Química de Biomassa II - PPGBI

Prof. André Ferraz

Período letivo - 2º semestre 2021 aulas expositivas pelo sistema remoto

Departamento de Biotecnologia Escola de Engenharia de Lorena

Programa de QB2

- 1. Reações dos componentes de materiais lignocelulósicos em meio ácido
- Base para todos os processos de hidrólise que visam converter a fração polissacarídica em monômeros úteis às etapas de pós-conversão
- 2. Reações dos componentes de materiais lignocelulósicos em meio alcalino

Base para todos os processos de polpação química comerciais destinados a produção de celulose e papel

- 3. Processos industriais de conversão de materiais lignocelulósicos
- Estudo dos processos de polpação alcalina, mecânica, tecnologias de branqueamento de celulose, e foto-reversão em polpas branqueadas, além de métodos utilizados no controle de qualidade fisico-mecânica na produção de papéis
- 4. Reações de decomposição térmica dos materiais lignocelulósicos e processos de termoconversão

Relevantes nos processos de polpação termo-mecânicos e correlatos. Fundamental para o entendimento dos processos de carbonização e gaseificação da biomassa para a produção de energia

- 5. Pré-tratamento e fracionamento de materiais lilgnocelulósicos
- Fundamentos sobre o pré-tratamento de lignocelulósicos e avaliação dos mecanismos de fracionamento relacionados com processos hidrotérmicos, ácidos e alcalinos
- 6. Reações de derivatização de celulose e processos industriais correspondentes
- Entendimento das principais reações envolvidas nos processos de conversão da celulose e da hemicelulose em produtos poliméricos distintos do papel e derivados
- 7. Uso integrado dos componentes de materiais lignocelulósicos com foco em biorrefinarias de biomassa

Fundamentos relacionados com o tema das biorefinarias de biomassa lignocelulósica

Avaliação

A avaliação, devido às aulas não presenciais, será feita por meio de exercícios com pontuação acumulada igual a 10. A entrega dos exercícios resolvidos, bem como a posterior revisão da resolução e auto-avaliação serão considerados para a atribuição de frequência

A nota final (NF) será a soma dos pontos obtidos nos exercícios

A NF será utilizada para definir o conceito final entre A, B, C ou R.

Bibliografia

Ek M, Gellerstedt G, Henriksson G. Wood Chemistry and Wood Biotechnology (Volume 1); Pulping Chemistry and Technology (Volume 2).

Fengel D, Wegener G. *Wood Chemistry, Ultrastruture, Reactions*. Berlin, Wlater de Gruyter,1989

Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht U. *Comprehensive Cellulose Chemistry* (Volume 2-Functionalization of Cellulose). Weinheim, Wyley, 1998

Artigos científicos indicados durante as aulas

Berlin, Walter de Gruyter, 2009;

INTRODUÇÃO

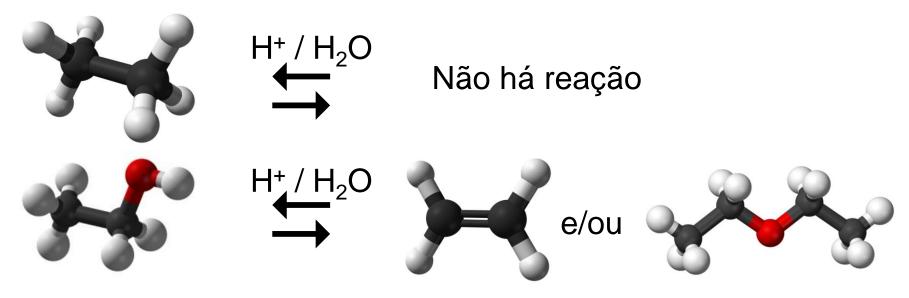
Origem e relevância da biomassa vegetal

Antes de um estudo mais detalhado sobre a química da biomassa vegetal lignificada, é importante lembrar que os vegetais são os seres responsáveis pela fixação do Carbono presente na atmosfera na forma de CO₂. Ou seja, são eles que através da fotossíntese, convertem o CO₂ em moléculas extremamente complexas como veremos dentro desse curso.

$$x CO_2 + x H_2O$$
 $\frac{hv}{chlorophyll}$ $(CH_2O)_x + x O_2$

Na natureza, em algum momento, as moléculas complexas são novamente convertidas em CO_2 e água quer por processos de biodegradação ou pela queima.

Esse ciclo: CO_2 fixado pelas plantas > CO_2 devolvido por processos degradativos, representa um processo fundamental para a manutenção da vida no globo terrestre. Sem ele, rapidamente os seres vivos seriam aniquilados.


Revisão de conceitos relacionados à química fundamental

- 1. Porque ocorre uma reação química?
- 2. Quais as vias principais de reações heterolíticas?
- 3. O que isso tem haver com química de biomassa?

Revise, no mínimo, os capítulos 11 (Benzeno e aromaticidade), 16 (reações de compostos orgânicos halogenados) e 17 (reações de álcoois, fenóis e éteres) do livro "Química Orgânica", Allinger

1. Porque ocorre uma reação química?

Pense: Porque um alcano é menos reativo do que os alcoóis frente a , por exemplo, ácidos diluídos

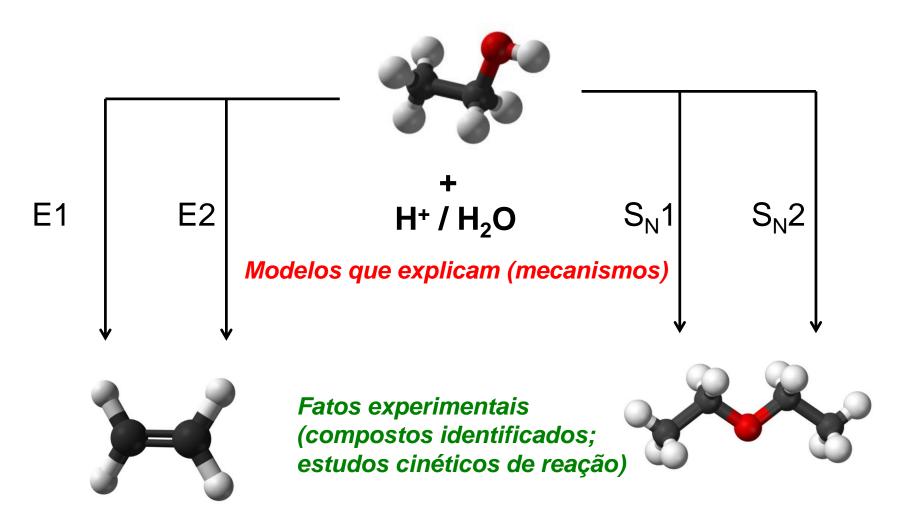
Ligações polarizadas são o início de qualquer reação química, pois sempre haverá deslocamento de elétrons no sentido de uma base de Lewis "doar" elétrons para um ácido de Lewis, estabelecendo uma nova ligação covalente >> PORQUE?<<

Reação de eliminação


https://www.youtube.com/watch?v=C2W1gBWA7g8

Reação de substituição

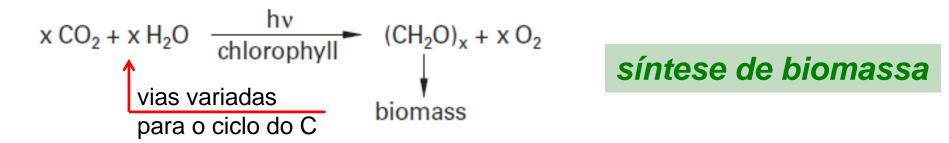
https://www.youtube.com/watch?v=QAyriEIN-30


Em geral, a formação da nova ligação química dá origem a compostos mais estáveis (*menos reativos*)

Por exemplo

2. Quais as vias principais de reações heterolíticas?

Exemplo do etanol em meio ácido diluído (Eliminação *versus* substituição; ordem de reação)



2. Quais as vias principais de reações heterolíticas? Benzeno e aromaticidade

Anéis aromáticos como bases de Lewis (doadores de elétrons) (Condensão no álcool benzóico como exemplo *← Estabilização de anéis por ressonância*

Pense: como seria possível explicar esta reação?

3. O que isso tem haver com química de biomassa?

Nesse curso, veremos que muitas vezes é possível acelerar esse processo natural. Ou seja, é possível, por exemplo, simplesmente queimar um pouco de lenha e converter todas as moléculas complexas de um lignocelulósico em CO₂ e H₂O.

degradação de biomassa

No entanto, muitas vezes há processos industriais mais sofisticados do que a queima. Eles visam converter as moléculas complexas de um lignocelulósico em produtos de interesse comercial.

Muitos exemplos do uso da biomassa no dia a dia:

celulose e papel derivados de celulose

Além desses processos industriais estabelecidos há muito tempo, veremos também outros processos que tem como base a transformação dos componentes da biomassa vegetal em insumos para a indústria química e de alimentos.

Indústrias que processam a biomassa *versus* Acúmulo de CO₂ na atmosfera

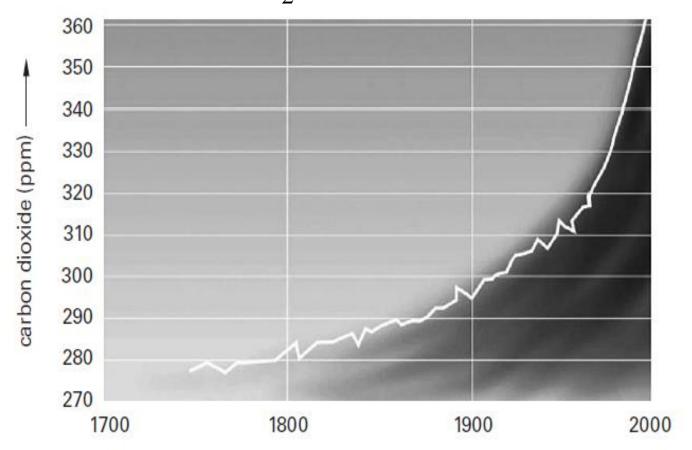
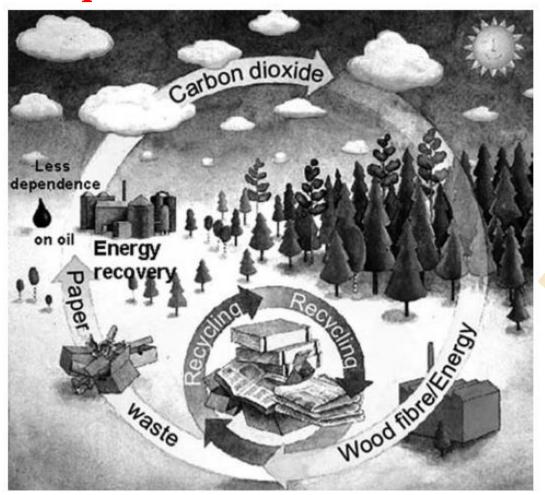
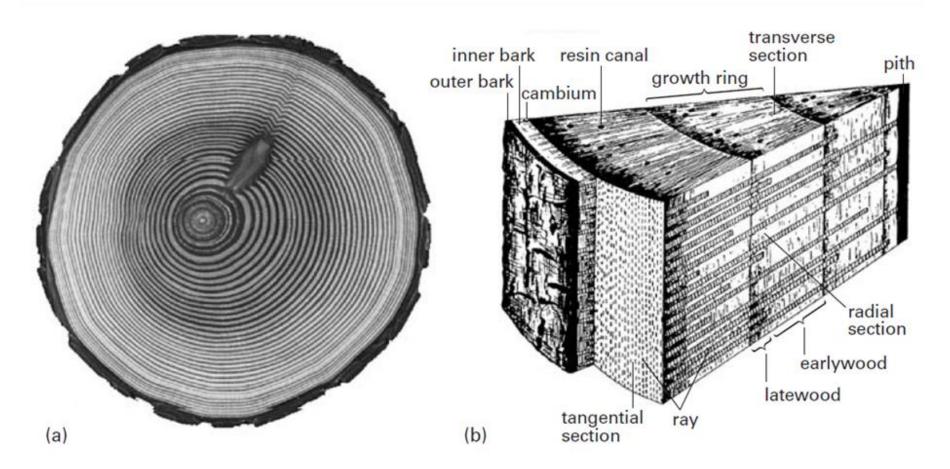



Figure 1.3. Change in the content of atmospheric carbon dioxide during 250 years. Source: Skogsindustrierna.

A indústria que processa biomassa tem sido considerada amigável ao ambiente

(desde que exista controle de emissões tóxicas)

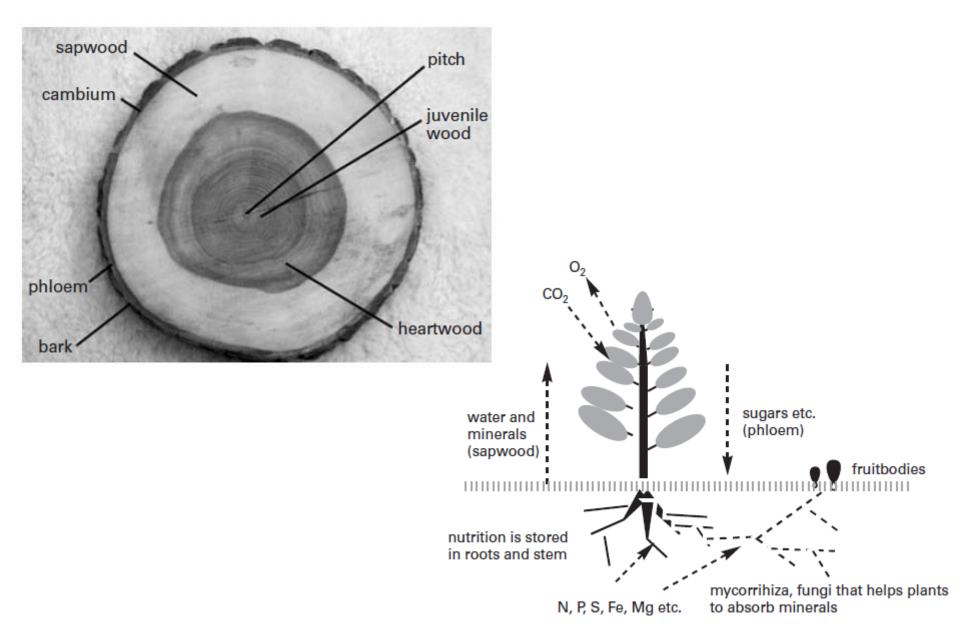
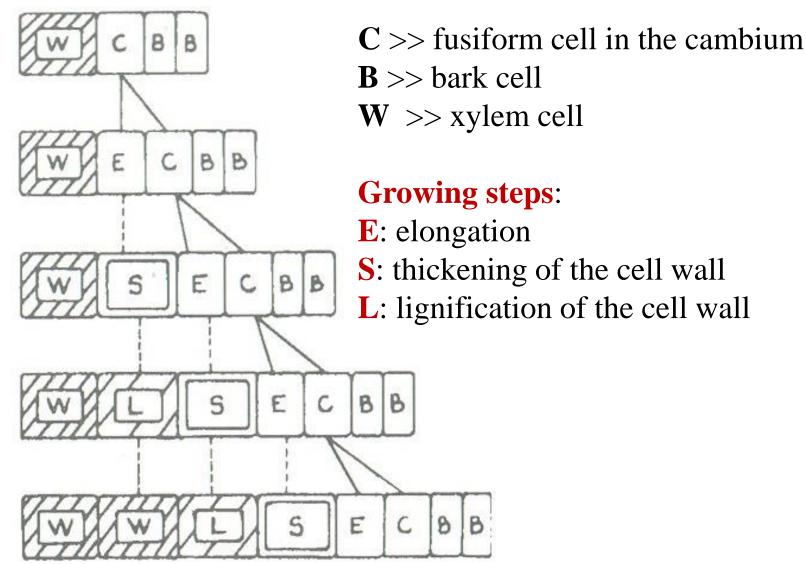
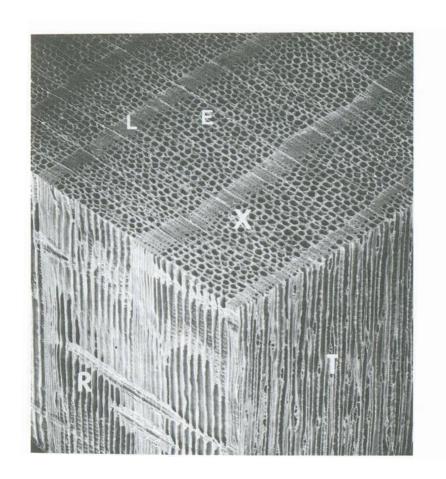


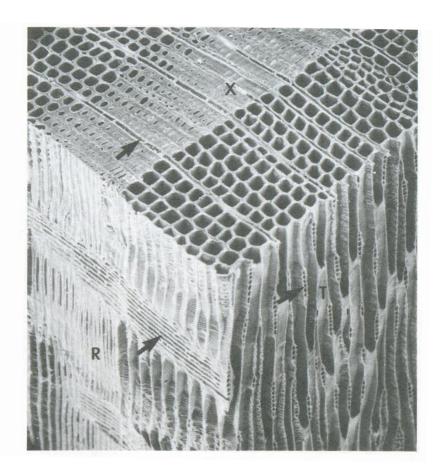
Forest Stewardship Council

Figure 1.4. The forestry industry is in balance with nature since wood is a renewable resource and all end products, viz. carbon dioxide and minerals, can be returned to the growing forest. Source: Skogsindustrierna.

Noções básicas sobre anatomia e composição química da biomassa vegetal lignificada (*revisão*)

Em termos anatômicos, as madeiras de coníferas se mostram as mais simples, como ilustra a figura abaixo

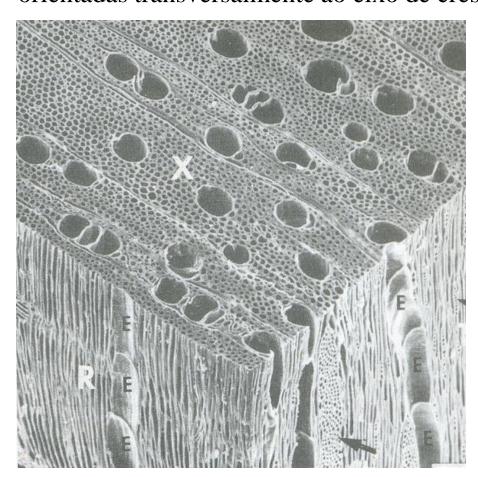





Figure 2.15. Schematic presentation of flows in a tree.

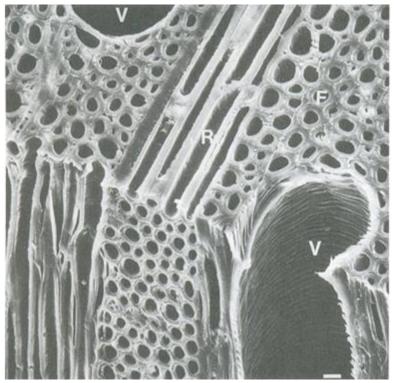
Cell formation and cell wall components deposition during wood growth

Cell distribution in the xylem of conifer wood

(X) corte transversal, (T) corte tangencial e (R) corte radial.
(E) representa células juvenis - crescimento rápido e (L) células tardias - crescimento lento. As setas indicam as células que compõem o raio


Tabela 1. Tipos de células em madeiras de coníferas

Longitudinais	Transversais
A. Função de suporte ou condução ou ainda	A. Função de suporte ou condução ou ainda
ambos	ambos
1. Traqueídeos longitudinais	1. Traqueídeos do raio
2. Traqueídeos fibrilares	
B. Função de secreção ou estocagem	B. Função de secreção ou estocagem
1. Parênquima longitudinal	1. Parênquima do raio
2. Células epiteliais	2. Células epiteliais


Table 3.2. Length and width of typical softwood tracheids.

Wood Species	Trache	id length (mm)	Trache	Tracheid width (μm)	
	Mean	Range	Mean	Range	
Norway spruce (Picea abies)	3.4	1.1-6.0	31	21-40	
Scots pine (Pinus sylvestris)	3.1	1.8-4.5	35	14-46	
Redwood (Sequoia sempervirens)	7.0	2.9-9.3		50-65	

As madeiras de **folhosas**, apresentam uma diversidade celular um pouco mais ampla e contém vasos, além das fibras, e também um número expressivo de células orientadas transversalmente ao eixo de crescimento da árvore.

Cell distribution in the xylem of angiosperm wood

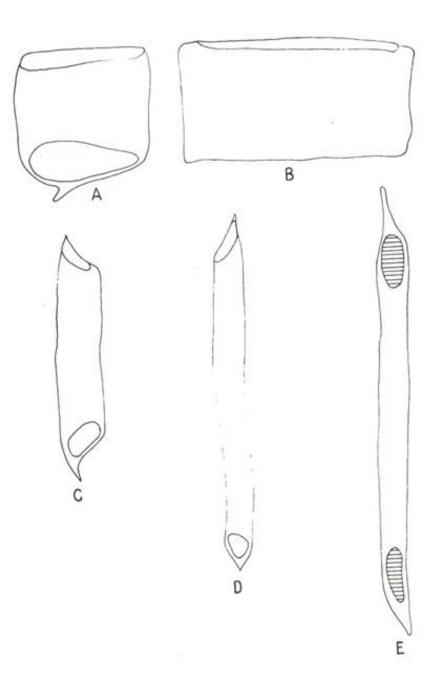
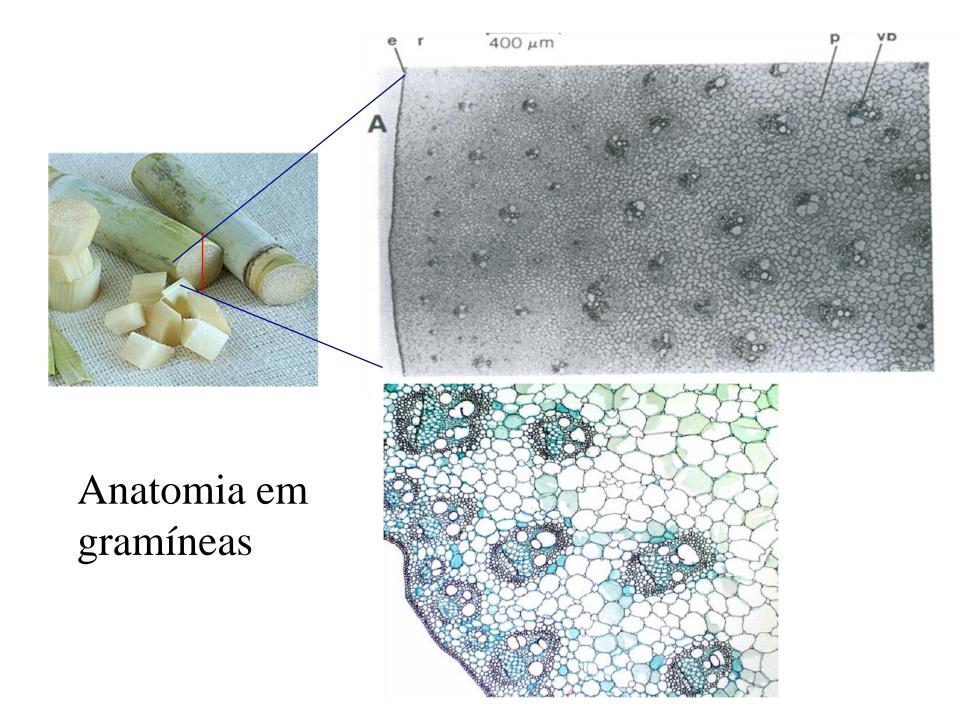
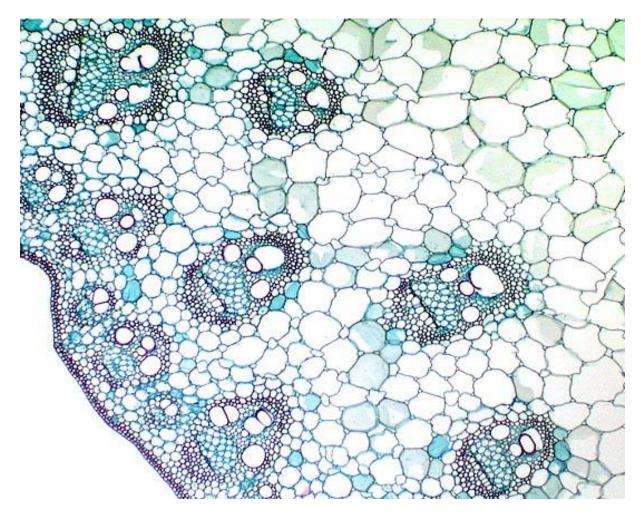
(X) corte transversal, (R) corte radial e (T) corte tangencial.

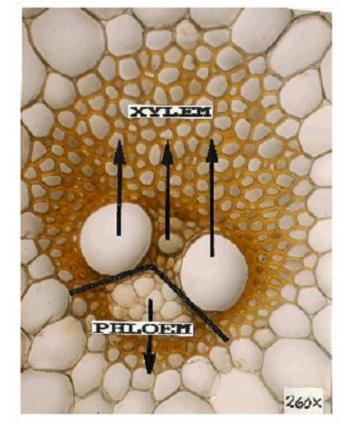
(E) indica os elementos de vaso que conectados formam um "tubo" denominado vaso com a função essencial de conduzir líquidos

Tabela 2. Tipos de células em madeiras de folhosas

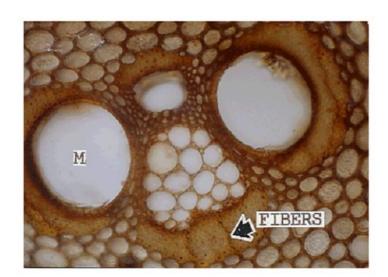
Longitudinais	Transversais
A. Função de suporte ou condução ou ainda	A. Função de suporte ou condução ou ainda ambos
ambos	1. Não há
1. Elementos de vasos	
2. Fibras	
3. Traqueídeos	
B. Função de estocagem	B. Função de estocagem
1. Parênquima longitudinal	1. Parênquima do raio

Dimensões proporcionais em células de angiospermas

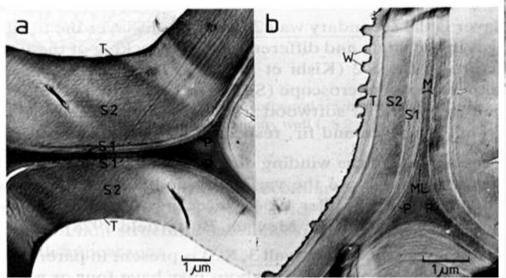

Table 3.6. Length and width of Scandinavian hardwood libriform fibres (Ezpeleta and Simon, 1970).

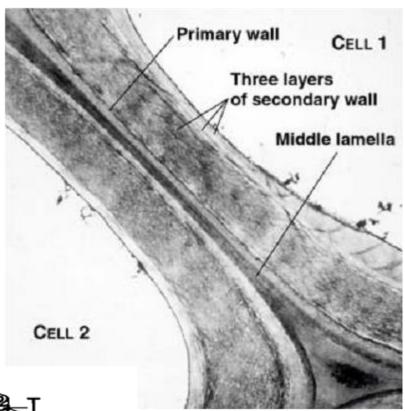
Wood species	Fib	re length (mm)	Fibr	Fibre with (μm)	
	Mean	Range	Mean	Range	
Birch (Betula verrucosa)	1.3	0.8 - 1.8	25	18 – 36	
Beech (Fagus sylvatica)	1.2	0.5 – 1.7	21	14 - 30	
Ash (Fraxinus excelsior)	0.9	0.4 - 1.5	22	12 - 32	



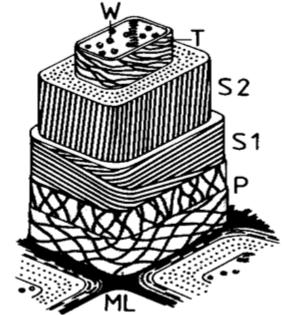
Grass non-wood

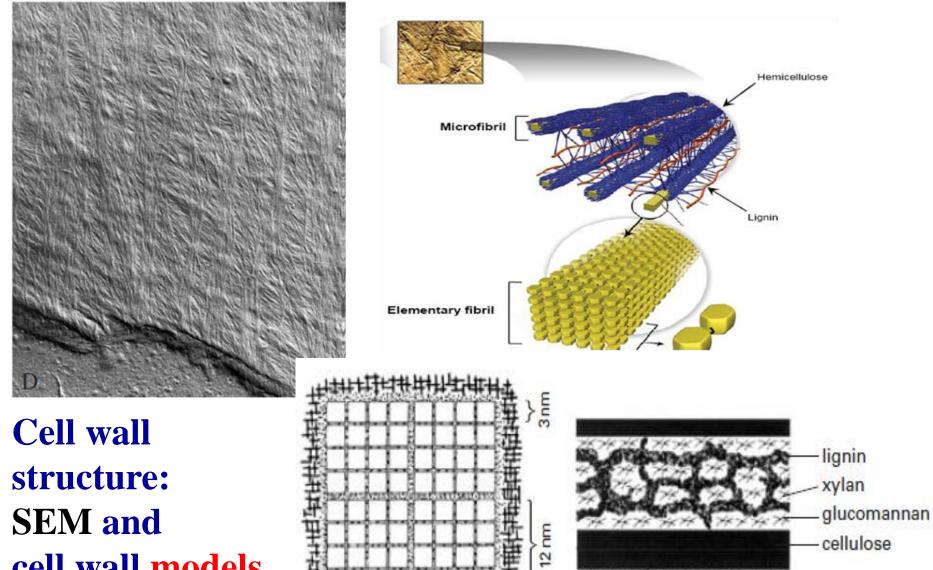
Cana





Arroz


Table 2-1. Relative Amounts of Cells Present in Biomass (%)


Biomass	Fibers	Vessels	Parenchyma
Softwoods			
Volume	90-95	None	5-10
Weight	95-98		2.5-4
Hardwoods			
Volume	40-65	20-50	10-20
Weight	70-85	10-15	4.5-7.0
Grasses			
Volume	25-60	1-10	30-70

Cell wall structure: SEM and cell wall models

cellulose polyoses the lignin

cellulose

SEM and cell wall models

Table 3.8. Distribution of cellulose in different cell wall layers (Meier, 1964).

Wood species	ML + P	S1	S2(outer)	S2(inner)+ S3		
	% of total polysaccharide					
Scots pine Pinus sylvestris	33.4	55.2	64.3	63.6		
Norway spruce Picea abies	35.5	61.5	66.5	47.5		
Birch Betula verrucosa	41.4	49.8	48.0	60.0		

Table 6.3. Distribution of lignin in cell wall layers of softwood tracheids and hardwood fibers.

Wood cells	Cell wall layer	Tissue volume (%)	Part of total lignin (%)	Lignin-conc. (%)
Loblolly pine	tracheids (Softwood)			
Early wood	S1	13	12	25
	S2	60	44	20
	S3	9	9	28
Middle lamella	+ primary wall	12	21	49
	Cell corner	6	14	64
Late wood	S1	6	6	23
	S2	80	63	18
	S3	5	6	25
Middle lamella	+ primary wall	6	14	51
	Cell corner	3	11	78
White birch (H	lardwood)			
Fiber	Secondary cell wall	73	60	19
Middle lamella	+ primary wall	5	9	40
	Cell corner	2	9	85

Composição química da biomassa vegetal lignificada

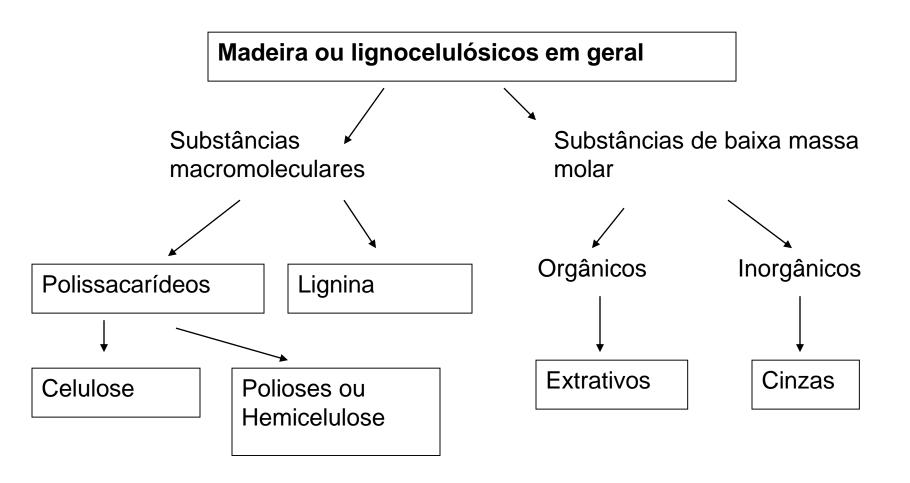


Table 2.2. Chemical composition of some wood species (mass %).

Species	Extractives	Lignin	Cellulose	Gluco- mannan	Xylan	Other poly- sacch.	others
Softwoods Norway Spruce (Picea abies)	1.7	27.4	41.7	16.3	8.6	3.4	0.9
Scots Pine (Pinus sylvestris)	3.5	27.7	40.0	16.0	8.9	3.6	0.3
Hardwoods Birch (<i>Betula verrucosa</i>)	3.2	22.0	41.0	2.3	27.5	2.6	1.4
Beech (Fagus sylvatica)	1.2	24.8	39.4	1.3	27.8	4.2	1.3
River red gum (Eucalyptus calm- aldulensis)	2.8	31.3	45.0	3.1	14.1	2.0	1.7
Red maple (Acer rubrum)	3.2	25.4	42.0	3.1	22.1	3.7	0.5

Tabela 1. Composição química de materiais lignocelulósicos determinada por procedimento de hidrólise ácida dos polissacarídeos.

Componente (% em g/100 g de material seco)	Amostra de <i>Polulus</i> deltoides (madeira de folhosa)	Amostra de Bagaço de cana de açúcar (Saccharum officinarum)
Extrativos	$1,9 \pm 0,2$	$2,3 \pm 0,1$
Cinzas	$1,0 \pm 0,1$	$4,0 \pm 0,2$
Lignina		
Insolúvel	$25,1 \pm 0,2$	$23,3 \pm 0,3$
Solúvel	$0,69 \pm 0,01$	$1,30 \pm 0,02$
Hemicelulose (total de monossacarídeos diferentes de glicose x 0,88)	$16,0 \pm 0,2$	$18,7 \pm 0,6$
Celulose (total de glicose x 0,9)	$43,70 \pm 0,7$	$36,7 \pm 0.8$
Furfural	$1,10 \pm 0,03$	$1,37 \pm 0,02$
Correção para hemicelulose	$1,51 \pm 0,03$	$1,88 \pm 0.02$
Hidroxi-metil furfural	$0,30 \pm 0,01$	$0,\!28 \pm 0,\!01$
Correção para celulose	$0,50 \pm 0,01$	$0,36 \pm 0,01$
Somatório	93,2	92,4

Table 6 Chemical Composition of Wood (42,594)^a

Component	Sweet gum	Hickory	White oak	Slash pine ^b	Longleaf pine ^b
Extractives	1.1	9.0	5.3	0.9	1.4
Lignin	25.7	23.0	24.6	26.6	25.7
Cellulose	42.8	37.7	41.7	46.5	44.6
Hemicellulose	30.1	29.2	28.4	25.8	28.1
O-acetyl-4-O-methyl					
glucuronoxylan	23.6	24.9	21.0	-	
Glucomannan	3.6	0.8	3.1		
Arabinogalactan	1.0	1.8	1.6	1.6	1.8
Arabino-4-O-methyl glucuronoxylan	13 13	:	_	8.1	7.8
O-acetyl-galacto- glucomannan	-	_		15.3	17.7
Pectin	1.9	1.7	2.7	0.8	0.8
Ash	0.3	1.1	0.2	0.2	0.2

^a Percentages based on ovendry weight of unextracted wood.

^b Sapwood, summerwood.

Celulose

- principal polímero nos materiais lignocelulósicos
- pode ser encontrado na forma quase pura nas flores do algodão e também como um produto de secreção extracelular em algumas espécies de bactéria.

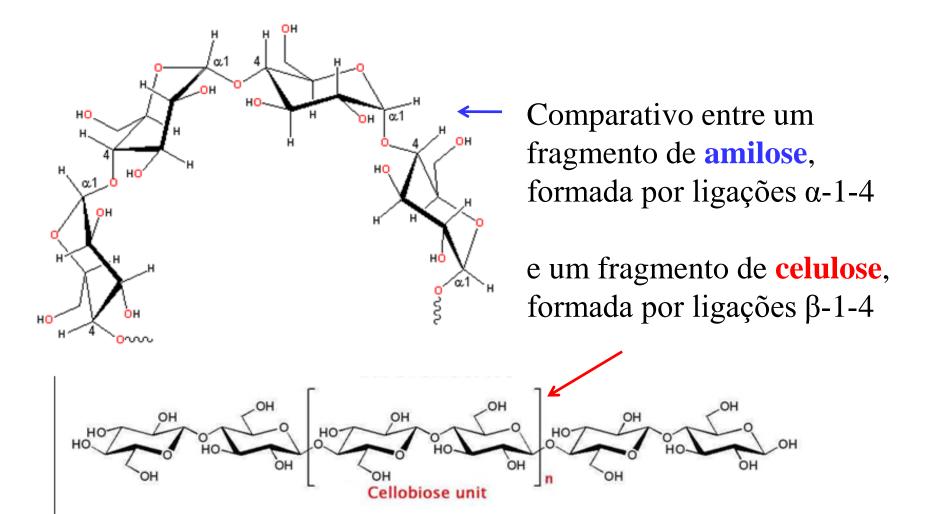
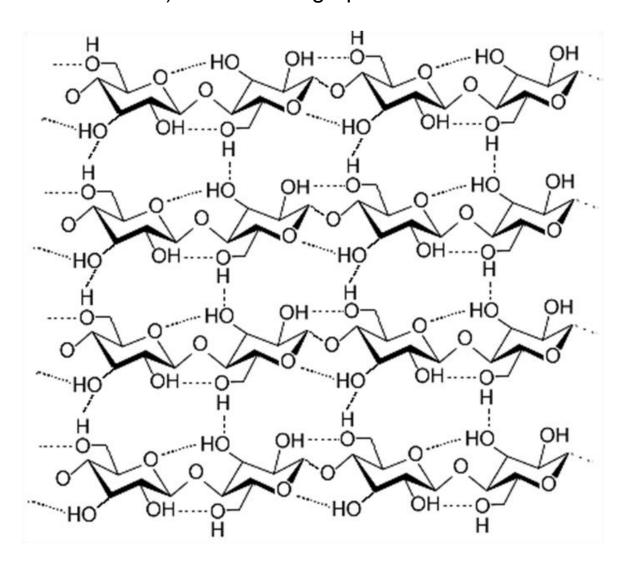
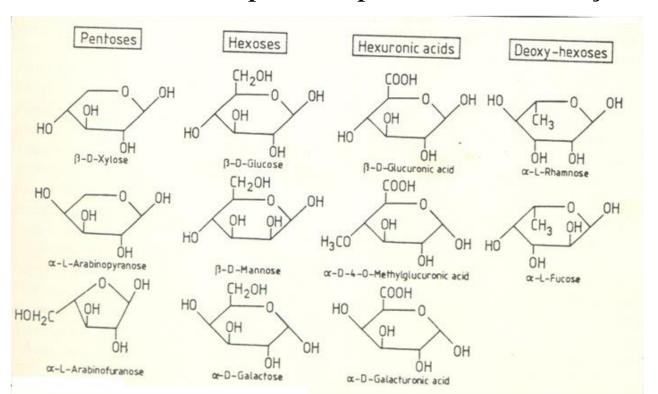

O teor de celulose varia grandemente nas diferentes espécies onde é encontrada

Tabela 1. Ocorrência de celulose em diferentes tipos de materiais


Material de origem	Teor de celulose		
	(%, g/100g base seca)		
Algodão	95-99		
Rami (Boehmeria nivea)	90-90		
Bambu (<i>Phyllostachys</i> spp.)	40-50		
Bagaço de cana (Saccharum officinarum)	35-45		
Madeiras	40-53		
Cascas de madeira	20-30		
Bactéria (Acetobacter xylinum)	20-30		

- polímero formado por unidades repetitivas de anidroglicose
- -monômeros de anidro-glicose são unidos por ligações nas quais o oxigênio glicosídico ocupa sempre uma posição equatorial em relação ao plano do anel
- a ligação entre duas moléculas adjacentes de glicose ocorre a partir da eliminação de uma molécula de água entre as hidroxilas ligadas aos carbonos 1 de uma das moléculas e o carbono 4 da outra. Ou seja, a ligação formada é denominada de β -1-4. A denominação β se refere a posição equatorial do oxigênio glicosídico e os número 1 e 4 identificam os carbonos envolvidos na ligação. Outra característica importante da celulose é que não há ramificações na cadeia principal.

Uma consequência direta das ligações β -1-4 entre as unidades de anidroglicose é a formação de uma cadeia estruturada ao longo de uma linha, ou seja, a celulose é um polímero linear. Um contraponto simples de se fazer nesse momento é comparar as moléculas de amilose (formada por ligações α -1-4) com a de celulose



Como a celulose apresenta 3 hidroxilas livres a cada unidade monomérica, é muito previsível que possa haver pontes de hidrogênio (tanto intramoleculares como intermoleculares) entre esses grupos

Polioses ou Hemiceluloses

- Diferem da celulose porque compreendem moléculas muito mais curtas e apresentam vários açúcares em sua constituição
- O grau de polimerização das hemiceluloses é significativamente menor do que o observado para a celulose (varia entre 100 e 200)
- Outra diferença marcante entre as hemiceluloses e a celulose é que as hemiceluloses podem apresentar ramificações da cadeia principal.

Açúcares precursores das hemiceluloses

Hemiceluloses

- classificadas de acordo com o tipo de cadeia principal:

homopolímeros >> cadeia principal contém somente um tipo de anidro-açúcar (uma xilana por exemplo)

heteropolímeros >> monômeros variados na cadeia principal (glucomanana por exemplo)

- hemicelulose é representada por abreviações das unidades monoméricas

Exemplo: Xyl para xilose

Glu, para glicose

Me-GluU para ácido 4-O-metil glucurônico.

- teores variam consideravelmente, mas, em geral, está entre 20 e 30%

>> coníferas e de folhosas diferem não somente com relação ao teor, mas também quanto aos polímeros predominantes

>> monocotiledôneas se aproximam mais das madeiras de folhosas.

Tabela 1. Teores de açúcares monoméricos (exceto glicose) liberados por hidrólise ácida de algumas espécies de madeira

Espécie	Man	Xyl	Gal	Ara	UroA	Acetyl
Coníferas						
Larix decidua	11,5	5,1	6,1	2,0	2,2	não anal.
Picea glauca	12,0	7,0	1,9	1,1	4,4	1,2
Pinus sylvestris	12,4	7,6	1,9	1,5	5,0	1,6
Folhosas	-					
Betula papyrifera	2,0	23,9	1,3	0,5	5,7	3,9
Populus tremuloides	3,5	21,2	1,1	0,9	3,7	3,9
Eucalyptus grandis	0,8	13,9	1,5	0,9	4,4	3,8

Table 5.1. Major hemicelluloses in softwoods and hardwoods.

Occurrence	Hemicellulose	Amount, %1)	Units	Molar Ratio ²⁾	Linkage
Softwood	Galactoglucomannan	5–8	β-D-Man <i>p</i> β-D-Glc <i>p</i> α-D-Gal <i>p</i> O-Acetyl	3–4 1 1	1→4 1→4 1→6
Softwood	Glucomannan	10–15	β-D-Man <i>p</i> β-D-Glc <i>p</i> α-D-Gal <i>p</i> O-Acetyl	3–4 1 0.1 1	1→4 1→4 1→6
Softwood	Arabinoglucuronoxylan	7–15	β-D-Xylp 4-OMe-α-D-GlcpA α-L-Araf	10 2 1.3	1→4 1→2 1→3
Larch wood	Arabinogalactan	3–35	β-D-Gal <i>p</i> L-Ara <i>f</i> β-D-Ara <i>p</i>	6 2/3 1/3	1→3, 1→6 1→6 1→3
Hardwood	Glucuronoxylan	15–35	β-D-Xylp 4-OMe-α-D-GlcpA O-Acetyl	10 1 7	1→4 1→2
Hardwood	Glucomannan	2–5	β-D-Man <i>p</i> β-D-Glc <i>p</i> O-Acetyl	1-2 1 1	1→4 1→4

¹⁾ By dry weight; 2) Approximate values

Figure 5.5. Representative structural formula for softwood arabino-4-O-methylglucuronoxylan.

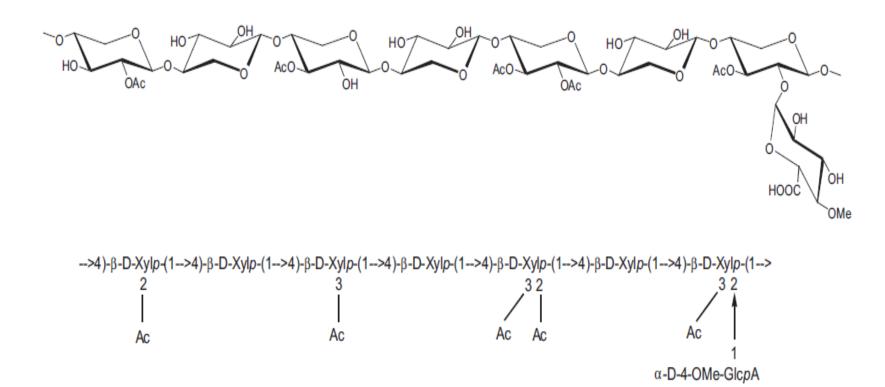
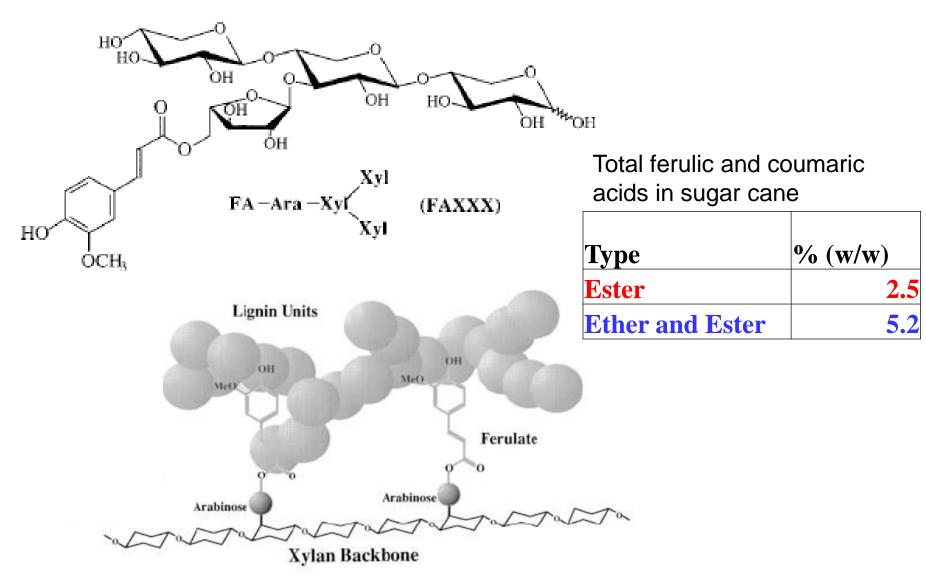



Figure 5.4. Representative structural formula for hardwood glucuronoxylan.

Ronald D Hatfield, 1* John Ralph and John H Grabber 5 Sci Food Agric 79:403-407 (1999)

Figure 5.9. Representative structural formula for softwood galactoglucomannan.

Lignina

Figure 6.1. A suggested structure of soft wood lignin. The lignins in hardwoods and monocotyledons differs mainly in the content of metoxy groups (-OCH₃).

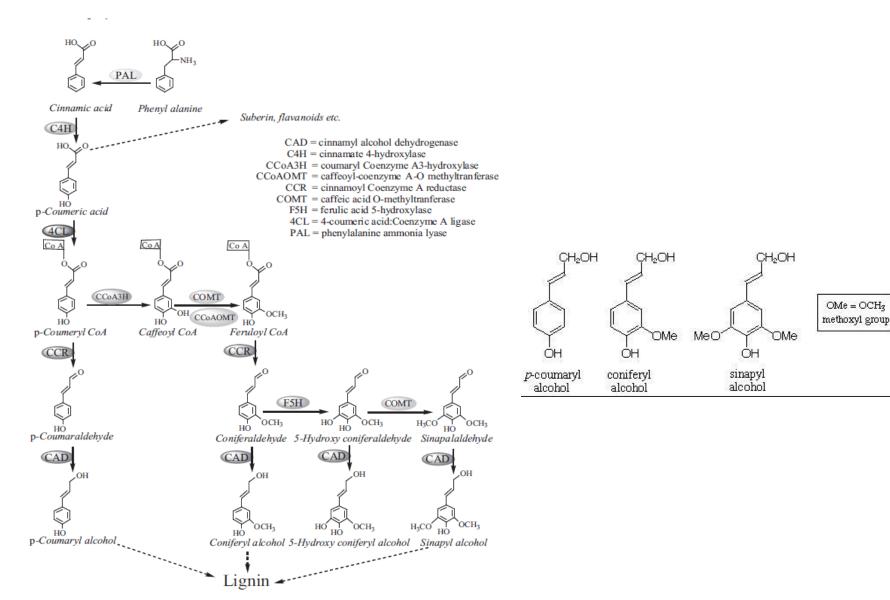


Figure 6.17. Pathways for the biosynthesis from phenylalanine to monolignols. In the conversion from the amino acid phenyl alanin to monolignols, the reducing power of 2 NADPHs and the free energy of one ATP are consumed.

Tabela 1. Proporção dos precursores em ligninas de diferentes tipos de plantas

Table 6.1. Composition of monolignols (lignin monomers) in different plants.

Plant	p-Coumaryl alcohol (%)	Coniferyl alcohol (%)	Sinapyl alcohol (%)
Coniferous" softwood	<5	>95	None or Trace
Eudocotyledonous hard- wood	0–8	25–50	46-75
Monocotyledonous grass	5–33	33–80	20–54

Figure 6.5. Enzymatic generation of resonance stabilized monolignol radicals.

Table 6.2. Bonds between monolignols and lignin functional groups.

Name	Bonds	Structure*	Frequency softwood (%)	Frequency hardwood (%)
Ether bonds				
β-aryl ether	β-Ο-4΄	~__	35–60	50-70
Diaryl ether	4-0-5′	6.0	<4	7?
	1-0-4	HO O	low	low
Glyceralde- hyde aryl ether	β-Ο-4΄	\$	<1	<1
Carbon-carbo	on bonds	(condensed bonds)		
Dihydroxy biphenyl	5-5	~~~	10	~5
Phenyl cou- marane	β-5΄	-0.5	11–12	4–9
Pinoresinol	ββ΄	-0-\$-0-	2-3	3–4
	ββ΄	.000.	<1	none
Secoisola- riciresinol		.040.	1-2	none
	β-1΄	.010.	1–2	1
Spirodienon	β-1΄	•	1–3	2–3
		I MA		

Estrutura modelo de lignina de conífera

Note-se que nessa figura se emprega uma nomenclatura para a cadeia propânica que utiliza as numerações 7,8 e 9 para os carbonos α , β e γ , respectivamente

$$\beta$$
- β /pinoresinol

MeO

 β - β /pinoresinol

MeO

 β - β /pinoresinol

 β - β /pinoresinol

 β - β /pinoresinol

 β - β - β /pinoresinol

Estrutura modelo de lignina de folhosas

Reações em meio ácido

Sumário e objetivo das aulas (2 aulas)

1. O que ocorre com um lignocelulósico exposto ao meio ácido?

- Quais grupos funcionais podem reagir?

2. Reações dos polissacarídeos

- ligação glicosídica
- grupos pendentes na hemicelulose
- cinética de hidrólise
- fatores que influenciam na reação
- reações de desidratação

3. Reações da lignina

- desidratação e/ou quebra da ligação éter no carbono alfa
- reações de condensação

4. Metodologia analítica baseada em reações em meio ácido

- determinação de componentes
- acidólise analítica
- tioacidólise

Referência para estudo: Fengel e Wegener, cap 10