every	point	is	said	to	be	transversely	isotropic.	An	example	of	such	a	material	is	a	composite
material	which	consists	of	a	matrix	reinforced	by	fibres	arranged	in	parallel	straight	lines.	Over	length
scales	which	are	large	compared	to	the	fibre	diameters	and	spacings,	such	a	material	may	be	regarded	as
macroscopically	homogeneous,	and	the	fibres	introduce	a	preferred	direction	which	is	a	characteristic	of
the	composite	material.

We	consider	material	symmetries	of	two	types;	rotational	and	reflectional.

Rotational	symmetry.	Suppose	a	spherical	volume	element	undergoes	the	homogeneous	deformation
illustrated	in	Fig.	8.1.	A	typical	particle	initially	at	P0	moves	to	P1	and	the	deformation	is	described	by
the	equations



(8.1)

where,	since	the	deformation	is	homogeneous,	the	components	FiR	of	F	depend	only	on	t.

Now	suppose	that	the	element	undergoes	a	second	deformation,	which	is	similar	to	the	first	except	that
the	entire	deformation	field	(but	not	the	body)	is	rotated	through	an	angle	α	about	an	axis	n.	Thus	if	Q	is
the	tensor	defined	by	(6.11),	the	particle	which	is	initially	at	Q	⋅	X	moves	in	the	second	deformation	to	the
point	Q	⋅	x,	where

(8.2)

The	second	deformation	is	illustrated	for	the	case	in	which	n	=	e3	in	Fig.	8.1(c);	in	it	the	particle	initially
at	Q0	moves	to	Q2,	where

∠PoOQo	=	∠P1OQ2	=α

The	deformed	sphere	has	the	same	shape	in	the	two	configurations,	but	the	second	is	not	derived	from	the
first	by	a	rigid	rotation.	Although	the	two	deformations	(8.1)	and	(8.2)	are	related,	they	are	distinct,	and	in
the	absence	of	appropriate	material	symmetry	they	will	give	rise	to	different	stress	responses.	For
example,	the	forces	which	accompany	a	given	extension	in	the	direction	OP0	will	be	different	from	those
associated	with	the	same	extension	in	the	direction	OQ0.	However,	for	a	given	material	it	may	happen	that
for	certain	rotations	the	result	of	rotating	the	deformation	field	through	the	rotation	defined	by	Q	is	to
produce	the	same	rotation	of	the	stress	field.	In	this	case,	if	the	deformation	(8.1)	gives	rise	to	a	stress
tensor	T,	then	the	deformation	(8.2)	gives	rise	to	a	stress	tensor	QT	·	T	·	Q.	We	then	say	that	the	material
has	material	symmetry	(relative	to	the	specified	reference	configuration)	for	the	rotation	determined	by
Q.

Figure	8.1	Rotational	symmetry

As	a	simple	example,	the	tensor	Q	with	components	QiR,	where



represents	an	anti-clockwise	rotation	of	magnitude	 	about	the	X3-axis.	If	the	material	has	rotational
symmetry	for	this	rotation,	then	the	force	p1	required	to	produce	a	given	extension	in	the	X1	direction	has
the	same	magnitude	as	the	force	p2	required	to	produce	the	same	extension	in	the	X2	direction.

Reflectional	symmetry.	Now	consider	a	further	homogeneous	deformation	of	the	spherical	volume
element	which	is	the	mirror	image	of	the	deformation	(8.1),	in	some	plane	which	for	definiteness	we	take
to	be	the	plane	X1	=	0.	This	deformation	is	defined	by

(8.3)

or

(8.4)

where	the	components	of	the	tensor	R1	are

(8.5)

The	tensor	R1	represents	a	reflection	in	the	(X2,	X3)	plane.	The	deformation	is	illustrated	in	Fig.	8.2.

In	the	absence	of	material	symmetry,	the	deformations	(8.1)	and	(8.4)	will	give	rise	to	two	unrelated
stress	responses.	However,	if	the	effect	of	reflecting	the	deformation	field	in	the	manner	described	is	to
reverse	the	sign	of	the	shear	stress	on	the	plane	x1	=	0,	we	say	that	the	material	has	reflectional	symmetry



with	respect	to	this	plane,	relative	to	the	chosen	reference	configuration.	If	the	material	has	this	symmetry
and	the	deformation	(8.1)	gives	rise	to	the	stress	T,	then	the	deformation	(8.4)	gives	rise	to	the	stress	 	•
T	•	R1	(the	transposition	of	R1	in	the	first	factor	is	redundant,	because	R1	is	symmetric,	but	is	introduced
for	consistency	with	the	corresponding	result	for	rotational	symmetries).

Figure	8.2	Reflectional	symmetry

More	generally,	a	reflection	in	the	plane	through	0	normal	to	a	unit	vector	n	is	defined	by	a	tensor	R
with	components	Rij,	where

R=I—2n	⊗	n,	Rij	=	δij	—	2ninj

It	is	easily	verified	that	R	is	a	symmetric	improper	orthogonal	tensor	(that	is	an	orthogonal	tensor	with
determinant	equal	to	—1).	A	material	has	reflectional	symmetry	for	reflections	in	the	planes	normal	to	n	if
the	deformation

(8.6)

gives	rise	to	the	stress	RT	·T·R	when	the	deformation	(8.1)	gives	rise	to	the	stress	T.

Reflectional	symmetry	with	respect	to	planes	normal	to	the	X1-axis	means	that	the	tangential	force
required	to	produce	a	simple	shear	in	(say)	the	positive	X2	direction	on	the	planes	X1	=	constant,	is	equal
in	magnitude	but	opposite	in	direction	to	that	required	to	produce	a	shear	of	the	same	magnitude	in	the
negative	X2	direction	on	the	same	planes.

Symmetry	groups.	The	set	of	tensors,	such	as	the	rotation	tensors	Q	and	the	reflection	tensors	R,	which
define	the	symmetry	properties	of	a	material,	form	a	group	(in	the	technical	algebraic	sense	of	the	term)
which	is	called	the	symmetry	group	of	the	material.

For	an	isotropic	material,	the	symmetry	group	includes	all	rotations	about	all	possible	axes,	and
reflections	in	any	plane;	thus	it	is	the	group	of	all	orthogonal	tensors,	which	is	the	full	orthogonal	group	in



three	dimensions.	A	material	whose	symmetry	group	consists	of	all	rotations	but	no	reflections	(the
rotation	group	or	the	proper	orthogonal	group	in	three	dimensions)	is	said	to	be	hemitropic.	For	our
purpose	the	distinction	between	isotropic	and	hemitropic	materials	is	not	important.

Materials	which	have	fewer	material	symmetries	than	an	isotropic	material	are	said	to	be	anisotropic.
The	symmetry	group	for	an	anisotropic	material	is	a	subgroup	of	the	full	orthogonal	group.

A	material	whose	symmetry	group	includes	all	rotations	about	a	specified	axis	is	said	to	be
transversely	isotropic	about	that	axis.	Various	reflectional	symmetries	may	or	may	not	be	added;	again
the	distinctions	are	not	important	here.

A	material	which	has	reflectional	symmetry	with	respect	to	each	of	three	mutually	orthogonal	planes	is
said	to	be	orthotropic.	To	a	good	approximation,	wood	is	an	example	of	such	a	material.

The	symmetry	group	for	an	orthotropic	material	is	a	finite	group,	composed	of	the	unit	tensor,	three
reflection	tensors,	and	their	inner	products.	Other	finite	subgroups	of	the	full	orthogonal	group	in	three
dimensions	are	symmetry	groups	for	materials	with	various	kinds	of	crystal	symmetry.	The	rotations
which	occur	in	these	symmetry	groups	are	rotations	through	multiples	of	 	and	 .	Accounts	of	the
crystallographic	groups	can	be	found	in	texts	on	crystallography.

For	the	most	part	we	shall	concentrate	on	isotropy,	which	is	the	simplest	and	most	important	case,	and
make	only	occasional	references	to	anisotropic	materials.

8.3	Linear	e lastic ity
Many	solid	materials,	and	especially	the	common	engineering	materials	such	as	metals,	concrete,	wood,
etc.,	have	the	property	that	they	only	undergo	very	small	changes	of	shape	when	they	are	subjected	to	the
forces	which	they	normally	encounter.	They	also	have	a	natural	shape	to	which	they	will	return	if	forces
are	applied	to	them	and	then	removed	(provided	that	the	forces	are	not	too	large).	The	theory	of	linear
elasticity	provides	an	excellent	model	of	the	mechanical	behaviour	of	such	materials.

We	define	a	linear	elastic	solid	to	be	a	material	for	which	the	internal	energy	ρoe	per	unit	volume	in	the
reference	configuration	has	the	following	properties:
a.	 poe	is	a	function	only	of	the	components	Eij	of	the	infinitesimal	strain	tensor	and	is,	or	may	be

adequately	approximated	by,	a	quadratic	function	of	these	components;
b.	 if	K	is	the	kinetic	energy	(7.27)	and	E	is	the	internal	energy	(7.28)	in	any	region	ℛ,	then	the	material

time	derivative	of	K	+	E	is	equal	to	the	rate	at	which	mechanical	work	is	done	by	the	surface	and
body	forces	acting	on	ℛ.

It	is	conventional	to	denote	ρoe	by	W,	and	to	call	W	the	strain-energy	function.	Thus	(a)	states	that	W
has	the	form

(8.7)

where	Cijkl	are	constants.	Property	(b)	is	a	restatement	of	the	law	of	conservation	of	energy	(Section	7.6)
with	heat	flux	assumed	to	be	absent,	or	neglected.	Properties	(a)	and	(b)	together	state	that	all	the
mechanical	work	done	on	ℛ	either	creates	kinetic	energy,	or	is	stored	as	potential	energy	(which	is	called



the	strain	energy)	which	depends	only	on	the	deformation.	The	system	is	conservative	;	in	a	closed	cycle
of	deformation	the	strain	energy	is	stored	and	then	released	so	that	no	net	work	is	done	on	the	body.

The	more	general	case	in	which	W	is	allowed	to	depend	also	on	temperature	or	entropy,	and	in	which
heat	flux	is	permitted,	leads	to	the	theory	of	linear	thermoelasticity.	We	shall	not	develop	this	theory.

It	should	be	noted	at	the	outset	that	a	constitutive	equation	based	on	(8.7)	will	necessarily	fail	to	satisfy
one	of	the	requirements	stated	in	Section	8.1	for,	as	was	shown	in	Section	6.6,	the	components	Eij	do	not
remain	constant	in	a	finite	rotation,	and	so	W	as	defined	by	(8.7)	must	change	when	a	body	rotates	without
change	of	shape.	This	is	not	reasonable	physically.	However,	if	attention	is	restricted	to	motions	in	which
the	rotation	is	small,	then	the	change	in	Eij	is	of	second	order	in	the	rotation	components.	The	theory	of
linear	elasticity	is	essentially	an	approximate	theory	which	is	valid	for	values	of	Eij	and	Ωij	which	are
small	compared	to	one.	The	theory	is	nevertheless	very	useful	because	the	approximation	is	an	excellent
one	in	many	applications.	It	is	consistent	with	the	approximation	involved	in	adopting	(8.7)	to	neglect	Eij
compared	to	one,	and	this	will	be	done	whenever	it	is	convenient	to	do	so.

Suppose	we	change	from	a	coordinate	system	with	base	vectors	ei	to	a	new	coordinate	system	with
base	vectors	 such	that

and	(Mij)	is	an	orthogonal	matrix.	Then	the	infinitesimal	strain	components	Eij	and	Ēij	in	the	old	and	new
systems	are	related	by	the	usual	tensor	transformation	rule

(8.8)

The	strain	energy	W	can	also	be	expressed	as	a	quadratic	function	of	the	components	Ēij	as

(8.9)

However	W	is	a	scalar,	which	is	not	affected	by	a	change	of	coordinate	system,	and	so	the	expressions
(8.7)	and	(8.9)	are	the	same.	Hence,	using	(8.8),

This	is	an	identity	for	all	values	of	Ēij	and	so



Hence	Cijkl	are	components	of	a	fourth-order	tensor.

The	34	=	81	constants	Cijkl	are	called	elastic	constants.	They	have	the	dimensions	of	stress	and	their
values	characterize	particular	linear	elastic	materials.	The	elastic	constants	are	not	all	independent.	By
interchanging	the	dummy	indices	i	and	j	in	(8.7),	we	obtain

However,	Eij	=	Eji,	and	so

Thus	Cijkl	may	be	replaced	by	 ,	which	is	symmetric	with	respect	to	interchanges	of	i	and	j.
Hence,	without	loss	of	generality,	Cijkl	may	be	assumed	to	be	symmetric	with	respect	to	interchanges	of	its
first	two	indices.	Similarly,	Cijkl	may	be	assumed	to	be	symmetric	with	respect	to	interchanges	of	its	third
and	fourth	indices.	Thus

(8.10)

The	symmetries	(8.10)	reduce	the	number	of	independent	elastic	constants	to	36.	Furthermore,	by
simultaneously	interchanging	the	indices	i	and	k	and	the	indices	j	and	l,	there	follows

Hence	no	generality	is	lost	by	assuming	that	Cijkl	also	has	the	index	symmetries

(8.11)

The	symmetries	(8.11)	further	reduce	the	number	of	independent	elastic	constants	to	21.

A	further	requirement	on	W	is	that	the	stored	elastic	energy	must	be	positive,	so	that	(8.7)	is	a	positive
definite	quadratic	form	in	the	Eij.



Any	material	symmetry	further	reduces	the	number	of	independent	elastic	constants.	We	return	to	this
point	below.

So	far,	property	(b)	of	linear	elastic	solids	has	not	been	employed.	From	(7.31),	with	e	replaced	by	W/
ρo,	and	the	heat	flux	terms	neglected,	we	have

(8.12)

Since,	by	(7.7)	and	(7.8),	ρ/ρo	=	1	+	O(Eij),	to	the	order	of	approximation	used	in	small-deformation
theory	we	may	replace	ρ	by	ρo,	and	write

It	was	shown	in	Section	7.6	that	Tij	∂υi/∂xj	=	TijDij,	and	so

(8.13)

Now,	since	W	depends	only	on	Eij,	(8.13)	gives

and	(6.77)	then	gives,	to	the	required	order	of	approximation,

This	is	an	identity	which	holds	for	all	values	of	Dij,	and	so

However,	from	(8.7)	and	(8.11),



Hence

(8.14)

and	this	is	the	constitutive	equation	for	a	linear	elastic	solid.	It	is	evident	that	the	stress	components	are
linear	functions	of	the	infinitesimal	strain	components.

An	alternative	formulation	of	linear	elasticity	theory	is	based	on	the	assumption	that	the	stress
components	Tij	are	(or	can	adequately	be	approximated	by)	linear	functions	of	the	infinitesimal	strain
components	Eij,	so	that	(8.14)	is	taken	as	the	starting	point	rather	than	as	a	consequence	of	(8.7).	In	such	a
formulation	there	is	no	loss	of	generality	in	giving	Cijkl	the	index	symmetries	(8.10),	but	(8.11)	does	not
obtain	unless	further	assumptions	are	made.	A	material	with	constitutive	equation	(8.14)	but	lacking	the
index	symmetry	(8.11)	has	the	unrealistic	property	that	work	can	be	extracted	from	it	in	a	closed	cycle	of
deformation.	We	therefore	prefer	to	base	the	theory	on	(8.7),	from	which	(8.11)	follows	automatically.

The	number	of	independent	elastic	constants	is	further	reduced	if	the	material	possesses	any	material
symmetry.	Suppose	for	example	that	the	material	has	the	reflectional	symmetry	with	respect	to	the	(X2,	X3)

planes	which	is	associated	with	the	tensor	R1	which	is	defined	by	(8.5).	Since	 	it	is
easily	seen	that	the	effect	of	replacing	the	deformation	(8.1)	by	the	deformation	(8.3)	is	to	replace	E12	by
—E12,	and	E13	by	—E13,	while	leaving	the	other	components	Eij	unaltered.	However,	if	R1	belongs	to	the
symmetry	group,	W	must	be	unchanged	by	this	substitution.	Hence,	if	the	material	has	this	symmetry,	then

(8.15)

and	this	relation	must	hold	identically	for	all	Eij.	By	writing	(8.7)	in	full	with	the	above	two	sets	of
arguments,	or	by	considering	special	cases,	it	follows	from	(8.7)	and	(8.15)	that

C1112	=	C1113	=	C1222	=	C1223	=	C1233	=	C1322	=	C1323	=	C1333	=	0

Other	material	symmetries	impose	further	restrictions	on	the	elastic	constants.	The	various	possibilities



are	described	in	texts	on	linear	elasticity.	We	omit	the	details	and	proceed	to	the	case	of	isotropic
materials.

The	symmetry	group	for	isotropic	materials	includes	all	proper	orthogonal	tensors	Q.	Suppose,	as
before,	that	Eij	are	the	components	of	infinitesimal	strain	which	correspond	to	the	deformation	(8.1).	Then
the	corresponding	stress	components	Tij	are	given	by	(8.14).	The	infinitesimal	strain	components	which
correspond	to	the	deformation	(8.2)	are

(8.16)

and	the	associated	stress	components	are

(8.17)

Now	if	Q	belongs	to	the	symmetry	group,	then

(8.18)

and	hence,	from	(8.16),	(8.17)	and	(8.18),

(8.19)

It	follows,	by	comparing	(8.14)	and	(8.19),	that

(8.20)

and,	if	the	material	is	isotropic,	this	must	hold	for	all	orthogonal	tensors	Q.	However,	(8.20)	then
becomes	a	statement	that	Cijkl	are	components	of	a	fourth-order	isotropic	tensor	(Section	3.5).	The	most
general	fourth-order	isotropic	tensor	is	given	by	(3.37).	Hence	Cijkl	take	the	form



(8.21)

and	the	constitutive	equation	(8.14)	becomes

Since	Eij	=	Eji	no	generality	is	lost	by	setting	ν	=	µ,	so	that

(8.22)

or,	equivalently,	in	tensor	notation

T	=	λI	tr	E	+	2µE

Equation	(8.22)	is	the	constitutive	equation	for	an	isotropic	linear	elastic	solid;	such	a	material	is
characterized	by	the	two	elastic	constants	λ	and	µ.

We	observe	that	the	form	(8.21)	possesses	the	index	symmetry	Cijkl	=	Cklij.	Thus	for	an	isotropic
material	we	arrive	at	(8.22)	regardless	of	whether	we	adopt	(8.7)	or	(8.14)	as	the	starting	point.

8.4	Newtonian	viscous	f luids
In	experiments	on	water,	air	and	many	other	fluids,	it	is	observed	that	in	a	simple	shearing	flow	(Section
6.10)	the	shearing	stress	on	the	shear	planes	is	proportional	to	the	shear	rate	s,	to	an	extremely	good
approximation	and	over	a	very	wide	range	of	shear	rates.	This	behaviour	is	characteristic	of	a	Newtonian
viscous	fluid	or	a	linear	viscous	fluid.	This	model	of	fluid	behaviour	describes	the	mechanical	properties
of	many	fluids,	including	the	commonest	fluids,	air	and	water,	very	well	indeed.

We	consider	fluids	with	constitutive	equations	of	the	form

(8.23)

where	θ	is	the	temperature.	In	a	fluid	at	rest,	Dkl	=	0,	and	(8.23)	reduces	to



(8.24)

which	is	the	constitutive	equation	employed	in	hydrostatics,	with	p(ρ,	θ)	representing	the	hydrostatic
pressure.	Thus	(8.23)	specifies	that	in	a	fluid	in	motion	the	additional	stress	over	the	hydrostatic	pressure
is	linear	in	the	components	of	the	rate	of	deformation	tensor.

If	the	fluid	is	isotropic,	then	arguments	similar	to	those	used	in	Section	8.3	to	reduce	(8.14)	to	(8.22)
lead	to	the	conclusion	that	Bijkl	are	(like	Cijkl	for	an	isotropic	linear	elastic	solid)	the	components	of	a
fourth-order	isotropic	tensor,	and	then	(8.23)	takes	the	form

(8.25)

or,	equivalently

T	=	{—p(ρ,	θ)+λ(ρ,	θ)tr	D}I+2µ(ρ,	θ)D

Here	the	viscosity	coefficients	λ(ρ,	θ)	and	µ(ρ,	θ)	are	of	course,	not	the	same	as	the	elastic	constants	λ
and	µ	which	were	introduced	in	Section	8.3.	A	particular	linear	viscous	fluid	is	characterized	by	the	two
coefficients	λ	and	µ.

It	was	shown	in	Section	6.9	that	Dij	=	0	in	a	rigid-body	motion	and	that	the	superposition	of	a	rigid-
body	motion	on	a	given	motion	does	not	change	the	value	of	Dij.	Hence	the	right-hand	side	of	(8.25)	is	not
affected	by	a	superimposed	rigid-body	motion.	Therefore	the	constitutive	equation	(8.25)	has	the	required
property	of	being	independent	of	superimposed	rigid-body	motions.	This	is	in	contrast	to	the	constitutive
equation	of	linear	elasticity	theory,	which,	it	was	emphasized	in	Section	8.3,	is	necessarily	an
approximate	theory	and	is	valid	only	for	small	rotations	and	deformations.	Equation	(8.25)	is	a	possible
exact	constitutive	equation	for	a	viscous	fluid.	In	practice,	it	is	found	that	(8.25)	serves	extremely	well	to
describe	the	mechanical	behaviour	of	many	fluids.

In	fluid	mechanics	texts	it	is	usual	to	assume,	as	we	have	done	here,	that	the	fluid	is	isotropic.	In	fact	it
can	be	shown	that	isotropy	is	a	consequence	of	(8.23)	and	the	requirement	that	the	stress	is	not	affected	by
rigid-body	motions,	and	so	isotropy	need	not	be	introduced	as	a	separate	assumption.	We	shall
demonstrate	this,	in	a	more	general	context,	in	Section	10.3.	It	does	not	follow	that	all	fluids	are
necessarily	isotropic.	Fluids	with	anisotropic	properties	do	exist,	but	they	require	more	general
constitutive	equations	than	(8.23)	for	their	description.

Several	special	cases	of	(8.25)	are	of	interest.	If	the	stress	is	a	hydrostatic	pressure	(see	Section	5.9)
then



It	is	often	assumed	that	in	such	a	state	of	pure	hydrostatic	stress,	the	stress	depends	only	on	ρ	and	θ	and
not	on	the	dilatation	rate	Dkk.	If	this	is	the	case	then	 	=	0,	and	this	relation	is	often	adopted.

If	the	material	is	inviscid,	then	λ	=	0	and	µ	=	0,	and	the	constitutive	equation	reduces	to	(8.24).	The
stress	in	an	inviscid	fluid	is	always	hydrostatic.

If	the	fluid	is	incompressible,	then	ρ	is	constant	and	Dkk	=	0.	Incompressibility	is	a	kinematic	constraint
which	gives	rise	to	a	reaction	stress.	The	reaction	to	incompressibility	is	an	arbitrary	hydrostatic	pressure
which	can	be	superimposed	on	the	stress	field	without	causing	any	deformation;	this	pressure	does	no
work	in	any	deformation	which	satisfies	the	incompressibility	constraint.	Such	a	hydrostatic	pressure	is
not	determined	by	constitutive	equations	but	can	only	be	found	through	the	equations	of	motion	or	of
equilibrium,	and	the	boundary	conditions.	Thus	for	an	incompressible	viscous	fluid,	(8.25)	reduces	to

(8.26)

where	p	is	arbitrary,	µ	depends	only	on	θ,	and	the	term	λDkk	has	been	absorbed	into	the	arbitrary	function
p.	We	note	that	in	the	limit	as	the	material	becomes	incompressible,	Dkk	→	0	and	λ	→	∞	in	such	a	way
that	λDkk	tends	to	a	finite	limit.

If	the	fluid	is	both	inviscid	and	incompressible	(such	a	fluid	is	called	an	ideal	fluid)	then

(8.27)

where	p	is	arbitrary	in	the	sense	that	it	is	not	determined	by	a	constitutive	equation.

8.5	Linear	viscoe lastic ity
Many	materials	(especially	materials	which	are	usually	described	as	‘plastics’)	possess	both	some	of	the
characteristics	of	elastic	solids	and	some	of	the	characteristics	of	viscous	fluids.	Such	materials	are
termed	viscoelastic.	The	phenomenon	of	viscoelasticity	is	illustrated	by	creep	and	stress-relaxation
experiments.	For	simplicity,	consider	the	case	of	simple	tension.	Suppose	a	tension	Fo	is	rapidly	applied
to	an	initially	stress-free	viscoelastic	string	at	time	t=0,	and	then	held,	constant,	as	illustrated	in	Fig.
8.3(a).	The	corresponding	relation	between	the	elongation	e	and	time	t	may	be	of	the	form	shown	in	Fig.
8.3(b),	with	an	initial	elongation	eo	(such	as	would	occur	in	an	elastic	material)	followed	by	an
increasing	elongation	under	the	maintained	load.	This	illustrates	the	phenomenon	of	creep.	If	the	material
is	a	viscoelastic	solid,	the	elongation	tends	to	a	finite	limit	e∞	as	t	→	∞;	if	the	material	is	a	viscoelastic
fluid,	the	elongation	continues	indefinitely.



Figure	8.3	Creep	curve

Alternatively,	suppose	that	at	t	=	0	the	string	is	given	an	elongation	eo	and	held	in	this	position	(Fig.
8.4(a)).	The	resulting	force	response	is	shown	in	Fig.	8.4(b);	the	force	rises	instantaneously	to	Fo	at	t	=	0
and	then	decays.	This	is	stress	relaxation.	For	a	fluid,	F→0	as	t	→	∞;	in	a	solid,	F	tends	to	a	finite	limit
F∞	as	t→	∞.

We	consider	here	only	infinitesimal	deformations,	so	that	the	use	of	the	infinitesimal	strain	tensor	is
appropriate.	With	the	behaviour	illustrated	in	Fig.	8.4	as	motivation,	we	assume	that	an	increment	δEij	in
the	strain	components	at	time	τ	gives	rise	to	increments	δTij	in	the	stress	components	at	subsequent	times	t,
the	magnitude	of	these	increments	depending	on	the	lapse	of	time	since	the	strain	increment	was	applied.
Thus

(8.28)

where	we	expect	Gijkl	to	be	decreasing	functions	of	t—τ.	The	superposition	principle	is	also	assumed,
according	to	which	the	total	stress	at	time	t	is	obtained	by	superimposing	the	effect	at	time	t	of	all	the
strain	increments	at	times	τ<	t.	Thus

(8.29)



Figure	8.4	Stress-relaxation	curve

This	is	the	constitutive	equation	for	linear	viscoelasticity.	The	functions	Gijkl	are	called	relaxation
functions.	If	the	strain	was	zero	in	the	remote	past,	so	that	Ekl	→	0	as	τ	→	—	∞,	(8.29)	can	be	expressed
in	an	alternative	form	by	carrying	out	an	integration	by	parts,	as	follows:

(8.30)

The	stress-relaxation	functions	Gijk l(t—τ)	have	the	index	symmetries	Gijkl	=	Gjikl	=	Gijlk,	but	not	the
index	symmetry	Gijkl	=	Gklij,	unless	this	is	introduced	as	a	further	assumption.	If	the	material	is	isotropic,
then	Gijkl	are	components	of	a	fourth-order	isotropic	tensor,	and,	for	example,	(8.29)	reduces	to

(8.31)

and	only	two	relaxation	functions	λ(t—τ)	and	µ(t—τ)	are	required	to	describe	the	material.

The	inverse	relation	to	(8.29)	is

(8.32)

The	functions	Jijkl(t—τ)	are	known	as	creep	functions;	they	have	the	same	index	symmetries	as	Gijkl(t—τ)
and	are	components	of	a	fourth-order	isotropic	tensor	in	the	case	in	which	the	material	is	isotropic.



Linear	viscoelasticity	has	the	same	limitations	as	linear	elasticity	:	it	is	necessarily	an	approximate
theory	which	can	only	be	applicable	when	the	strain	and	rotation	components	are	small.

In	a	sense,	linear	elasticity	can	be	regarded	as	the	limiting	case	of	linear	viscoelasticity	in	which	the
relaxation	functions	are	independent	of	t;	and	a	Newtonian	viscous	fluid	as	the	limiting	case	of	an
isotropic	linear	viscoelastic	material	in	which	the	relaxation	functions	λ(t—τ)	and	µ(t—τ)	take	the	forms
λδ(t—τ)	and	µδ(t—τ)	respectively,	where	λ	and	µ	are	the	viscosity	coefficients	and	δ(t—τ)	is	the	Dirac
delta	function.

8.6	Problems
1.	A	linear	elastic	material	has	reflectional	symmetry	for	reflections	in	the	(X2,	X3),	(X3,	X1)	and	(X1,	X2)
planes	(such	a	material	is	said	to	be	orthotropic).	Show	that	it	has	nine	independent	elastic	constants.

2.	Show	that	a	transversely	isotropic	linear	elastic	solid	has	five	independent	elastic	constants,	and	find
the	form	of	W	for	a	linear	elastic	solid	which	is	transversely	isotropic	with	respect	to	the	X3-axis.

3.	From	the	constitutive	equation	(8.22)	and	the	equation	of	motion	(7.22),	with	b	=	0,	derive	Navier’s
equations	for	an	isotropic	linear	elastic	solid:

4.	In	simple	tension	of	an	isotropic	linear	elastic	solid.	T11	=	EE11,	T22	=	T33	=	T23	=	T31	=	T12	=	0,	and	E22
=	E33	=	—νE11,	where	E	is	Young’s	modulus	and	ν	is	Poisson’s	ratio.	Prove	that	E	=	µ(3λ	+	2µ)/(λ	+	µ)

and	 .	Show	that	the	constitutive	equation	(8.22)	can	be	expressed	in	the	form

5.	Prove	that	necessary	and	sufficient	conditions	for	W	to	be	positive	definite	for	an	isotropic	linear
elastic	solid	are	µ	>	0,	 	>	0.

6.	In	plane	stress	or	in	plane	strain,	the	equilibrium	equations	reduce	to	(5.42).	Show	that	these	equations
are	identically	satisfied	if	the	stress	components	are	expressed	in	terms	of	Airy’s	stress	function	X,	as	T11
=	 	T22	=	 	T12	=	—∂2X/∂x1	∂x2.	Prove	that	in	plane	stress	or	plane	strain	of	an	isotropic
linear	elastic	solid,	X	satisfies	the	biharmonic	equation

7.	From	the	constitutive	equation	(8.26)	and	the	equations	of	motion	(7.22)	derive	the	Navier-Stokes
equations	for	an	incompressible	Newtonian	fluid



8.	A	Voigt	solid	is	a	model	viscoelastic	material	which	in	uniaxial	tension	has	the	stress-strain	relation	σ
=	E0	 ,	where	E0	and	to	are	constants.	Sketch	the	creep	and	stress-relaxation	curves	for	this
material.	Show	that	the	relaxation	function	is	E0{1	+	t0	δ(t—τ)}.	Give	a	three-dimensional	generalization
of	the	above	constitutive	equation	for	an	incompressible	isotropic	material.

9.	A	Maxwell	fluid	is	a	model	viscoelastic	material	which	in	uniaxial	tension	has	the	stress-strain	relation
.	Sketch	the	creep	and	stress	relaxation	curves.	Show	that	the	stress	relaxation	function	is

E1	exp	{—(t—τ)/t1}.	Hence	give	a	three-dimensional	generalization	for	an	isotropic	incompressible
material	in	the	integral	form	(8.31).



9

Further	analysis	of	finite	deformation

9.1	Deformation	of	a 	surface 	e lement
The	extension	of	a	material	line	element	in	the	deformation	(6.1)	was	discussed	in	Section	6.2	and	the
change	of	volume	of	a	material	volume	element	was	considered	in	Section	7.2.	In	some	applications	it	is
important	to	know	how	the	area	and	orientation	of	a	material	surface	element	change	in	a	deformation;	this
problem	arises,	for	example,	when	specified	forces	are	applied	to	the	boundary	of	a	deforming	body.

Consider	a	triangular	material	surface	element	whose	vertices	P0,	Q0	and	R0	in	the	reference
configuration	have	position	vectors	X(0),	X(0)+δX(1)	and	X(0)+δX(2)	respectively,	as	shown	in	Fig.	9.1.	Let
this	triangle	have	area	δS	and	unit	normal	vector	N.3	Then	by	elementary	vector	algebra,

(9.1)

Suppose	that	in	the	deformation	(6.1)	the	particles	initially	at	P0,	Q0	and	R0	move	to	the	positions	P,	Q	and
R,	with	respective	position	vectors	x(0),	x(0)+δx(1)	and	x(0)	+	δx(2),	and	that	the	triangle	P0Q0R0	has	area	δs
and	unit	normal	n.	Then

(9.2)

We	now	introduce	(7.3)	and	the	similar	relation	for	 	into	(9.2),	and	so	obtain



Figure	9.1	Deformation	of	a	surface	element

Next	multiply	both	sides	of	this	equation	by	∂xi/∂XR.	This	gives

It	then	follows	from	(2.22)	and	(9.1)	that

(9.3)

In	the	limit	as	δX(1)→0,	and	δX(2)→0,	(9.3)	becomes

(9.4)

Since	N	is	a	unit	vector,	it	follows	from	(9.4)	that



(9.5)

and	hence	that

(9.6)

In	tensor	notation,	(9.4)	and	(9.6)	may	be	written	as

(9.7)

and

(9.8)

Equations	(9.6)	or	(9.8)	determine	the	area	ratio	ds/dS	in	terms	of	the	deformation	and	the	normal	n	in	the
deformed	configuration.	The	initial	normal	N	is	then	given	by	(9.4)	or	(9.7).	The	inverse	relations	to	(9.7)
and	(9.8)	are

(9.9)

and



(9.10)

9.2	Decomposition	of	a 	deformation
By	the	polar	decomposition	theorem	(Sections	2.5,	3.6)	the	deformation-gradient	tensor	F	may	be
expressed	in	the	forms

(9.11)

where	R	is	an	orthogonal	tensor	and	U	and	V	are	symmetric	positive	definite	tensors.	Since	det	F=	ρo/ρ,	it
can	be	assumed	that	det	F	>	0,	and	then	R	is	a	proper	orthogonal	tensor.	For	a	given	tensor	F,	the	tensors
R,	U	and	V	are	unique.	It	follows	immediately	from	(9.11)	that

(9.12)

We	consider	first	the	case	in	which	the	motion	is	homogeneous,	so	that

(9.13)

where	the	components	of	F	are	constants.	Suppose	that	the	body	undergoes	two	successive	homogeneous
motions,	in	which	the	particle	which	initially	has	position	vector	X	moves	first	to	the	point	with	position
vector	 	and	secondly	to	the	point	with	position	vector	x,	where

(9.14)

Then	from	(9.11)	and	(9.14)



x	=	 	=	R⋅U⋅X	=	F⋅X

and	the	two	successive	motions	(9.14)	are	equivalent	to	the	motion	(9.13).	Since	R	is	orthogonal,	the
second	equation	of	(9.14)	describes	a	rotation	of	the	body.	The	first	equation	of	(9.14)	describes	a
deformation	which	corresponds	to	the	symmetric	tensor	U.	Thus	the	first	equation	of	(9.11)	shows	that	any
homogeneous	deformation	can	be	decomposed	into	a	deformation	which	corresponds	to	the	symmetric
tensor	U	followed	by	the	rotation	R.	Similarly,	the	second	equation	of	(9.11)	shows	that,	alternatively,	any
homogeneous	deformation	can	be	decomposed	into	the	same	rotation	R	followed	by	a	deformation	which
corresponds	to	the	symmetric	tensor	V.

If	the	deformation	is	not	homogeneous,	(9.13)	may	be	replaced	by	the	relation

dx	=	F	⋅	dX

between	the	differentials	dx	and	dX.	Then	the	decompositions	(9.11)	can	still	be	made,	but	R,	U	and	V	are
now	functions	of	position.	In	this	case	the	decomposition	is	regarded	as	one	into	a	local	deformation	U
followed	by	a	local	rotation	R,	or	alternatively	into	a	local	rotation	R	followed	by	the	local	deformation
V.

The	tensor	R	is	called	the	rotation	tensor.	The	tensors	U	and	V	are	called	the	right	stretch	and	the	left
stretch	tensors	respectively.	The	tensors	U	and	V	are	closely	related	to	the	deformation	tensors	C	and	B,
for,	from	(6.27)	and	(9.11),	and	since	U	is	symmetric,	we	have

(9.15)

and	from	(6.33)	and	(9.11)	we	have

(9.16)

Because	U	is	symmetric	and	positive	definite,	(9.15)	determines	the	components	of	U	in	terms	of	those
of	C,	and	conversely.	Therefore	U	and	C	are	measures	of	the	deformation	which	are	equivalent	to	each
other.	U	has	the	advantage	of	possessing	the	geometrical	interpretation	described	in	this	section.
However,	for	a	given	F,	the	direct	calculation	of	U	from	(9.11)	is	inconvenient,	whereas	the	calculation	of
C	from	(6.27)	is	straightforward.	Therefore	in	applications	the	use	of	C	is	usually	to	be	preferred	to	that
of	U.	Similar	comments	apply	to	the	tensors	B	and	V.

From	(6.62)	we	have



(9.17)

where	E	is	symmetric	and	Ω	is	anti-symmetric.	In	the	case	of	small	strains	and	rotations,	we	neglect
squares	and	products	of	E	and	Ω.	Then

U2	=	FT	⋅	F	=	(I+E—Ω)	⋅	(I+E+Ω)≃I+2E

and,	to	the	same	order	of	approximation,

(9.18)

In	a	similar	way	we	find	that	V≃I+E,	so	that	both	U—I	and	V—I	reduce	to	the	infinitesimal	strain	tensor
in	the	case	of	small	deformations.	Also,	from	(9.18),

(9.19)

and	so	from	(9.11),	(9.17)	and	(9.19)

(9.20)

Thus	R—I	reduces	to	the	infinitesimal	rotation	tensor	Ω	in	the	case	of	small	rotations.

9.3	Princ ipal	stretches	and	princ ipal	axes	of	deformation
Suppose	that	F	has	been	decomposed	into	the	product	R	⋅	U,	as	in	(9.11).	The	factor	R	represents	a
rotation.	We	now	concentrate	on	the	motion	which	corresponds	to	the	symmetric	tensor	U.

We	recall	the	result	(6.20)	which	gives	the	change	of	orientation	of	a	material	line	element	in	a	motion.
For	the	motion	U,	this	result	becomes



(9.21)

where	A	and	a	are	unit	vectors	in	the	direction	of	the	line	element	before	and	after	the	motion	U,	and	λ	is
the	stretch	of	the	element.

Suppose	a	particular	line	element,	whose	initial	direction	is	given	by	A,	stretches	but	does	not	rotate
during	the	motion.	Then	for	this	line	element	A	is	equal	to	a,	and	(9.21)	becomes	or

(9.22)

Thus	λ	is	a	principal	value	of	U,	and	A	is	a	principal	direction	of	U.	Since	U	is	symmetric	and	positive
definite,	its	principal	values	are	real	and	positive;	we	denote	them	by	λ1,	λ2	and	λ3,	order	them	so	that	λ1
≥	λ2	≥	λ3,	and	call	them	the	principal	stretches.	Also	since	U	is	symmetric,	it	has	a	triad	of	orthogonal
principal	directions	given	by	unit	vectors	A1,	A2	and	A3,	which	are	uniquely	determined	if	λ1,	λ2	and	λ3
are	distinct.	These	vectors	determine	the	principal	axes	of	U.

If	the	coordinate	axes	are	chosen	to	coincide	with	the	principal	axes	of	U,	then	the	matrix	of	the
components	of	U	takes	the	diagonal	form

Hence,	referred	to	these	axes,	the	deformation	U	consists	of	extensions	along	the	three	coordinate
directions,	with	no	rotation	of	elements	which	lie	along	these	axes.	Therefore	the	motion	which
corresponds	to	F	=	R	⋅	U	consists	of	these	three	extensions	of	magnitudes	λ1,	λ2	and	λ3	along	the	three
directions	A1,	A2	and	A3	respectively,	followed	by	the	rotation	R.

In	a	similar	way,	the	decomposition	F	=	V⋅R	can	be	used	to	show	that,	alternatively,	F	can	be	regarded
as	a	rotation	R	followed	by	three	extensions,	which	are	given	by	the	principal	values	of	V,	along	the
directions	of	the	principal	axes	of	V.	However,	the	principal	values	and	principal	axes	of	U	and	V	are
related.	Since	RT	⋅	R=I,	it	follows	from	(9.22)	that

R	·	(U	—	λI)	⋅	RT⋅	R	⋅	A	=	0

Since	R	⋅	I	⋅	RT	=	I,	this	equation	can	be	expressed	as

(R⋅U⋅RT—λI)	⋅R⋅A	=	0



and	hence,	from	(9.12),	as

(9.23)

Thus	the	principal	stretches	λ1,	λ2	and	λ3	of	U	are	also	the	principal	values	of	V,	and	if	A1,	A2	and	A3
define	the	principal	directions	of	U,	then	R	·	A1,	R·	A2	and	R	·	A3	define	the	principal	directions	of	V.
The	principal	directions	of	V	are	obtained	by	rotating	the	principal	directions	of	U	through	the	rotation	R.

If	the	deformation	is	homogeneous,	then	U,	V	and	R	are	constant	tensors,	and	the	principal	stretches
and	the	principal	directions	are	uniform	throughout	the	body.	In	the	general	case	of	a	non-homogeneous
deformation,	the	principal	stretches	λ1,	λ2	and	λ3,	and	the	vectors	A1,	A2	and	A3,	as	well	as	the	rotation
R,	are	all	functions	of	position.

Because	C	=	U2,	and	y	 ,	the	principal	directions	of	C	and	γ	coincide	with	those	of	U,	and
their	principal	values	are	 	and	 —1)	(i	=1,	2,	3)	respectively.	Similarly,	the	principal	directions	of
B	and	η	coincide	with	those	of	V	and	their	principal	values	are 	and	 	(i	=1,	2,	3)	respectively.
For	a	given	F	it	is	much	easier	to	calculate	C	or	B	than	U	or	V,	and	so	the	easiest	way	to	calculate	the
principal	stretches	and	principal	directions	is	by	calculating	the	principal	values	and	principal	directions
of	C	or	B.

The	principal	stretches	and	principal	axes	of	the	deformation	tensors	can	be	interpreted	in	another	way.
We	recall	the	formula	(6.29),

(9.24)

For	a	given	tensor	C	this	determines	an	extension	ratio	λ	for	each	set	of	direction	cosines	As	in	the
reference	configuration.	We	enquire	for	what	directions	A	this	extension	ratio	takes	extremal	values;	thus
we	seek	extremal	values	of	ARASCRS,	subject	to	the	constraint	ARAR	=	1.	These	extremal	values	are
given	by	the	solutions	of	the	equations

where	u.2	is	a	Lagrangian	multiplier.	Since	∂AR/∂AP	=	δRP,	and	∂As/∂AP,	=	δSP,	this	equation	reduces	to



(9.25)

Hence	the	directions	A	for	which	A2	is	extremal	are	two	of	the	principal	directions	of	C.	Therefore	the
corresponding	values	of	λ2	are	the	largest	and	smallest	principal	values	of	C,	namely	 	and	 	A
similar	procedure	applied	to	the	tensor	B	shows	that	λ2	takes	its	extremal	values	 	and	 	for	directions
in	the	deformed	configuration	which	coincide	with	two	of	the	principal	directions	of	B.

9.4	Strain	invariants
It	follows	from	the	discussion	of	Sections	3.8	and	9.3	that	the	principal	stretches	λ1,	λ2	and	λ3	are
invariants	which	are	intrinsic	to	the	deformation.	Since	λ1,	λ2	and	λ3	are	principal	values	of	U	and	V,
three	symmetric	functions	of	λ1,	λ2	and	λ3	may	be	chosen	as	the	basic	invariants	of	U	and	V.	However,	it
is	preferable	to	make	use	of	the	fact	that	 ,	 	and	 	are	principal	values	of	C	and	B,	and	to	define	the
strain	invariants	I1,	I2	and	I3	as	follows:

(9.26)

The	advantage	of	this	procedure	is	that	C	and	B	are	much	more	easily	calculated	from	F	than	are	U	and	V.
The	choice	(9.26)	of	the	strain	invariants	is,	of	course,	not	unique,	but	it	is	one	which	has	proved	to	be
convenient.

Since	 ,	 	and	 	are	the	principal	values	of	both	C	and	B,	there	follow	from	(3.56)	and	(3.57):

(9.27)

Alternative	expressions	for	I3	are	obtained	by	substituting	C	and	B	for	A	in	(3.59).

From	(3.58),	the	Cayley—Hamilton	theorem	for	C	and	for	B	can	be	expressed	as

(9.28)



The	eigenvalues	of	C-1	and	of	B-1	are	 ,	 	and	

Therefore

Hence	we	obtain	the	alternative	expressions	for	I2:

(9.29)

We	note	also	that,	from	(7.8),

(9.30)

If	the	material	is	incompressible	then	(Section	7.2)	det	F	=	1,	and	so	I3	=	1.	Hence	in	any	deformation	of
an	incompressible	material,	λ1λ2λ3	=	1.

Example	9.1	Uniform	extensions.	For	the	uniform	extensions	defined	by	(6.42)	the	polar	decomposition
is	trivial:	we	have	F	=	U	=	V,	R	=	I.	The	principal	stretches	are	λ1,	λ2	and	λ3	and	the	coordinate	axes	are
the	principal	axes	of	both	C	and	B.	The	strain	invariants	are

Example	9.2	Simple	shear.	A	simple	shearing	motion	is	defined	by	(6.44).	From	(6.45)	and	(9.27)	the
strain	invariants	for	this	motion	are

I1	=	3+tan2	γ,	I2	=	3+tan2	γ,	I3	=	1

Since	I3	=	1,	a	simple	shearing	motion	is	possible	in	an	incompressible	material,	as	is	obvious	from	Fig.
6.4.	By	calculating	the	eigenvalues	of	the	matrix	of	the	components	of	the	tensor	C	given	in	(6.45),	we
find	that



λ1=sec	β	+tan	β,	λ2	=	1,	λ3	=	secβ-tanβ

where	tan	β	=	 γ.	The	principal	directions	of	C	are	given	by	the	eigenvectors	of	the	matrix	of	the
components	of	C;	these	eigenvectors	have	the	following	components:

Similarly,	the	components	of	the	eigenvectors	of	B	are

The	components	of	the	tensor	R	can	be	calculated	by	using	the	property	that	R	represents	the	rotation
which	rotates	the	orthogonal	triad	of	principal	axes	of	C	into	the	orthogonal	triad	of	principal	axes	of	B.
Thus	if

then	M2	=	RM1,	where	R	is	the	matrix	of	components	of	R.	Since	M1	is	orthogonal,	it	follows	that	
,	which	gives

Thus	R	represents	a	rotation	through	β	about	the	X3-axis.	The	components	of	the	tensor	U	are	then
determined	by	the	equation	U	=	RT·	F,	which	gives



An	alternative	procedure	is	to	calculate	U	directly	from	the	relation	U2	=	C	and	to	use	the	relation	R	=
F·	U-1	to	determine	R.

9.5	Alternative 	stress	measures
In	Section	5.2	we	defined	the	component	Tij	of	the	Cauchy	stress	tensor	T	as	the	component	in	the	Xj
direction	of	the	surface	traction	on	a	surface	element	which	is	normal	to	the	xi	direction	in	the	current
configuration.	For	some	purposes	it	is	more	convenient	to	use	a	stress	tensor	which	is	defined	in	terms	of
the	traction	on	a	material	surface	which	is	specified	in	the	reference	configuration.

Consider	an	element	of	a	material	surface	which	in	the	reference	configuration	is	normal	to	the	XR-axis
and	has	area	δS.	The	unit	normal	to	the	surface	is	therefore	eR	in	the	reference	configuration.	After	the
deformation	(6.1),	this	element	has	area	8s	and	unit	normal	nR	where,	from	(9.9),

(9.31)

The	force	on	this	deformed	surface	is	denoted	by	πR	δS.	The	vector	πR,	is	resolved	into	components	ΠRi*,
so	that

(9.32)

Thus	ΠRi	represents	the	component	in	the	xi	direction	of	the	force	on	a	surface	which	is	normal	to	the	XR-
axis	in	the	reference	configuration,	measured	per	unit	surface	area	in	the	reference	configuration.

To	relate	ΠRi	to	Tij,	we	note	that	the	force	on	the	deformed	surface	element	is	also	equal	to	nR	Tδs.
Hence,	from	(9.31)	and	(9.32),

(9.33)

Therefore,	by	equating	components	on	either	side	of	(9.33)	and	taking	the	limit	as	δS	→	0,	we	obtain



(9.34)

Hence	ΠRi	are	components	of	a	second-order	tensor	II,	where

(9.35)

and	conversely

(9.36)

The	tensor	II	is	not	symmetric.	We	shall	call	it	the	nominal	stress	tensor.	It	is	often	also	called	the	first
Piola-Kirchhoff	stress	tensor,	but	some	authors	reserve	this	term	for	its	transpose,	IIT.

By	considering	the	equilibrium	of	an	elementary	tetrahedron,	three	of	whose	faces	are	normal	to	the
coordinate	axes	in	the	reference	configuration,	it	can	be	shown	that	the	traction	t(N)	(measured	per	unit
area	in	the	reference	configuration)	on	a	material	surface	which	has	unit	normal	N	in	the	reference
configuration	is	given	by

(9.37)

By	considering	the	resultant	surface	and	body	forces	on	an	arbitrary	region	of	a	body,	and	referred	to	the
body	in	its	reference	configuration,	the	equations	of	motion	can	be	expressed	in	the	form

(9.38)

The	second	Piola-Kirchhoff	stress	tensor	P	is	defined	as



(9.39)

Hence

(9.40)

The	tensor	P	is	symmetric.	It	does	not	have	any	simple	direct	interpretation.

The	traction	on	a	surface	defined	in	the	current	configuration	is	not	determined	by	II	or	P	unless	F	is
also	given.	To	leading	order,	II	and	P	reduce	to	T	in	the	case	of	infinitesimal	displacement	gradients.	We
shall	not	use	II	or	P	in-	this	book,	except	to	point	out	in	Section	10.2	that	certain	constitutive	equations
can	be	expressed	concisely	in	terms	of	II	and	P.

9.6	Problems
1.	For	the	deformation	defined	in	Chapter	6,	Problem	2,	find:	(a)	the	direction	of	the	normal	to	a	material
surface	element	in	the	deformed	configuration	which	had	normal	direction	(1,	1,	1)	in	the	reference
configuration;	(b)	the	ratio	of	the	areas	of	this	surface	element	in	the	reference	and	deformed
configurations;	(c)	the	principal	stretches;	(d)	the	principal	axes	of	C	and	of	B.

2.	Determine	CRS	for	the	deformation	given	by

where	a	and	b	are	constants.	Find	the	principal	stretches	and	the	principal	axes	of	C.

3.	For	the	deformation	defined	by

where	A	and	λ	are	constants,	find	 .	Prove	that	the	squares	of	the	principal	stretches	are	λ2	and	the	two
roots	of	the	quadratic	equation	μ2λ2-μ(A2r2+λ2A-2r-2)+1=0	where	 .	Hence	show	that	det	B-1=
1.

4.	For	the	homogeneous	deformation

x1	=	αX1	+	βX2,	x2	=	-αX1	+	βX2,	x3=	μX3



where	α,	β	and	μ	are	positive	constants,	determine	the	components	CRS	and	the	principal	stretches,	and
find	R	and	U	for	the	polar	decomposition	F	=	R	.	U.

5.	A	fluid	moves	so	that	the	particle	at	the	point	with	coordinates	(X1;	X2,	X3)	at	time	t	=	0	is	at	the	point
with	coordinates	(x1(τ),	x2(τ),	x3(τ))	at	time	t	=	τ,	where

and	α	and	β	are	constants.	Obtain	expressions	for	X¡	(τ)	in	terms	of	the	coordinates	xi	of	the	particle	at
time	t	and	determine	the	components	of	the	tensor	C(τ)	defined	by

By	expanding	C(τ)	as	a	power	series	in	s	=	t	-	τ,	obtain	the	Rivlin-Ericksen	tensors	A(n)(t)	for	all	values
of	n,	where

6.	The	Rivlin-Ericksen	tensors	A(n)	satisfy	the	relations

Evaluate	these	tensors	for	the	steady	flow	υ1	=	υ(x2),	υ2	=	0,	υ3	=	0,	showing	that	 	for	n	≥	3.
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Non-linear	constitutive	equations

10.1	Nonlinear	theories
In	Chapter	8	we	discussed	some	of	the	linear	theories	of	continuum	mechanics.	Linearity	of	the	governing
equations	is	always	a	great	advantage	in	the	solution	of	boundary-value	problems,	because	it	enables	the
techniques	of	linear	analysis	to	be	employed.	As	a	result	of	this,	the	linear	theories	of	continuum
mechanics	have	been	highly	developed	and	applied	to	numerous	problems.	Many	common	materials	are
adequately	modelled	by	linear	constitutive	equations.	However,	there	are	also	many	materials	whose
mechanical	behaviour	is	strongly	non-linear,	and	to	describe	this	behaviour	it	is	essential	to	formulate
appropriate	non-linear	constitutive	equations.	We	give	some	examples	in	this	chapter.

10.2	The 	theory	of	f inite 	e lastic 	deformations
The	linear	theory	of	elasticity	which	was	formulated	in	Section	8.3	is	very	effective	for	many	purposes.
However,	because	it	is	restricted	to	the	case	in	which	the	deformation	gradients	are	small,	it	has
limitations.	For	example,	the	linear	theory	is	inadequate	to	describe	the	mechanical	behaviour	of
materials	such	as	rubber,	which	are	capable	of	undergoing	large	deformations,	but	(to	a	good
approximation)	behave	elastically	in	the	sense	described	in	Section	8.3.	To	model	the	behaviour	of
rubber-like	materials,	and	for	other	purposes,	we	require	a	theory	of	finite	elastic	deformations.

To	formulate	a	theory	of	finite	elastic	deformations	we	postulate,	as	in	Section	8.3,	the	existence	of	a
strain-energy	function	W	=	p0e	which	depends	only	on	the	deformation	and	has	the	property	(b)	(p.	111).
Thus	equation	(8.12)	remains	valid	in	the	finite	theory	of	elasticity.	However,	it	is	no	longer	assumed	that
W	may	be	approximated	by	a	quadratic	function	of	the	infinitesimal	strain	components.	Instead,	we	permit
W	to	depend	in	an	arbitrary	manner	on	the	deformation	gradient	components	FiR,	so	that	(8.7)	is	replaced
by	the	more	general	relation

(10.1)

Then	(6.76),	(8.12)	and	(10.1)	give



This	relation	is	valid	for	all	values	of	∂υi/∂xi,	and	so

(10.2)

Equation	(10.2)	is	a	form	of	the	constitutive	equation	for	finite	elasticity.	Its	apparent	simplicity	is
deceptive,	because	it	requires	W	to	be	expressed	as	a	function	of	the	nine	components	FiR.	It	would
clearly	be	impracticable	to	perform	experiments	to	determine	this	function	for	any	particular	elastic
material.

The	value	of	the	strain-energy	function	is	not	changed	if	a	rigid-body	rotation	is	superposed	on	the
deformation.	Suppose	that	a	typical	particle	initially	has	position	vector	X,	and	that	in	a	motion	it	moves
to	the	point	with	position	vector	x.	In	a	further	superposed	rigid-body	rotation	the	particle	originally	at	X
moves	to	 	,	where	M	is	a	proper	orthogonal	tensor.	Let

Then

(10.3)

Then	we	require	that

(10.4)

for	all	proper	orthogonal	tensors	M.	Equation	(10.4)	is	a	restriction	on	the	manner	in	which	W	may
depend	on	F.	To	make	this	restriction	explicit	we	employ	the	polar	decomposition	theorem	to	express
(10.4)	in	the	form

W(F)=	W(M∙R∙U)

Since	this	relation	holds	for	all	proper	orthogonal	tensors	M,	it	holds	in	particular	when	M	=	RT.	Hence



w(F)	=	W(U)

Thus	W	can	be	expressed	as	a	function	of	the	six	components	of	the	symmetric	tensor	U.	However,	there	is
a	one-to-one	correspondence	between	the	tensors	U	and	C	(Section	9.2)	and	so	equivalently	(and	more
conveniently)	we	may	regard	W	as	a	function	of	the	six	components	CRS	of	C.	Consequently	a	necessary
condition	for	W	to	be	independent	of	superposed	rigid-body	motions	is	that	W	can	be	expressed	in	the
form

(10.5)

where	of	course,	the	function	W	is	not	the	same	in	(10.5)	as	it	is	in	(10.1).	Because	C	does	not	change	its
value	in	a	superposed	rigid-body	motion,	the	form	(10.5)	is	also	sufficient	to	ensure	that	W	remains
unchanged	in	a	superimposed	rigid-body	motion,	and	so	no	further	simplifications	can	be	achieved	in	this
way.

When	W	is	expressed	in	the	form	(10.5),	we	have

By	interchanging	the	dummy	indices	R	and	S	in	one	of	the	terms	on	the	right-hand	side,	this	gives

(10.6)

In	(10.6),	and	subsequently,	W	is	regarded	as	a	symmetric	function	of	CRS	and	CSR,	although	these
components	are	equal	to	each	other.	Since	∂υi/∂xi	is	arbitrary,	(8.12)	and	(10.6)	now	give

(10.7)



This	is	the	required	general	form	of	the	constitutive	equation	for	a	finite	elastic	solid.

We	note	in	passing	that	the	constitutive	equations	(10.2)	and	(10.7)	take	simpler	forms	when	they	are
expressed	in	terms	of	the	nominal	or	Piola-Kirchhoff	stress	tensors.	Since	ρ0/ρ	=	det	F,	we	have	from
(9.35)	and	(10.2),

ΠRi	=	∂W/∂FiR

and	from	(9.39)	and	(10.7)

Any	material	symmetries	which	the	material	possesses	will	restrict	the	manner	in	which	W	may	depend
upon	C.	Suppose,	for	example,	that	the	proper	orthogonal	matrix	Q	defines	a	rotational	symmetry	of	the
material.	The	effect	of	replacing	the	deformation	(8.1)	by	the	deformation	(8.2)	is	to	replace	F	by	QT	∙F	∙
Q,	and	so	to	replace	C=	FT	∙F	by	QT	∙C	∙	Q.	However,	when	Q	defines	a	rotational	symmetry,	this
replacement	leaves	the	value	of	W	unchanged.	Thus

(10.8)

for	all	rotational	symmetries	Q.	Similarly,	if	R	defines	a	reflectional	symnetry,	then

(10.9)

If	the	material	is	isotropic,	then	(10.8)	holds	for	all	rotations	Q.	Then	(10.8)	can	be	interpreted	as	a
statement	that	W,	regarded	as	a	function	of	CRS,	takes	the	same	form	in	any	coordinate	system,	so	that
(Section	3.8)	W	is	an	invariant	of	C.	Three	independent	invariants	of	C	are	the	strain	invariants	I1,	I2	and
I3	defined	by	(9.26)	or	(9.27);	it	can	be	shown	that	any	invariant	of	C	can	be	expressed	as	a	function	of	I1
I2	and	I3.	Hence,	for	an	isotropic	material,	W	can	be	expressed	in	the	form

(10.10)



where	again	the	function	W	is	a	different	function	from	that	in	(10.1)	and	(10.5).	It	can	be	verified	that	if
W	has	the	form	(10.10),	it	also	satisfies	the	condition	(10.9)	for	all	reflections	R.

When	W	has	the	form	(10.10),	we	have

(10.11)

From	(9.27),	it	follows	that

(10.12)

The	expression	for	∂I3/∂CRS	is	most	easily	obtained	by	taking	the	trace	of	(9.28),	which	gives

(10.13)

and	from	this	it	follows	that

(10.14)

By	substituting	from	(10.11),	(10.12)	and	(10.14)	into	(10.7),	we	obtain



This	is	a	form	of	the	constitutive	equation	for	an	isotropic	finite	elastic	solid.	It	may	be	expressed	more
concisely	using	tensor	notation	as

(10.15)

where	we	have	used	the	relation	I3	=	(ρ0/ρ)2,	and	for	brevity	we	have	introduced	the	notations

(10.16)

Equation	(10.15)	may	be	further	simplified	by	noting,	from	(6.27)	and	(6.33)	that

F∙FT=	B,	F∙C∙FT=	B2,	F∙C2∙FT=	B3

and	hence	that	(10.15)	may	be	written	as

T	=	2(I3)- {(W1	+	I1W2	+	I2W3)B-(W2	+	I1W3)B2+	W3B3}

We	now	use	(9.28)	to	eliminate	B3.	This	gives

(10.17)

Also,	by	multiplying	the	second	equation	of	(9.28)	by	B-1,	we	have

and	so	B2	can	be	eliminated	from	(10.17)	in	favour	of	B-1,	which	gives



(10.18)

In	practice,	(10.17)	and	(10.18)	are	the	forms	of	the	constitutive	equation	for	an	isotropic	elastic	solid
which	are	found	to	be	most	convenient.

Further	simplification	arises	if	the	material	is	incompressible.	In	this	case	I3	=	1,	but	it	is	not	sufficient
to	set	I3	=	1	in	the	constitutive	equation,	because	in	the	limiting	case	of	an	incompressible	material	certain
derivatives	of	W	tend	to	infinity.	The	difficulty	is	most	easily	avoided	by	introduced	an	arbitrary
Lagrangian	multiplier	 	and	writing	W	in	the	form

(10.19)

The	analysis	leading	to	(10.17)	and	(10.18)	then	goes	through	as	before,	but	I3	takes	the	value	one	and	W3

is	replaced	by	 P.	Since	p	is	undetermined,	the	other	terms	multiplying	I	in	(10.17)	and	(10.18)	may	be
absorbed	into	p,	so	that	for	an	incompressible	isotropic	finite	elastic	solid	the	constitutive	equation	can
be	expressed	in	either	of	the	forms

(10.20)

Incompressibility	is	an	example	of	a	kinematic	constraint.	The	mechanical	effect	of	such	a	constraint
is	to	give	rise	to	a	reaction	stress	which	does	no	work	in	any	motion	which	is	compatible	with	the
constraint.	In	the	case	of	incompressibility,	the	reaction	stress	is	an	arbitrary	hydrostatic	pressure	-pI,
which	is	not	given	by	a	constitutive	equation	but	can	only	be	determined	by	using	equations	of	motion	(or
equilibrium)	and	boundary	conditions.	Such	an	arbitrary	hydrostatic	pressure	must	always	be	included	as
part	of	the	stress	in	a	body	of	any	incompressible	material.

The	equations	of	linear	elasticity	theory	can	be	recovered	from	(10.7)	by	expanding	all	quantities	in
powers	of	the	displacement	gradients	and	discarding	terms	on	the	right-hand	side	of	(10.7)	which	are	of
degree	higher	than	the	first	in	these	gradients.

10.3	A	non-linear	viscous	f luid
In	Section	8.4	we	considered	fluids	with	constitutive	equations	of	the	form	(8.23),	in	which	T	+	pI	is
linear	in	the	rate-of-strain	components.	This	theory	proves	to	be	very	satisfactory	for	describing	the
behaviour	of	many	fluids,	including	the	commonest	fluids,	air	and	water,	over	a	very	wide	range	of	rates
of	strain.	However,	there	are	also	fluids,	including	blood	and	many	fluids	which	are	important	in
chemical	engineering	processes,	which	exhibit	phenomena	(which	in	some	cases	are	quite	spectacular),
which	cannot	be	explained	on	the	basis	of	the	linear	model.	Such	fluids	are	described	as	non-Newtonian
fluids.	For	non-Newtonian	fluids	the	assumption	that	the	stress	depends	linearly	on	rate	of	strain	is



inadequate.	Therefore	in	this	section	we	discard	linearity	and	begin	with	the	assumption	that	T	depends	in
a	general	way	on	density,	temperature,	and	the	velocity-gradient	tensor.	Thus

(10.21)

or,	in	tensor	notation

(10.22)

We	first	consider	whether	the	requirements	that	T	is	independent	of	superposed	rigid-body	motions
places	any	restrictions	on	(10.22).	Since,	by	(6.72),	L=	D	+	W,	we	can	replace	(10.22)	by

(10.23)

where	T	represents	a	different	function	on	the	right-hand	side	of	(10.23)	from	the	function	which	it
represents	on	the	right-hand	side	of	(10.22).

Suppose	a	body	undergoes	the	motion

(10.24)

Consider	a	new	motion	which	differs	from	(10.24)	only	by	a	superposed	time-dependent	rigid	rotation,	so
that	at	time	t	the	position	 	of	the	particle	initially	at	X	is	given	by

(10.25)

where	M	is	a	time-dependent	proper	orthogonal	tensor.	Then	in	the	second	motion	the	velocity	is



(10.26)

The	velocity-gradient	components	in	the	second	motion	are	given	by

or,	in	tensor	notation,	as

It	follows	that	the	rate-of-strain	tensor	 	and	the	spin	tensor	W	for	the	second	motion	are	given	by

(10.27)

However,	since	M	is	orthogonal,	M	∙	MT	=	I,	and	it	follows	that	Ṁ∙MT+M∙ṀT=0.	Hence	(10.27)	may	be
written	as

(10.28)

If	T	is	the	stress	which	arises	from	the	first	motion,	then	independence	of	superposed	rotations	requires
that	the	second	motion	gives	rise	to	the	stress	 	.However,	from	(10.23)

(10.29)

Hence	from	(10.23),	(10.28)	and	(10.29),



(10.30)

and	the	function	T	must	satisfy	this	condition	identically	for	all	proper	orthogonal	tensors	M.

To	make	(10.30)	explicit,	we	suppose	first	that	M=I,	Ṁ≠0.	Then	(10.30)	becomes

T{D,Ṁ	+	W,	ρ,	θ}	=	T{D,	W,	p,	θ}

Hence	the	value	of	T	is	independent	of	the	value	of	W.	Therefore	the	arguments	W	and	 	may	be	omitted
in	(10.23)	and	(10.29).	Dependence	of	the	stress	on	the	nine	components	of	L	can	be	replaced	by
dependence	on	the	six	components	of	D	(this	result	was	implicitly	assumed	in	Section	8.4).	When	the
argument	W	is	omitted,	(10.30)	reduces	to	the	form

(10.31)

for	all	orthogonal	tensors	M.	A	tensor	function	T	with	the	property	(10.31)	is	said	to	be	an	isotropic
tensor	function	of	D.	If	T	is	a	linear	function	of	D,	as	in	Section	8.4,	then	(10.31)	implies	that	the	stress	is
of	the	form	(8.25),	so	that	the	fluid	is	necessarily	isotropic.	This	justifies	the	statement	made	in	Section
8.4	that	it	is	not	essential	to	introduce	isotropy	as	a	separate	assumption.	The	same	is	true	in	the	general
case,	for	(10.31)	can	be	interpreted	as	a	statement	that	the	material	is	isotropic.

It	is	shown	in	the	Appendix	that	the	most	general	tensor	function	T	which	satisfies	(10.31)	is	of	the
form

(10.32)

where	p,	α	and	β	are	functions	of	p,	θ	and	invariants	of	D,	namely

A	material	with	the	constitutive	equation	(10.32)	is	called	a	Reiner-Rivlin	fluid.	If	the	fluid	is
incompressible	then	ρ	is	constant	and	tr	D	=	0,	so	that	α	and	β	depend	only	on	θ	and	the	second	two
invariants	of	D,	and	p	represents	an	arbitrary	pressure.

Although	the	result	(10.32)	is	of	mathematical	interest,	in	practice	it	has	been	found	that	markedly	non-
Newtonian	fluids	have	a	more	complex	behaviour	than	is	permitted	by	the	model	defined	by	(10.21).	We
discuss	a	more	general	class	of	materials	briefly	in	the	next	section.



10.4	Non-linear	viscoe lastic ity
In	Section	8.5	we	outlined	the	linear	theory	of	viscoelasticity.	In	a	viscoelastic	material	(which	may	be	a
solid	or	a	fluid)	the	stress	depends	not	only	on	the	current	deformation	but	also	on	the	past	history	of
deformation.	The	material	may	be	said	to	have	a	‘memory’.	Linear	viscoelasticity	is	governed	by	the
superposition	principle,	according	to	which	the	effects	of	past	deformations	may	be	superposed	to	give
the	present	stress.	Many	non-Newtonian	fluids,	and	many	solids	(especially	polymers)	are	viscoelastic	in
that	the	stress	depends	on	the	deformation	history,	but	this	dependence	is	more	complicated	than	a	direct
superposition	of	the	form	(8.29).	The	modelling	of	such	materials	requires	the	nonlinear	theory	of
viscoelasticity.

In	a	non-linear	viscoelastic	material	the	stress	at	a	particle	depends	not	only	on	the	current
deformation,	but	also	on	the	history	of	the	deformation.	Thus	formally,	the	constitutive	equation	may	be
written	as

(10.33)

It	can	be	shown	that	if	T	is	independent	of	superposed	rigid-body	motions,	then	(10.33)	can	be	reduced	to

(10.34)

and	further	reductions	can	be	made	if	the	material	has	any	material	symmetry.

In	the	non-linear	case	it	is	no	longer	possible	to	use	the	superposition	principle	which	leads	to	the
comparatively	simple	integral	representation	(8.29)	for	T.	The	functional	in	(10.34)	can	be	represented,
either	exactly	or	approximately,	in	various	ways,	but	the	resulting	thoeries	are	too	advanced	for
consideration	here.

10.5	P lastic ity
Many	materials,	particularly	metals,	conform	well	to	the	linear	theory	of	elasticity	provided	that	the	stress
does	not	exceed	certain	limits,	but	if	they	are	subjected	to	stress	beyond	these	limits	they	acquire	a
permanent	deformation	which	does	not	disappear	when	the	stress	is	removed.	Since	elasticity	is	a
reversible	phenomenon,	this	is	clearly	inelastic	behaviour.	It	is	not	a	viscoelastic	phenomenon,	because
the	viscoelastic	stress	depends	on	the	rate	of	deformation,	and	to	a	good	approximation	it	is	found	that
although	the	stress	in	a	metal	depends	on	the	previous	deformation,	it	is	independent	of	the	rate	at	which
that	deformation	took	place.	The	phenomenon	is	called	plasticity;	characteristically



Figure	10.1	Typical	stress-strain	curve	for	a	plastic	solid

it	occurs	in	crystalline	materials,	and	in	particular	it	occurs	in	the	solid	metals	which	are	in	everyday	use,
such	as	steel,	aluminium	and	copper.

Figure	10.1	illustrates	the	main	features	of	the	stress-strain	curve	in	uniaxial	tension	of	a	typical	metal;
the	axial	stress	is	denoted	by	σ	and	the	axial	strain	by	∈.	For	simplicity	it	is	assumed	that	the	strain	is
sufficiently	small	for	the	infinitesimal	strain	measure	to	be	adequate.

For	the	deformation	which	corresponds	to	the	section	OA	of	the	curve,	the	relation	between	σ	and	∈	is,
to	a	good	approximation,	linear.	If	the	stress	is	removed	before	σ	reaches	the	value	σA,	the	strain	returns
to	zero.	In	this	range,	the	behaviour	is	that	of	linear	elasticity	theory.	For	stress	greater	than	σA,	the	curve
departs	from	a	straight	line.	The	stress	σA	is	called	the	initial	yield	stress	in	tension.	The	change	of	slope
at	A	may	be	abrupt	or	gradual.	If	the	stress	is	increased	to	σB	>	σA,	and	then	reduced	to	zero,	the
unloading	curve	BC	is	followed;	to	a	good	approximation,	BC	is	parallel	to	OA.	When	the	stress	is	zero
there	remains	a	residual	strain	represented	by	OC;	this	is	an	example	of	a	plastic	deformation.	On
reloading	the	path	will,	closely,	retrace	CB	and	eventually	continue	the	curve	OAB.

It	is	clear	from	Fig.	10.1	that	for	this	material	there	is,	in	general,	no	unique	relation	between	the	stress
and	the	strain,	so	the	theory	of	elasticity	is	inappropriate.	The	discrepancy	cannot	be	explained	as	a
viscous	effect,	because	the	behaviour	is	(except	at	very	high	rates	of	strain)	almost	independent	of	the
speed	at	which	the	deformation	is	performed.	Figure	10.1	also	suggests	that	two	phenomena	are	involved,
one	being	essentially	elasticity	and	involving	deformations	which	vanish	on	unloading,	and	the	other,
called	plasticity,	giving	rise	to	rate-independent	permanent	deformations.	This	idea	is	supported	by	the
description	of	the	phenomena	on	the	microscopic	scale.	Materials	which	exhibit	this	kind	of	behaviour
are	usually	crystalline	solids.	Elastic	deformation	on	the	microscopic	scale	is	explained	as	small
recoverable	displacements	of	the	atoms	which	form	the	crystal	lattice	from	their	equilibrium	positions.
Plastic	deformation	is	caused	mainly	by	permanent	slip	of	neighbouring	planes	of	atoms	relative	to	each



other.

To	formulate	a	three-dimensional	theory	of	plasticity	we	require:
a.	 a	yield	condition,	which	decides	whether	an	element	of	material	is	behaving	elastically	or

plastically	at	a	given	time;
b.	 stress-strain	relations	for	elastic	behaviour;
c.	 stress—strain	relations	for	plastic	behaviour.

Yield	condition.	This	is	an	inequality	of	the	form

(10.35)

where	ƒ(Tij)	is	the	yield	function,	and	k	is	a	parameter	which,	in	general,	depends	on	the	deformation
history.	If	ƒ(Tij)	<	k2,	then	the	material	behaves	elastically;	if	ƒ(Tij)	=	k2	then	plastic	deformation	may
occur.	The	equation	ƒ(Tij)	=	k2	can	be	regarded	as	representing	a	surface	(the	yield	surface)	in	the	six-
dimensional	space	of	the	stress	components	Tij.	Plastic	stress	states	lie	on	this	surface,	elastic	states	in	its
interior,	and	stress	states	outside	the	yield	surface	are	not	attainable	for	the	current	value	of	k.

Any	material	symmetry	restricts	the	form	of	ƒ(Tij).	For	example,	for	an	isotropic	material	the	yield
function	must	be	expressible	as	a	function	of	the	stress	invariants	J1,	J2	and	J3.

For	many	materials,	particularly	metals,	it	is	found	that	to	a	good	approximation	the	yielding	of	the
material	is	not	affected	by	a	superposed	hydrostatic	stress.	The	components	Sij	of	the	stress	deviator
tensor	(Section	5.7)	are	independent	of	the	hydrostatic	part	of	the	stress,	and	for	these	materials	(10.35)
may	be	replaced	by

(10.36)

In	the	case	of	an	isotropic	material,	the	yield	function	may	now	be	expressed	as	a	function	of	the	two
invariants	 	and	 	of	S.

Elastic	stress—strain	relations.	Before	any	plastic	deformation	has	occurred,	as	for	example	on	the
section	OA	of	the	stress—strain	curve	in	Fig.	10.1,	the	usual	elastic	relations	apply;	for	example,	for
small	deformations	of	an	isotropic	material	we	have	equations	(8.22),

(10.37)



For	small	elastic	deformations	following	a	plastic	deformation,	the	relation	between	T	and	E	is	again
linear,	but	the	state	of	zero	stress	does	not	correspond	to	one	of	zero	strain.	Thus,	for	an	isotropic
material,

(10.38)

where	 	represents	the	residual	strain	which	would	result	from	unloading	to	zero	stress,	and	which
depends	on	the	previous	deformation	history.	The	introduction	of	 	can	be	avoided	by	expressing	the
elastic	stress-strain	relation	in	terms	of	stress	and	strain	increments	or	stress	and	strain	rates.	Thus
(10.37)	and	(10.38)	can	be	replaced	by

(10.39)

or	by

(10.40)

where	the	superposed	dot	denotes	an	appropriate	time	derivative.	For	finite	deformations,	these	time
derivatives	are	not	unambiguous	and	they	require	careful	definition.	No	such	difficulty	arises	if	attention
is	restricted	to	infinitesimal	deformations.	The	inverse	of	(10.40)	is

(10.41)

Plastic	stress—strain	relations.	The	formulation	of	these	is	more	difficult	and	controversial,	and	will	not
be	pursued	in	detail.	The	classical	approach	is	to	assume	that	the	rate	of	deformation	can	be	decomposed
into	an	elastic	part	 	and	a	plastic	part	 :

(10.42)



The	elastic	part	is	related	to	the	stress	rate	Ṫij	by	(10.41).	For	the	plastic	part	the	simplest	theory
postulates	(with	some	justification)	that	the	yield	function	serves	as	a	plastic	potential,	in	the	sense	that

(10.43)

where	 	is	a	scalar	factor	of	proportionality	which	depends	on	the	deformation	history.	Then,	by
combining	(10.41)	and	(10.43),	we	obtain	the	complete	stress-strain	relations	for	an	isotropic	plastic
material,	namely

(10.44)

where	ƒ	can	be	expressed	as	a	function	of	 	and	 .

10.6	Problems
1.	The	unit	cube	0	≤	X1	≤	1,	0	≤	X2	≤	1,	0	≤	X3	≤	1	of	incompressible	isotropic	elastic	material	undergoes
the	deformation	X1	=	λX1	+	αX2,	x2	=	λ-1	X2,	x3	=	X3,	where	λ	and	α	are	constants.	Sketch	the	deformed
cube,	noting	the	lengths	of	its	edges.	Find	the	stress,	and	show	that	p	can	be	chosen	so	that	no	forces	act	on
the	surfaces	X3	=	0	and	X3	=	1.	Find	the	force	which	must	be	applied	to	the	face	initially	given	by	X2	=	1
to	maintain	the	deformation.	Determine	the	normal	in	the	deformed	configuration	to	the	face	X1	=	1,	and
the	traction	which	must	be	applied	to	this	face	to	maintain	the	deformation.

2.	A	unit	cube	of	incompressible	isotropic	elastic	material	undergoes	the	finite	deformation

x1	=	λX1,	x2	=	λ-1X2	x3	=	X3

where	λ	is	constant.	The	strain-energy	function	is

W	=	C1(I1−3)+C2(I2−3)

where	C1	and	C2	are	constants.	Sketch	the	deformed	cube,	noting	the	lengths	of	its	edges.	Find	the	stress
and	hence	determine	the	total	loads	F1,	F2	and	F3	acting	on	the	faces	normal	to	the	X1,	X2	and	X3



directions.	Show	that	when	C1	>	3C2	>	0,	there	are	three	values	of	λ	for	which	the	body	is	in	equilibrium
with	F1	=	F2	=	F3,	and	find	these	values.

3.	Show	that	the	constitutive	equation	for	an	elastic	solid	can	be	expressed	in	the	form

4.	For	a	particular	transversely	isotropic	elastic	solid,	with	preferred	direction	that	of	the	X1-axis,	W	has
the	form

where	α,	β,	γ	and	δ	are	constants.	Find	the	constitutive	equation	for	T,	and	hence	find	the	stress	in	a	body
of	this	material	subjected	to	the	uniform	expansion

x1	=	λX1,

x2	=	λX2,

X3	=	λX3

5.	Suppose	that	the	stress	in	a	solid	is	given	by	a	relation	of	the	form	T=	x(F).	Show	that	if	the	stress	is
independent	of	rotations	of	the	deformed	body,	then	X	must	satisfy	the	relation	x(M	∙	F)	=	M	∙X(F)	∙	MT

for	all	proper	orthogonal	tensors	M.	Verify	that	a	sufficient	condition	for	this	relation	to	be	satisfied	is
that	X	can	be	expressed	in	the	form	X	=	F	∙	Ψ(C)	∙	FT	.	Use	the	representation	theorem	given	in	the
Appendix	to	obtain	the	most	general	such	form	for	x	in	the	case	in	which	the	material	is	isotropic.

6.	Derive	the	constitutive	equation	T	=	−	pI	+	2μE,	for	incompressible	isotropic	linear	elasticity,	as	a
first	approximation,	for	small	displacement	gradients,	to	equation	(10.20).

7.	Show	that	the	most	general	incompressible	Reiner—Rivlin	fluid	(10.32)	for	which	the	stress
components	are	quadratic	functions	of	the	components	Dij	has	the	constitutive	equation	T	=	−	pI	+	α0D	+
β0D2,	where	α0	and	β0	are	constants.

8.	Show	that	a	velocity	field	υ1	=	υ(x2),	υ2	=	0,	υ3	=	0,	is	a	possible	flow	in	every	incompressible	Reiner-
Rivlin	fluid	(10.32).	If	this	flow	takes	place	between	infinite	parallel	plates	at	x2	=	±d,	determine	the
pressure	gradient	(that	is,	−∂T11/∂x1)	required	to	maintain	this	flow	and	the	tangential	forces	acting	on	unit
area	of	each	of	the	plates.

9.	The	stress	in	a	certain	Reiner—Rivlin	fluid	is	given	by	T	=	−pI	+	μ(1+α	tr	D2)D	+	βD2,	where	α,	β	and
μ	are	constants.	Determine	the	stress	in	the	fluid	arising	from	the	velocity	field	υ1=	−x2ω(x3),	υ2	=



x1ω(x3),	υ3	=	0.	Show	that	if	ω	=	Ax3	+	B,	where	A	and	B	are	constants,	the	equations	of	motion	are
satisfied	only	if	A	=	0	or	if	the	acceleration	terms	can	be	neglected.	In	the	latter	case,	find	values	of	A	and
B	corresponding	to	flow	between	parallel	plates	at	x3	=	0	and	x3	=	h,	the	former	being	at	rest	and	the	latter
rotating	about	the	x3-axis	with	angular	speed	Ω.

10.	The	behaviour	of	certain	viscous	fluids	is	often	modelled	by	the	constitutive	equation

and	k	and	n	are	positive	constants	(and	n	=	1	corresponds	to	a	Newtonian	fluid).	Such	a	power-law	fluid
undergoes	simple	shearing	flow	between	two	large	parallel	plates	a	distance	h	apart,	such	that	one	plate
is	held	fixed	and	the	other	moves	with	constant	speed	U	in	its	plane.	Find	the	shearing	force	per	unit	area
on	the	plates	and	the	apparent	viscosity	μ	as	a	function	of	the	shear	rate	U/h.

11.	The	constitutive	equation	T	=—pI	+	2μ0(2	tr	D2)αD,	where	μ0	and	α	are	constants,	models	a	class	of
Reiner—Rivlin	fluids.	Show	that	these	fluids	can	undergo	the	steady	rectilinear	shear	flow	υ1	=	υ(x2),	υ2
=	0,	υ3	=	0,	provided	p	=	p0	+	kx1,	where	p0	and	k	are	constants.

12.	Determine	the	tensors	C(τ)	and	A(n)(t)	which	are	defined	in	Problem	5	of	Chapter	9	for	the	motion
x1(τ)	=	X1,	x2(τ)	=	X2,	x3(τ)	=	X3	+	γτ	tan−1	(X2/X1),	where	γ	is	a	constant.	The	stress	in	a	fluid	is	given	by
T	=	−pI	+	μA(1)	+	σA(2),	where	μ	and	σ	are	functions	of	tr	A(2)	and	p	is	arbitrary.	Show	that	if	p	is	a
function	of	r	only	( ),	then	the	equations	of	motion	are	satisfied	provided	that

13.	The	stress	in	a	particular	incompressible	non-Newtonian	fluid	is	given	by	
	ds,	where	s	=	t—τ	and	C(τ)	is	defined	in	Problem	5	of	Chapter	9.

Determine	the	stress	in	the	fluid	due	to	the	displacement	field

if	dƒ/dx2	and	dg/dx2	are	small	enough	for	their	squares	to	be	neglected.
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Cylindrical	and	spherical	polar	coordinates

11.1	Curvilinear	coordinates
So	far	we	have	used	only	rectangular	cartesian	coordinates,	and	this	is	the	simplest	way	to	formulate	the
general	equations	of	continuum	mechanics	and	the	constitutive	equations	of	various	ideal	materials.
However,	for	the	solution	of	particular	problems,	it	is	often	preferable	to	work	in	terms	of	other	systems
of	coordinates.	In	particular,	it	is	usually	desirable	to	use	cylindrical	polar	coordinates	for	configurations
which	have	an	element	of	symmetry	about	an	axis,	and	to	use	spherical	polar	coordinates	when	there	is
some	symmetry	about	a	point.	It	is	therefore	useful	to	express	the	main	equations	in	terms	of	these	other
coordinate	systems.

It	is	possible	to	develop	elegantly	the	equations	of	continuum	mechanics	in	terms	of	general	curvilinear
coordinates.	Results	in	any	particular	coordinate	system	can	then	be	obtained	by	making	the	appropriate
specializations.	However,	this	procedure	requires	extensive	use	of	general	curvilinear	tensor	analysis,
which	we	prefer	to	avoid	in	this	introductory	text.	Also,	it	is	only	very	rarely	that	coordinate	systems
other	than	rectangular	cartesian,	cylindrical	polar	and	spherical	polar	coordinates	can	be	employed
profitably.	Accordingly,	we	shall	derive	directly	some	results	in	cylindrical	and	spherical	polars,	even
though	these	results	could	be	obtained	more	concisely	by	the	use	of	general	tensor	analysis.

11.2	Cylindrical	polar	coordinates
Cylindrical	polar	coordinates	r,	φ,	z	(0	≤φ<	2π)	are	related	to	cartesian	coordinates	x1,	x2,	x3	by

(11.1)

(11.2)

The	base	vectors	of	the	r,	φ,	z	coordinate	system	are	unit	vectors	directed	in	the	radial,	tangential	and
axial	directions,	as	illustrated	in	Fig.	11.1.	They	are	denoted	by	er,	eφ	and	ez,	and	they	are	mutually
orthogonal.	Thus



(11.3)

(11.4)

Figure	11.1	Base	vectors	for	cylindrical	polar	coordinates

We	define	the	matrix	R	to	be

(11.5)



and	then	(11.3)	and	(11.4)	may	be	written	as

(11.6)

It	is	easily	verified	that	R	is	an	orthogonal	matrix.

Suppose	a	vector	a	has	components	ai	in	the	coordinate	system	xi	and	components	ar,	aφ,	az	in	the
system	r,	φ,	z,	so	that

(11.7)

Let

(11.8)

be	the	column	matrices	formed	from	the	components	of	a	in	the	two	coordinate	systems.	Then	from	(11.4)
and	(11.7)

(11.9)

A	second-order	tensor	A	=	Aijei	⊗	ej	can	be	written	as

or,	more	concisely,	in	matrix	notation	as

(11.10)



where

(11.11)

is	the	matrix	of	components	of	A	referred	to	r,	φ,	z	coordinates.	From	(11.6)	and	(11.10)	there	follow

(11.12)

where	A	=	(Aij)	is	the	matrix	of	components	of	A	referred	to	xi	coordinates.	From	(11.12),	it	follows	that
if	A	is	a	symmetric	matrix,	then	so	is	A*,	and	if	A	is	an	anti-symmetric	matrix,	then	so	is	A*.	Since	R	is
orthogonal,	the	eigenvalues	of	A	and	A*	are	the	same,	so	the	principal	values	of	A	are	the	roots	of	the
equation

det	(A*	−	AI)	=	0

Moreover,	the	invariants	I1,	I2	and	I3	of	A	may	be	written	as

(11.13)

Referred	to	cylindrical	polar	coordinates,	the	gradient	of	a	scalar	ψ(r,	φ,	z)	and	the	divergence	of	a
vector	a(r,	φ,	z)	are,	respectively

(11.14)

The	material	derivative	of	ψ(r,	φ,	z,	t)	is	then	given	by	(4.18)	as



(11.15)

If	υ	=	υrer	+	υφeφ	+	υzez	is	the	velocity	vector,	then	from	(4.23)	the	acceleration	vector	f	is	given	by

(11.16)

Suppose	that	the	matrix	of	components	of	the	stress	tensor	referred	to	r,	φ,	z	coordinates	is	T*,	where

(11.17)

and	that	T	=	(Tij).	Then

(11.18)

Because	(11.18)	are	important	relations,	we	give	them	in	full,	as	follows:



(11.19)

Let	a	surface	have	normal	n,	where

(11.20)

Then	by	(5.9),	the	traction	vector	on	the	surface	is	niTijej,	and	using	(11.18)	and	(11.20)	this	can	be
expressed	as

(nr	nφ	nz)T*(er	eφ	ez)T

From	(5.27)	and	(11.18),	the	stress	invariants	J1,	J2	and	J3	can	be	written	in	the	forms

(11.21)

Now	consider	a	finite	deformation	in	which	a	typical	particle	which	in	the	reference	configuration	has
cylindrical	polar	coordinates	R,	Φ,	Z	moves	to	the	position	with	cylindrical	polar	coordinates	r,	φ,	z,
where

(11.22)

(11.23)

The	motion	can	be	described	by	equations	of	the	form

(11.24)



Let

(11.25)

and,	in	addition	to	the	matrix	R	defined	by	(11.5),	introduce	an	orthogonal	matrix	R0,	where

(11.26)

We	also	observe,	from	(11.22),	that

(11.27)

Then	it	can	be	shown	from	(11.5),	(11.23),	(11.25),	(11.26)	and	(11.27),	after	a	little	manipulation,	that

(11.28)

Suppose	that	B	=	(Bij)	=	FFT	is	the	matrix	of	components	of	B,	referred	to	xi,	coordinates,	and	let	B*	be
the	matrix	of	components	of	B	referred	to	r,	φ,	z	coordinates.	Then



(11.29)

Hence	B*	is	readily	calculated	from	(11.24)	and	(11.28).	Similarly,	if	C	=	(CRS)	=	FTF	is	the	matrix	of
components	of	C	referred	to	XR	coordinates,	and	C*	is	the	matrix	of	components	of	C	referred	to	R,	Φ,	Z
coordinates,	then

(11.30)

We	also	note,	for	future	reference,	that

(11.31)

For	a	small	displacement	u	=	urer	+	uΦeΦ	+	uz	ez,	we	have	ur	=	u1	cos	φ	+	u2	sin	φ,	uφ	=—u1	sin	φ	+	u2
cos	φ,	uz	=	u3
Then	∂uil∂xj	≃	∂uil∂Xj,	and	it	follows	from	(6.26)	and	(11.5)	that

(11.32)

and,	in	the	small-displacement	approximation,	there	is	no	need	to	distinguish	between	R,	φ,	Z	and	r,	φ,	z
in	(11.32).	The	matrix	E*	of	infinitesimal	strain	components,	and	the	matrix	Ω*	of	infinitesimal	rotation
components,	referred	to	cylindrical	polar	coordinates,	are	then	given	by

(11.33)

Similarly	the	matrix	L*	of	the	components	of	the	velocity	gradient	tensor	L,	referred	to	coordinates	(r,



φ,	z),	is

(11.34)

The	expression	(11.34)	is	exact.	The	matrices	D*	and	W*	of	the	components,	referred	to	r,	φ,	z
coordinates,	of	the	rate-of-deformation	tensor	D	and	the	vorticity	tensor	W	are	then	given	by

(11.35)

From	(11.28)	we	have	det	F	=	det	F*.	Hence	from	(7.8),

(11.36)

and	in	an	incompressible	material,	det	F*	=	1	.	The	Eulerian	form	of	the	mass-conservation	equation	is
given	by	(7.11),	and	can	be	expressed	in	terms	of	the	components	of	υ	referred	to	cylindrical	polar
coordinates	by	expressing	div	(ρυ)	in	these	coordinates.

The	equation	of	motion	(7.22)	can	be	expressed	in	terms	of	cylindrical	polar	coordinates	by	resolving
the	body	force	and	acceleration	into	components	referred	to	these	coordinates.	Let	(br,	bΦ,	bz)	be
components	of	b,	and	let	(br,	bΦ,	bz)	be	components	of	f,	in	cylindrical	polar	coordinates.	Then,	from
(7.22)	and	(11.9)



(11.37)

From	(11.1)	we	have

(11.38)

By	introducing	(11.19)	and	(11.38)	into	(11.37)	it	follows,	after	some	manipulations,	that

(11.39)

Equations	(11.39)	are	the	equations	of	motion	referred	to	r,	φ,	z	coordinates.	These	equations	can	also	be
derived	by	considering	the	forces	acting	on	an	elementary	region	bounded	by	the	coordinate	surfaces



Constitutive	equations	are	most	easily	expressed	in	terms	of	cylindrical	polar	coordinates	by
multiplying	the	appropriate	expression	for	the	matrix	T	=	(Tij)	of	stress	components	on	the	left	by	R	and
on	the	right	by	RT.	For	example,	for	an	isotropic	linear	elastic	solid,	we	obtain	from	(8.22)

RTRT	=	λRRT	tr	E	+	2µRERT

However,	RTRT	=	T*,	RRT	=	I,	tr	E	=	tr	E*	and	RERT	=	E*,	and	so

(11.40)

where	λ	and	µ	are	elastic	constants.	Similarly,	the	constitutive	equation	(8.25)	for	a	Newtonian	viscous
fluid	can	be	expressed	in	the	form

(11.41)

where	the	pressure—p	and	the	viscosity	coefficients	λ	and	µ	are	functions	of	the	density	and	the
temperature.

From	(9.27),	(9.29),	(11.29)	and	(11.30),	it	follows	that	the	strain	invariants	I1,	I2	and	I3	can	be
expressed	as

(11.42)

The	constitutive	equation	(10.18)	for	an	isotropic	elastic	solid	gives

which,	after	using	(11.18),	(11.29)	and	(11.31),	takes	the	form



(11.43)

If	the	material	is	also	incompressible,	this	becomes

(11.44)

In	a	similar	manner,	the	constitutive	equation	(10.32)	for	a	Reiner–Rivlin	fluid	can	be	expressed	in	the
form

(11.45)

where	p,	a	and	β	are	functions	of	density,	temperature,	and	of	tr	D*,	 	and	det	D*.

11.3	Spherical	polar	coordinates
Spherical	polar	coordinates	s,	θ,	φ	(0	≤	θ	≤	π,	0	≤	φ	<	2π)	are	related	to	cylindrical	polar	coordinates	r,
φ,	z	by

(11.46)

(11.47)

and	to	cartesian	coordinates	x1,	x2,	x3	by

(11.48)



(11.49)

Vector	and	tensor	equations	can	be	expressed	in	terms	of	spherical	polar	coordinates	in	a	similar
manner	to	that	which	was	employed	in	Section	11.2	for	cylindrical	polar	coordinates,	although	the	algebra
involved	is	slightly	more	complicated.	It	is	often	convenient	to	employ	cylindrical	polar	coordinates	as	an
intermediate	stage	between	cartesian	coordinates	and	spherical	polar	coordinates.	As	the	approach	is
analogous	to	that	of	Section	11.2,	we	omit	some	details	of	the	derivations	of	the	results	presented	below.

The	base	vectors	of	the	s,	θ,	φ	system	are	denoted	es,	eθ	and	eφ,	and	are	illustrated	in	Fig.	11.2.	They
are	mutually	orthogonal.	Then

(11.50)

where

(11.51)

The	matrices	R’	and	R”	are	orthogonal	matrices	and,	of	course,	R”	=	R’R.



Figure	11.2	Base	vectors	for	spherical	polar	coordinates

If	the	vector	a	has	components	as,	aθ,	aφ	in	the	system	s,	θ,	φ,	then

a	=	ases	+	aθeθ	+	aφ,eφ

and,	if	a**	denotes	the	column	matrix	(as	aθ	aφ)T.	we	have

(11.52)

The	second-order	tensor	A	can	be	expressed	in	the	form

(11.53)

where



(11.54)

is	the	matrix	of	the	components,	referred	to	spherical	polar	coordinates,	of	the	tensor	A.	Then

(11.55)

The	principal	values	of	A	are	the	roots	of	det	(A**–AI)	=	0,	and	the	invariants	I1,	I2	and	I3	of	A	may	be
written	as

(11.56)

Referred	to	spherical	polar	coordinates,	the	gradient	of	the	scalar	ψ(s,	θ,	φ)	and	the	divergence	of	the
vector	a(s,	θ,	φ)	are

(11.57)

(11.58)

The	material	derivative	of	ψ	is	given	by	(4.18)	as

ψ̇	=	∂ψ/∂t	+	υ	·grad	ψ

and	the	acceleration	vector	f	is	given	in	terms	of	the	velocity	vector	υ	as
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Let	the	matrix	of	components,	referred	to	base	vectors	es,	eθ,	eφ,	of	the	stress	tensor	T	be	T**,	where

(11.59)

Then,	from	(11.55),

(11.60)

and	the	stress	invariants	J1,	J2	and	J3	can	be	written	as

(11.61)

Now	consider	a	finite	deformation	in	which	a	typical	particle	which	initially	has	spherical	polar
coordinates	S,	Θ,	Φ	moves	to	the	position	with	spherical	polar	coordinates	s,	θ,	φ.	The	motion	can	be
described	by	equations	of	the	form

s	=	s	(S,	Θ,	Φ),	θ	=	θ(S,	Θ,	Φ),	φ	=	φ(S,	Θ,	Φ)

In	addition	to	the	matrices	R‘	and	R“	defined	by	(11.51)	we	introduce	orthogonal	matrices	R’0	and	R”0,
where



(11.62)

Then,	after	some	manipulation,	we	obtain

(11.63)

Then	the	matrices	of	the	components,	referred	to	spherical	polar	coordinates,	of	B	and	C	are

(11.64)

(11.65)

For	a	small	displacement	u	=	us	es	+	uθ	eθ	+	uφ	eφ,	we	have

(11.66)

Hence,	for	small	displacements	 —I	=	R’	 R’T	-	I	≃



(11.67)

Then	the	matrix	E**	of	infinitesimal	strain	components,	and	the	matrix	Ω**	of	infinitesimal	rotation
components,	referred	to	spherical	polar	coordinates,	are	given	by

(11.68)

Similarly,	the	matrix	L**	of	the	components,	referred	to	s,	0,	φ	coordinates,	of	the	velocity	gradient
tensor	L	is	obtained	from	(11.67)	by	replacing	F**–I	by	L**,	us,	uθ	and	uφ	by	υs,	υθ	and	υφ	respectively,
and	S,	 	and	Φ	by	s,	θ	and	φ	respectively.	The	expression	is	exact.	The	matrices	D**	and	W**	of	the
components,	referred	to	s,	0,	φ	coordinates,	of	the	rate-of-deformation	tensor	D	and	the	vorticity	tensor	W
are	then	given	by

(11.69)

From	(11.63),	det	F	=	det	F**,	and	so	from	(7.8)

(11.70)

By	resolving	the	body	force	and	acceleration	into	components	referred	to	base	vectors	es,	eθ	and	eφ,	the
equations	of	motion	can	be	expressed	as



(11.71)

Alternatively,	these	equations	can	be	derived	by	considering	the	forces	acting	on	an	elementary	region
bounded	by	the	surfaces

By	arguments	analogous	to	those	which	lead	to	(11.40)	and	(11.41),	the	constitutive	equations	for	an
isotropic	linear	elastic	solid,	and	for	a	Newtonian	viscous	fluid,	can	be	expressed	as

(11.72)

and

(11.73)

respectively,	where	in	(11.72)	λ	and	μ	are	elastic	constants,	and	in	(11.73)	p,	λ	and	μ	have	the	same
meaning	as	in	(11.41).

The	strain	invariants	I1,	I2	and	I3	can	be	expressed	as



(11.74)

The	constitutive	equation	for	an	isotropic	elastic	solid	can	be	written	as

(11.75)

or,	in	the	case	of	an	incompressible	material,	as

(11.76)

The	constitutive	equation	for	a	Reiner-Rivlin	fluid	can	be	expressed	in	the	form

(11.77)

where	p,	α	and	β	can	be	expressed	as	functions	of	density,	temperature,	tr	D**,	 {(trD**)2–trD**2}	and
det	D**.

11.4	Problems
1.	Steady	helical	flow	is	defined	by	the	equations

r	=	R,	φ	=	Φ+tω(R),	z	=	Z	+	tα(R)

where	ω	and	α	are	functions	only	of	R.

(a)	Sketch	the	path	followed	by	typical	particle;	(b)	find	the	velocity	of	the	particle	at	(r,	φ,	z)	at	time	t;
(c)	find	the	velocity	of	the	particle	which	was	at	(R,	Φ,	Z)	at	t	=	0;	(d)	find	the	acceleration	of	the	particle
at	(r,	φ,	z)	at	time	t;	(e)	find	the	divergence	of	the	velocity	vector;	(f)	find	the	components	of	L,	D	and	Ω
referred	to	(r,	φ,	z)	coordinates.



2.	If	v,	=	υ(r,	t),	υφ	=	0,	υz	=	0,	show	that	the	acceleration	vector	is	directed	in	the	r	direction,	and	has
magnitude	∂υ/∂t	+	υ∂υ/∂r.

3.	If,	in	cylindrical	polar	coordinates,

find	the	velocity	and	acceleration	in	terms	of	r,	φ,	z	and	t.

4.	For	the	deformation	defined	by

where	A,	B	and	C	are	constants,	determine	the	matrix	B*,	and	show	that	the	invariants	I1	I2,	I3	are
constants.

5.	If	A	is	the	unit	vector	AReR	+	AΦeΦ	+	Azez,	and	A*	is	the	matrix	(AR	AΦ	AZ)T,	show	that	the	extension	of
a	line	element	which	has	the	direction	A	in	the	reference	configuration	is	given	by	(λ2)	=	A*TC*A*.
Hence	determine	the	initial	directions	of	all	the	line	elements	whose	length	does	not	change	in	the	pure
torsion	deformation

r	=	R,	φ	=	Φ	+	ψZ,	z	=	Z,	where	ψ	is	constant.

6.	Prove	that	the	eigenvalues	of	C*	are	the	same	as	those	of	C,	and	that	if	y	is	an	eigenvector	of	C,	then
R0y	is	an	eigenvector	of	C*.	Hence	find	the	principal	stretches	for	the	pure	torsion	deformation	of
Problem	5.

7.	Prove	that	if	F1	=	RF,	then

and	that	B*	=	F1F1T,	C*	=	F1TF1.

8.	Prove	that	the	stress	resulting	in	a	compressible	isotropic	elastic	solid	from	the	pure	torsion



deformation	of	Problem	5	will	not,	in	general,	satisfy	the	equations	of	equilibrium.

9.	A	circular	cylinder	of	isotropic	incompressible	material	undergoes	the	extension	and	torsion
deformation

z	=	λZ,	r	=	λ	– R,	φ	=	Φ	+	ψZ

where	λ	and	ψ	are	constants.	Find	the	stress	component	Tφz	and	hence	determine	the	end	couple	required
to	maintain	the	deformation	if	W	=	C1(I1–3)	+	C2(I2–3),	where	C1	and	C2	are	constants.

10.	The	matrix	F2	is	defined	as	F2	=	FR0
T.	Prove	that	B	=	F2F2T	C	=	F2TF2,	and	that

An	isotropic	incompressible	elastic	body	is	initially	bounded	by	the	surfaces	R	=	A,	R	=	 	,	Φ	=	±α,	Z
=	±B,	where	A,	B	and	a	are	constants.	It	undergoes	the	deformation

Sketch	the	body	in	its	reference	and	deformed	configurations.

Show	that	the	deformation	is	possible	in	an	incompressible	material,	and	determine	the	stress	in	the
deformed	body.

11.	The	behaviour	of	an	incompressible	non-Newtonian	fluid	is	governed	by	the	constitutive	equation

T	=–pI+2μ(1–2ε	tr	D2)D+4βD2

where	μ,	ε	and	β	are	constants	with	ε	«	1.	Determine	the	stress	components	in	cylindrical	polar
coordinates	when	the	fluid	is	undergoing	the	flow

υr	=	0

υφ	=	0,



υz	=	w(r)

Verify	that	this	is	compatible	with	the	incompressibility	condition	and	show	that	in	order	to	satisfy	the
equations	of	motion,	w(r)	is	given	by

where	c	is	an	arbitrary	constant	and	k	=—∂p/∂z.	By	writing

w(r)	=	w0(r)+εw1(r)+ε2w2(r)+...

obtain	an	expression	for	w(r),	correct	to	terms	of	order	ε,	which	gives	the	velocity	distribution	for	axial
flow	along	a	circular	pipe	of	radius	a,	under	a	constant	pressure	gradient	k.

12.	The	relations

s3–a3	=–(s3–A3),	θ	=	π– ,	φ	=	Φ

where	A	and	a	are	constants,	describe	the	eversion	(turning	inside-out)	of	a	sphere.	Find	F**	and	B**	for
this	deformation.	Hence	determine	the	stress	in	an	incompressible	isotropic	elastic	solid	with	strain-
energy	function	W	=	C(I1–3),	where	C	is	constant.



Appendix

Representation	theorem	for	an	isotropic	tensor
function	of	a	tensor
Suppose	that	T	and	D	are	second-order	tensors,	such	that	the	components	of	T	are	functions	of	the
components	of	D,	thus

T	=	T(D)

Then	if

(A.1)

for	all	orthogonal	tensors	M,	we	say	that	T(D)	is	an	isotropic	tensor	function	of	D.	We	consider	the	case
in	which	T	and	D	are	symmetric	tensors,	and	denote

(A.2)

Theorem.	T	is	an	isotropic	tensor	function	of	D	if	and	only	if

(A.3)

where	α,	β,	γ	are	scalar	functions	of	tr	D,	tr	D2	and	tr	D3.

Proof	(a)	Sufficiency.	Since	M	is	orthogonal,	tr	D	=	tr	 ,	trD2	=	tr	 2,	and	tr	D3	=	tr	 3.	Hence	α,	β	and



γ	are	unchanged	if	Dij	are	replaced	by	 ij.

Assume	(A.3)	holds.	Then	from	(A.2),

(b)	Necessity.	Assume	that	(A.1)	is	satisfied,	and	choose	the	xi	coordinate	system	so	that	the	coordinate
axes	are	the	principal	axes	of	D.	Then,	in	these	coordinates,

(A.4)

and

(A.5)

Choose

Then

(A.6)



(A.7)

However,	(A.1)	and	(A.6)	require	that	 	=	Tij.	Hence	T12	=	0,	T13	=	0.	Similarly,	by	another	choice	of	M,
it	can	be	shown	that	T23=0.	Thus	if	(D¡j)	is	a	diagonal	matrix,	so	is	(Tij);	that	is,	D	and	T	have	the	same
principal	axes.	Therefore	we	can	now	write

(A.8)

Next	choose

Then

and	so	(A.1)	gives

(A.9)

Hence	T1,	T2	and	T3	can	be	expressed	in	terms	of	the	single	function	F(D1,	D2,	D3)	as

(A.10)

Finally,	choose



Then

and	then	(A.1)	gives

(A.11)

Now	the	equations

(A.12)

have	solutions	for	α,	β	and	γ	as	functions	of	D1,	D2	and	D3.	Also,	because	F(D1,	D2,	D3)	has	the	symmetry
expressed	by	(A.11),	equations	(A.12)	are	unaltered	if	any	pair	of	D1	D2	and	D3	are	interchanged.	Hence
α,	β	and	γ	are	symmetric	functions	of	D1	D2	and	D3.	It	follows	from	a	theorem	in	the	theory	of	symmetric
functions	that	α,	β	and	γ	can	be	expressed	as	functions	of

(A.13)

Also,	from	(A.10)	and	(A.12),



which,	with	(A.13),	is	equivalent	to	(A.3).



Answers



Chapter	4
1.	 (a)	υ1	=	υ2	=	υ3	=	1+2t,	f1	=	f2	=	f3	=	2

(b)	υ1	=	υ2	=	υ3=	(1+t–2t2)/(1–t3),	f1	=	f2	=	f3	=	2(1–t)l(1–t3)

As	t	→1,	all	particles	approach	the	same	line	x1	=	x2	=	x3
2.	 f1	=–U2x1,	f2	=–U2x2,	f3	=	0

Helices	given	parametrically	by	x1	=	A	cos	Ut	+	B	sin	Ut,	x2	=	A	sin	Ut—Bcos	Ut,	x3	=	Vt	+	C,
where	A,	B	and	C	are	constants

3.	 —2U2a4(x12	+	x22)–3(x1e1	+	x2e2);	streamlines	r	=	r0sin	θ,	Vr03(θ– 	sin	2θ)	=	2Ua2(z–z0)	where	x1	=
r	cos	θ,	x2	=	r	sin	θ

4.	 (a)–( A– )e–A	(b)	f	=–2e1–12e2	+	6e3

(c)	x1	=	2exp(1–t–1),	x2	=–2t–2,	x3=t–2

dx1:	dx2:	dx3	=	x1x3:	 	:	x2x3t.	Hence	dx2/dx3	=	x2/x3
5.	 x1	=	X1(1+t)A,	x2	=	X2(1	+	t)2A,	x3	=	X3(1	+	t)3A



Chapter	5
1.

(a)	3e1	+2e2+2e3	(b)	(e1–10e2	+	6e3)/(14)

(c)	(13e1	+	10e2	+	8e3)/(14) 	(d)	0,	3,	6

(e)	direction	ratios	2:—1:—2,	1:—2:2,	2:2:1

3.	Principal	components	2,	1,	-3.	Direction	ratios	of	principal	directions	2:0:1,	0:1:0,	1:0:–2
4.

(b)	A	+	Bh2	=	0	(c)–4ah(A+ Bh2)e2
5.

(c)– Ch3e2,	– Calh3e2

(d)	 Calh3e2
6.	(b)	 	WπmL-1e1	sin	( 	πχ1/L)	cosh	mh	—	 	cos	 	sinh	mh,	 	cosh	mx2

(c)	Wm2	sinh	mh,	 	sinh	mh,	e1,	e2,	e3;	 	,	(e1±e2)/	
7.	(c)	-αx2e1+αx1e2+(β+γx1+δx2)e3

(d)	0,	 	.	Principal	stress	direction	for	intermediate	principal	stress
direction	is	the	radial	direction

8.	(b)	direction	ratios	∂ψ/∂x1:	∂ψ/∂x2	:0	(i.e.	the	normals	to	the	surfaces	ψ	=	constant)



Chapter	6
2.	(a)	direction	ratios	7√2:√2-1:√2+1	
3.

Lengths	a1,	 	,	a3;	angles	 	,	cos-1	

4.	λµ2	=	1,	 	,	
5.	Stretches	µ,	1,	µ-1.	Direction	ratios	1:0:0,	0:0:1,	µ	tan	γ:	µ-1	-	µ	:	0
7.

Principal	components	0,	 	;	direction	ratios	of	principal	axes	x1:x2:0,	-x2	:	x1	:	
,	x2	:	-x1	:	

8.



(ΩiR)=	0;	 	,	C;	direction	ratios	of	principal	axes	X2	:-X1	:0,	X1	:	X2	:	0,	0	:	0	:	1
9.



Chapter	8

2.	2W	=	λEiiEkk	+	2µEikEik	+	2αEiiE33	+	4βEi3Ei3	+	 	(several	equivalent	alternative	forms	exist)

8.	S¡j	=	2µ0(E¡j	+	t0Dij)

9.	Tij	=	-pδij	+	2µ1	



Chapter	9
1.

(a)	

(b)	 	(c)	

(d)	1	:	0	:	0,	0	:	1	:	0,	0	:	0	:	1;	 	 	,
2.

Principal	stretches	a,	2a,	b.	Direction	ratios	of	principal	axes	X1	:	X2	:	0,	-X2	:	X1	:	0,	0	:	0	:	1
3.

4.

5.



6.



Chapter	10
1.	Edge	lengths	λ,	 	,	1

T11	=	-p	+	2W1(λ2+α2)-2W2λ-2,	T12	=2(W1	+	W2)αλ-1,	
T13	=	0	
T22	=	-p	+	2W1λ-2-2W2(λ2+α2),	T23	=	0,	
T33	=	-p	+	2(W1	-	W2);	
λ(T12e1	+	T22e2);	 	;	
{(T11-αλT12)e1	+	

2.	Edge	lengths	λ,	λ-1,	1

T11	=	-p	+	2λ2	C1	-	2λ-2	C2,	T22	=	-p	+	2λ-2C1	-	2λ2C2,	
T33	=	-p	+	2C1	-	2C2,	T23	=	T31	=	T12	=	0;	
F1	=	λ-1T11,	F2	=	λT22,	F3	=	T33	
λ	=	1,	2C2λ	=	C1	-	C2±	

4.	Tij	=	(ρ/ρ0)(∂xi/∂XR)(∂xj/∂Xs){4αCPPδRS	+	4βCRS	+	4γC11δ1Rδ1S
+	δ(C12δ1Rδ2S	+	C12δ1Sδ2R	+	C13δ1Rδ3S	+	C13δ1S53R)}	
T11	=	4λ	(3α	+	β	+	γ),	T22	=	T33	=	4λ	(3α+β),	
T23	=	T31	=	T12	=	0

5.	χ	=	αI	+	βB	+	γB2,	where	α,	β,	γ	are	functions	of	tr	B,	tr	B2	and	tr	B3

8.	 	,	±α(υ’2)υ’,	where	α	is	a	function	of	υ’2

9.	T11	=	

T23	=	 	,	
T13	=	 	,	
T12	=	 	;	A	=	Ω/h,	B	=	0

10.	k(U/h)n	;	k(U/h)(n-1)
12.

13.	T11	=	T22	=	T33	=	-p,	T23=T31=0





Chapter	11
1.

(b)	rω(r)eφ	+	α(r)ez
(e)	0

(c)	Rω(R)eφ+	α(R)ez

(d)	-rω2(r)er
(f)

3.	
4.

5.	Az	=	0	or	

6.	
9.	Tφz	=	2(λC1+C2)rψ,	πa4ψ(λC1	+	C2),	where	a	is	the	final	radius
10.	T11	=	-p	+	4W1x1/A	-	W2A/x1,	T33	=	-p	+	2(W1-W2),	T22	=	-p	+	W1	A/x1	-	4W2x1/A,	T23	=	T31	=
T12	=	0;	I1	=	I2	=	2x1/A	+	A/2x1

11.	Trr	=	Tzz	=	-p	+	βw‘2,

Tφφ	=	-	p,

Trφ	=	Tφz	=	0,

Trz	=	µ(1-	εw‘2)w’	w	=	-k(r2	-	a2)/4µ	-	εk3(r4	-	a4)/32µ3



12.



Further	reading

Chadwick,	P.	Continuum	Mechanics,	Concise	Theory	and	Problems,	George	Allen	and	Unwin,	1976.

Eringen,	A.	C.	Mechanics	of	Continua,	Wiley,	1967.

Hunter,	S.	C.	Mechanics	of	Continuous	Media,	Ellis	Horwood,	1976.

Malvern,	L.	E.	Introduction	to	the	Mechanics	of	a	Continuous	Medium,	Prentice	Hall,	1969.

Rivlin,	R.	S.	Non-linear	Continuum	Theories	in	Mechanics	and	Physics	and	Their	Applications,
Edizioni	Cremonese,	1970.

Truesdell,	C.	S.	The	Elements	of	Continuum	Mechanics,	Springer,	1966.

In	addition	to	the	above	texts,	which	are	concerned	with	continuum	mechanics	in	general,	there	are
many	books	which	deal	with	particular	branches	of	continuum	mechanics,	such	as	elasticity,	viscous	fluid
mechanics,	viscoelasticity	and	so	on.



Index

acceleration
Airy’s	stress	function
alternating	symbol
alternating	tensor
angular	momentum
angular	velocity	vector
anisotropic	material
area	ratio

base	vectors
bending
biharmonic	equation
body
body	force

caloric	equation	of	state
cantilever	beam
cartesian	tensor,	see	tensor
Cauchy	stress	tensor
Cauchy-Green	deformation	tensors
Cauchy’s	law	of	motion
Cayley-Hamilton	theorem
characteristic	equation
compatibility	relations
compression
configuration
conservation

laws
of	angular	momentum
of	energy
of	linear	momentum
of	mass

constitutive	equations
continuity	equation
contraction
convected	derivative
coordinate	transformation
creep	functions	crystal	symmetry
curvilinear	coordinates
cylindrical	polar	coordinates

decomposition	of	a	deformation
deformable	body
deformation

gradient	tensor
gradients
homogeneous
tensors

density
determinant



deviator
dilatation
dilation
dimensional	homogeneity
direct	stress	components
direction	cosines
displacement

gradients
gradient	tensor

divergence

of	a	vector
theorem

dummy	index
dyadic	product

eigenvalues
eigenvectors

normalized
elastic	constants
elasticity
energy

conservation	of
equation
internal
kinetic

equation	of	motion
equilibrium	equations
Eulerian

description
strain	tensor

eversion
extension

rate	of
ratio

finite

deformation	tensors
elastic	deformations
strain	tensors

flexure
fluids
Fourier’s	law	of	heat	conduction

gases
Gauss’s	theorem
gradient	of	a	scalar

heat

conduction
flux

helical	flow
hemitropic	material
homogeneous	deformation
hydrostatic	pressure
hydrostatics

ideal



fluid
materials

incompressible	material
index	symmetries
infinitesimal

rotation
rotation	tensor
rotation	vector
strain

initial	yield	stress
inner	product
internal	energy
invariant
inverse	tensor
inviscid	fluid
isotropic

material
tensor
tensor	function

kinematic	constraint
kinematics
kinetic	energy
Kronecker	delta

Lagrangian

description
strain	tensor

left	Cauchy-Green	deformation	tensor
left	stretch	tensor
linear	elasticity
linear	momentum
linear	thermoelasticity
linear	viscoelasticity
linear	viscous	fluid
liquids

material

coordinates
curve
derivative
description
symmetry

matrix

algebra
antisymmetric
column
diagonal
element	of
inverse	of
normalized	column
orthogonal
positive	definite
row
square
symmetric
trace	of
transpose	of
unit



Maxwell	fluid
motion

equation	of
steady

Navier-Stokes	equations
Navier’s	equations
Newton’s	second	law
Newtonian	viscous	fluid
nominal	stress	tensor
non-linear	viscoelasticity
non-linear	viscous	fluid
non-Newtonian	fluid
normal	stress	components

orthogonal

matrix
tensor
vectors

orthogonality
orthotropic	material
outer	product

particle

kinematics
paths

Piola-Kirchhoff	stress	tensors
plane

flow
strain
stress

plastic

deformation
potential

plasticity
polar	decomposition
power-law	fluid
pressure
principal

axes	of	deformation
stretches

principle	of	virtual	work
pseudo-vectors
pure	shear

rate-of-deformation	tensor
rate-of-strain	tensor
reaction	stress
rectilinear	flow
reference

configuration
time

reflectional	symmetry
Reiner-Rivlin	fluid
relaxation	functions
residual	strain
right	Cauchy-Green	deformation	tensor
right	stretch	tensor



rigid	body

motion
rotation

Rivlin-Ericksen	tensors
rotation

of	coordinate	system
tensor
vector

rotational	symmetry

scalar	product
shear	direction	plane
shearing	flow	stress
simple	shear
singular	surface
solids
spatial	coordinates	description
spherical	polar	coordinates	tensor
spin	tensor
steady	motion
strain

compatibility	relations
energy
invariants
plane
tensors

strain-rate	tensor
streamlines
stress

components	of
deviator	tensor
homogeneous
plane

stress	tensor

invariants	of
principal	axes	of

principal	components	of

symmetry	of
stress	relaxation

function
stretch

ratio
tensors

summation	convention
superposition	principle
surface

element
force
traction

symmetric	functions
symmetry

group
reflectional
rotational



tension

tensor

alternating
anti-symmetric
components
contraction	of
deviatoric
inner	product
invariants	of
inverse
isotropic
multiplication
notations
orthogonal
outerproduct
positive	definite
principal	axes
principal	components
principal	directions
principal	values
second-order
spherical
symmetric
transformation	law
transpose
unit

thermal	conductivity
thermoelasticity
time	rates	of	change
torsion
trace

of	a	matrix
of	a	tensor

traction
transformation

of	coordinates
of	stress	components
of	tensor	components
of	vector	components

translation
transversely	isotropic	material
triadic	product
triple	scalar	product

uniform

compression
extensions
shear	stress
tension

unit

dyad
tensor
vector

vector

base
components
orthogonal



product
unit

velocity

gradient	tensor
virtual	work
viscoelasticity
viscosity	coefficients
viscous	fluid
Voigt	solid
volume	element
vortex	flow
vorticity	tensor
vorticity	vector

yield

condition
function
stress
surface



1	 The	use	of	A	to	denote	a	vector	in	the	reference	configuration	is	another	exception	to	our	general	rule
that	vectors	are	denoted	by	lower-case	letters.

2	 The	use	of	γ	and	η	to	denote	strain	tensors	is	a	departure	from	our	convention	of	denoting	second-order
tensors	by	bold-face	italic	capital	letters.

3	 The	use	of	N	to	denote	a	vector	is	another	departure	from	the	convention	that	vectors	are	denoted	by
lower-case	letters.
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