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Interaction of electromagnetic waves with matter

Objective research field

Change electromagnetic waves: optical physics

Change matter: photochemistry

Analyze matter: spectroscopy Eemadhcomaios

Keyword: electromagnetic waves
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The Electromagnetic Spectrum
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Generation of electromagnetic waves .........ccceveeeveerrcccereerneenneeeee.and detection

General principle: oscillation of charges -> emission of electromagnetic waves mx + fx =0 ->

Radiowaves:

Tank circuits

Microwaves

Infrared

Ultraviolet
X-Ray

Gamma Ray

W

X = X, expio,t with o,=./f/m
Ny TC 0 EXPIM, o=+ [/
dmese, d Tank circuits
n
L = pok, S 1

velocity modulated electron
ensembles

Molecular oscillators
Black-body (thermal) radiators
Electron relaxation (lasers)

Electron relaxation (following ionization)
Cyclotrons (Synchrotron)
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Heat transfer-> T
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Keyword: Matter
From spectroscopist’s viewpoint: A sum of Hamiltonians

H = g_[;’ot+g_l;/i6+g_l;[+g{nuc[+%

For each Hamiltonian there are exact solutions of the Schroder equation, yielding eigenfunctions and energy eigenvalues
for relatively simple model systems and approximate energies for more complex systems:

Rotation: 3D-rigid free rotor (U =0) E =B hJ(J+1) with B=h/4n® (O = moment of inertia)

Vibration: harmonic oscillator U = % f g2 E=(n+%)ho, with oy=.f/m (m=mass)

Electrons: H-like one-electron systems E~ 1/n%; many-el.: E = f(L, M,J)) due to inter-electronic interactions
Zeeman: Stern-Gerlach system E = mgu,gB (EPR)------- m,;yhB (NMR) (p; = Bohr magneton =e h /2m,
Spectroscopy relevant quantum number

Magnetic resonance m, (NMR) or m¢ (EPR) spin orientational quantum number

Rotational spectroscopy J (angular momentum quantum number of molecular rotation)

Vibrational spectroscopy n, (vibrational quantum number

Electronic spectroscopy (VIS,UV,X-ray) L,J,M,M,, n (angular momentum or principal quantum number)
Maossbauer I (nuclear spin quantum number)



Born-Oppenheimer Approximation.

The different parts of the Hamiltionian are independent and Schrédinger
equations can be solved separately. Processes can be considered ,, decoupled”
-> this simplifies the theoretical analysis significantly.

Thermal Equilibrium

. . . Max Born Robert Oppenheimer
The fractional populations n,/N of the levels having the energy ¢, 1882-1970 1904-1967
and degeneracy g; are given by the Boltzmann Distribution. Gottingen, Edinburgh ¢ Berkeley, Caltech

Nobel Prize 1954 Princeton
gleXp—sl/kBT
Z; gieXp—e;/k,T
Most spectroscopic experiments are conducted at thermal equilibrium. Ludwig Boltzmann
By the experiment the transitions between the energy levels take place, so that
the system is transformed into a non-equilibrium state.

n,/N =

The return to thermal equilibrium is called relaxation
Relaxation can occur by re-emission or by transfer of energy to the lattice. The time
Constant governing this return is called spin-lattice relaxation times.

Photolysis, chemical reaction, nuclear decay or cross-relaxation may create
non- equilibrium states, from which return to equilibrium may occur via photon emission. 1844-1906

(luminescence: emission spectroscopy) Universitat Wien
Interaction with nhoton< mav create virtiial ctatec emittine electromascnetic radiation



Keyword: Interaction

Population changes in a two-level system (Einstein)
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Equilibrium: Balance from all the Processes: dN,/dt = B;,N;p(V) - B,;N,p(v) -A,;N, =0



Simplest case: non-degenerate states

=Ny/Nyoy = 2. exXp—«;/k,T P2 = Np/Nyt = 2. exp—el/k T

Equilibrium: Balance from all the Processes: dN,/dt = B;,N,p(v) - B,;N,p(v) -A,;N, =0
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The result is: A, = > g

-> at high frequencies spontaneous emission favored over stimulated emission

Mechanistically two conditions have to be fulfilled for energy transfer to occur:

1) Resonance condition: hv = g,-¢, energy of the electromagnetic wave = energy difference between states
2) Coupling condition: interaction between electromagnetic wave and the wave function of the molecule
(electric oder magnetic dipole moment): group-theoretical criteria.



Spectroscopic observables
1. Frequency of absorption/emission

2. Width

a) natural linewidth — Heisenberg uncertainty dESt > h/2
(6t = lifetime of excited state) O(hw)dt >h/2 -> dw = 1/25t
b) instrumental broadening (monochromatization limits, field inhomogeneity)
c) physical broadening
- inhomogeneous broadening: anisotropy or distribution of energy levels
- homogeneous broadening: dynamic processes
- unresolved hyperfine structure (low-energy splitting due to weak interactions)
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3. Intensities:
proportional to the rate: dN,/dt
Remembering dN,/dt = B,,N,p(V) - B,;N,p(v) -A,;N,

Neglecting the contribution from spontaneous emission (valid at low frequencies):

dN,/dt = B;,N,p(V) - By N,p(V) = By, p(V)(N;—N,) = By, p(V)(P;—P2)Nyor

Dependent on four factors:

- Population difference given by the Boltzmann law

- Intensity (wave amplitude, i.e. number of photons)

- Total number of molecules; basis of analytical applications

- Absorption coefficient B,,, transition probality, relating to the
coupling condition

= transmission of the sample

= transmission of the sample without analyte (c = 0)
= optical path length (diameter of cuvette)

= analyte concentration (mol/dm3)

= extinction coefficient (dm?/mol)

Absorbance A =log T?" = gcd
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