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As quantum computers become available to the general public, the need has arisen to train a cohort of
quantum programmers, many of whom have been developing classical computer programs for most of
their careers. While currently available quantum computers have less than 100 qubits, quantum computing
hardware is widely expected to grow in terms of qubit count, quality, and connectivity. This review aims
to explain the principles of quantum programming, which are quite different from classical programming,
with straightforward algebra that makes understanding of the underlying fascinating quantum mechanical
principles optional. We give an introduction to quantum computing algorithms and their implementation on
real quantum hardware. We survey 20 different quantum algorithms, attempting to describe each in a succinct
and self-contained fashion. We show how these algorithms can be implemented on IBM’s quantum computer,
and in each case, we discuss the results of the implementation with respect to differences between the simulator
and the actual hardware runs. This article introduces computer scientists, physicists, and engineers to quantum
algorithms and provides a blueprint for their implementations.
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1 INTRODUCTION
Quantum computing exploits quantum-mechanical effects—in particular superposition, entangle-
ment, and quantum tunneling—to more efficiently execute a computation. Compared to traditional,
digital computing, quantum computing offers the potential to dramatically reduce both execution
time and energy consumption. These potential advantages, steady advances in nano-manufacturing,
and the slow-down of traditional hardware scaling laws (such as Moore’s Law) have led to a substan-
tial commercial and national-security interest and investment in quantum computing technology
in the 2010s. Recently, Google announced that it has reached a major milestone known as quan-
tum supremacy–the demonstration that a quantum computer can perform a calculation that is
intractable on a classical supercomputer [8]. The problem tackled here by the quantum computer
is not one with any direct real-world application. Nonetheless, this is a watershed moment for
quantum computing and is widely seen as an important step on the road towards building quantum



4 Abhijith J., et al.

computers that will offer practical speedups when solving real-world problems [82]. (See [2] for a
precise technical definition of quantum supremacy.)

While themathematical basis of quantum computing, the programmingmodel, andmost quantum
algorithms have been published decades ago (starting in the 1990s), they have been of interest only
to a small dedicated community. We believe the time has come to make quantum algorithms and
their implementations accessible to a broad swath of researchers and developers across computer
science, software engineering, and other fields. The quantum programming model is fundamentally
different from traditional computer programming. It is also dominated by physics and algebraic
notations that at times present unnecessary entry barriers for mainstream computer scientists and
other more mathematically trained scientists.
In this review, we provide a self-contained, succinct description of quantum computing and of

the basic quantum algorithms with a focus on implementation. Since real quantum computers, such
as IBM Q [55], are now available as a cloud service, we present results from simulator and actual
hardware experiments for smaller input data sets. Other surveys of quantum algorithms with a
different target audience and also without actual implementations include [10, 26, 58, 75, 76, 88].
Other cloud service based quantum computers are also available from Rigetti and IonQ, but in this
reviewwe will focus solely on IBM’s quantum computing ecosystem. The code and implementations
accompanying the paper can be found at https://github.com/lanl/quantum_algorithms.

1.1 The quantum computing programming model
Here we provide a self-contained description of the quantum computing programming model. We
will define the common terms and concepts used in quantum algorithms literature. We will not
discuss how the constructs explained here are related to the foundations of quantum mechanics.
Interested readers are encouraged to take a look at Ref. [77] for a more detailed account along those
lines. Readers with a computer science background are referred to Refs. [67, 85, 110], for a more
comprehensive introduction to quantum computing from a computer science perspective.
Quantum computing basically deals with the manipulation of quantum systems. The physical

details of this is dependent on the quantum computer’s hardware design. Here we will only talk
about the higher level abstractions used in quantum computing: a typical programmer will only
be exposed to these abstractions. The state of any quantum system is always represented by a
vector in a complex vector space (usually called a Hilbert space). Quantum algorithms are always
expressible as transformations acting on this vector space. These basic facts follow from the axioms
of quantum mechanics. Now we will explain some of the basic concepts and terminology used in
quantum computing.

1.1.1 The qubit. The qubit (short for ’quantum bit’) is the fundamental information carrying unit
used in quantum computers. It can be seen as the quantum mechanical generalization of a bit used
in classical computers. More precisely, a qubit is a two dimensional quantum system. The state of a
qubit can be expressed as,

|ϕ⟩ = α |0⟩ + β |1⟩ . (1)

Here α and β are complex numbers such that, |α |2 + |β |2 = 1. In the ket-notation or the Dirac

notation, |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
are shorthands for the vectors encoding the two basis states of a

two dimensional vector space. So according to this notation, Eq. (1) expresses the fact that the state

of the qubit is the two dimensional complex vector
(
α
β

)
. Unlike a classical bit the state of a qubit

cannot be measured without changing it. Measuring a qubit, whose state given by Eq. (1), will yield

https://github.com/lanl/quantum_algorithms


Quantum Algorithm Implementations for Beginners 5

the classical value of either zero (|0⟩) with probability |α |2 or one (|1⟩) with probability |β |2. Qubit
implementations and technologies are a very active area of research that is not the focus of our
review, an interested reader is referred to [65] for a survey.

1.1.2 System of qubits. The mathematical structure of a qubit generalizes to higher dimensional
quantum systems as well. The state of any quantum system is a normalized vector (a vector of norm
one) in a complex vector space. The normalization is necessary to ensure that the total probability
of all the outcomes of a measurement sum to one.
A quantum computer contains many number of qubits. So it is necessary to know how to

construct the combined state of a system of qubits given the states of the individual qubits. The
joint state of a system of qubits is described using an operation known as the tensor product, ⊗.
Mathematically, taking the tensor product of two states is the same as taking the Kronecker product

of their corresponding vectors. Say we have two single qubit states |ϕ⟩ =
(
α
β

)
and |ϕ ′⟩ =

(
α ′

β ′

)
. Then

the full state of a system composed of two independent qubits is given by,

|ϕ⟩ ⊗ |ϕ ′⟩ =
(
α
β

)
⊗

(
α ′

β ′

)
=

©«
αα ′

αβ ′

βα ′

ββ ′

ª®®®¬ (2)

Sometimes the ⊗ symbol is dropped all together while denoting the tensor product to reduce clutter.
Instead the states are written inside a single ket. For example, |ϕ⟩ ⊗ |ϕ ′⟩ is shortened to |ϕϕ ′⟩, and
|0⟩ ⊗ |0⟩ ⊗ |0⟩ is shortened to |000⟩ . For larger systems the Dirac notation gives a more succinct
way to compute the tensor product using the distributive property of the Kronecker product. For a
system of, say, three qubits with each qubit in the state

��γj 〉 = α j |0⟩ + βj |1⟩, for j = 1, 2, 3, the joint
state is,

|γ1γ2γ3⟩ = |γ1⟩ ⊗ |γ2⟩ ⊗ |γ3⟩ (3)
= α1α2α3 |000⟩ + α1α2β3 |001⟩ + α1β2α3 |010⟩ + α1β2β3 |011⟩
+ β1α2α3 |100⟩ + β1α2β3 |101⟩ + β1β2α3 |110⟩ + β1β2β3 |111⟩ (4)

A measurement of all three qubits could result in any of the eight (23) possible bit-strings associated
with the eight basis vectors. One can see from these examples that the dimension of the state space
grows exponentially in the number of qubits n and that the number of basis vectors is 2n .

1.1.3 Superposition and entanglement. Superposition refers to the fact that any linear combination
of two quantum states, once normalized, will also be a valid quantum state. The upshot to this is
that any quantum state can be expressed as a linear combination of a few basis states. For example,
we saw in Eq. (1) that any state of a qubit can be expressed as a linear combination of |0⟩ and |1⟩.
Similarly, the state of any n qubit system can be written as a normalized linear combination of the
2n bit-string states (states formed by the tensor products of |0⟩’s and |1⟩’s). The orthonormal basis
formed by the 2n bit-string states is called the computational basis.

Notice that Eq. (3) described a system of three qubits whose complete state was the tensor product
of three different single qubit states. But it is possible for three qubits to be in a state that cannot
be written as the tensor product of three single qubit states. An example of such a state is,

|ψ ⟩ = 1
√
2
(|000⟩ + |111⟩). (5)

States of a system of which cannot be expressed as a tensor product of states of its individual
subsystems are called entangled states. For a system of n qubits, this means that an entalged state
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cannot be written a tensor product of n single qubit states. The existence of entangled states is a
physical fact that has important consequences for quantum computing, and quantum information
processing in general. In fact, without the existence of such states quantum computers would be
no more powerful than their classical counterparts [108]. Entanglement makes it possible to create
a complete 2n dimensional complex vector space to do our computations in, using just n physical
qubits.

1.1.4 Inner and outer products. We will now discuss some linear algebraic notions necessary for
understanding quantum algorithms. First of these is the inner product or overlap between two
quantum states. As we have seen before, quantum states are vectors in complex vectors spaces. The
overlap between two states is just the inner product between these complex vectors. For example,
take two single qubit states, |ϕ⟩ = α |0⟩ + β |1⟩ and |ψ ⟩ = γ |0⟩ + δ |1⟩ . The overlap between these
states is denoted in the ket notation as ⟨ψ |ϕ⟩. And this is given by,

⟨ψ |ϕ⟩ = γ ∗α + δ ∗β , (6)

where ∗ denotes the complex conjugate. Notice that,⟨ψ |ϕ⟩ = ⟨ϕ |ψ ⟩∗. The overlap of two states
is in general a complex number. The overlap of a state with a bit-string state will produce the
corresponding coefficient. For instance from Eq. (1), ⟨0|ϕ⟩ = α and ⟨1|ϕ⟩ = β . And from Eq. (3),
⟨001|γ1γ2γ3⟩ = α1α2β3. Another way to look at overlaps between quantum states is by defining
what is called a bra state. The states we have seen so far are ket states, like |ϕ⟩, which represented
column vectors. A bra state corresponding to this ket state, written as ⟨ϕ |, represents a row vector

with complex conjugated entries. For instance |ϕ⟩ =
(
α
β

)
implies that ⟨ϕ | =

(
α∗ β∗

)
. The overlap

of two states is then the matrix product of a row vector with a column vector, yielding a single
number. The reader must have already noticed the wordplay here. The overlap, with its closing
angled parenthesis, form a ‘bra-ket’!

The outer product of two states is an important operation that outputs a matrix given two states.
The outer product of the two states we defined above will be denoted by, |ψ ⟩⟨ϕ |. Mathematically
the outer product of two states is a matrix obtained by multiplying the column vector of the first
state with the complex conjugated row vector of the second state (notice how the ket is written
before the bra to signify this). For example,

|ψ ⟩ ⟨ϕ | =
(
α
β

) (
γ ∗ δ ∗

)
=

(
αγ ∗ αδ ∗

βγ ∗ βδ ∗

)
(7)

In this notation any matrix can be written as a linear combination of outer products between
bit-string states. For a 2 × 2 matrix,

A =

(
A00 A01
A10 A11

)
= A00 |0⟩ ⟨0| + A01 |0⟩ ⟨1| + A10 |1⟩ ⟨0| + A11 |1⟩ ⟨1| . (8)

Acting on a state with a matrix then becomes just an exercise in computing overlaps between states.
Let us demonstrate this process:

A |ϕ⟩ = A00 |0⟩ ⟨0|ϕ⟩ + A01 |0⟩ ⟨1|ϕ⟩ + A10 |1⟩ ⟨0|ϕ⟩ + A11 |1⟩ ⟨1|ϕ⟩ ,

= (A00α +A01β) |0⟩ + (A10α + A11β) |1⟩ =
(
A00α +A01β
A10α +A11β

)
. (9)

This notation might look tedious at first glance but it makes algebraic manipulations of quantum
states easily understandable. This is especially true when we are dealing with large number of
qubits as otherwise we would have to explicitly write down exponentially large matrices.
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The outer product notation for matrices also gives an intuitive input-output relation for them.
For instance, the matrix |0⟩ ⟨1| + |1⟩ ⟨0| can be read as "output 0 when given a 1 and output 1 when
given a 0". Likewise,the matrix, |00⟩ ⟨00| + |01⟩ ⟨01| + |10⟩ ⟨11| + |11⟩ ⟨10| can be interpreted as the
mapping {"00" –> "00", "01" –> "01", "11" –> "10", "10" –> "11" }. But notice that this picture becomes
a bit tedious when the input is in a superposition. In that case the correct output can be computed
like in Eq. (9).

1.1.5 Measurements. Measurement corresponds to transforming the quantum information (stored
in a quantum system) into classical information. For example, measuring a qubit typically corre-
sponds to reading out a classical bit, i.e., whether the qubit is 0 or 1. A central principle of quantum
mechanics is that measurement outcomes are probabilistic.
Using the aforementioned notation for inner products, for the single qubit state in Eq. (1), the

probability of obtaining |0⟩ after measurement is | ⟨0|ϕ⟩ |2 and the probability of obtaining |1⟩
after measurement is | ⟨1|ϕ⟩ |2. So measurement probabilities can be represented as the squared
absolute values of overlaps. Generalizing this, the probability of getting the bit string |x1 . . . xn⟩
after measuring an n qubit state, |ϕ⟩, is then | ⟨x1 . . . xn |ϕ⟩ |2.
Now consider a slightly more complex case of measurement. Suppose we have a three qubit

state, |ψ ⟩ but we only measure the first qubit and leave the other two qubits undisturbed. What is
the probability of observing a |0⟩ in the first qubit? This probability will be given by,∑

(x2x3)∈{0,1}2
| ⟨0x2x3 |ϕ⟩ |2. (10)

The state of the system after this measurement will be obtained by normalizing the state,∑
(x2x3)∈{0,1}2

⟨0x2x3 |ϕ⟩ |0x2x3⟩ . (11)

Applying this paradigm to the state in Eq. (5) we see that the probability of getting |0⟩ in the first
qubit will be 0.5, and if this result is obtained, the final state of the system would change to |000⟩ .
On the other hand, if we were to measure |1⟩ in the first qubit we would end up with a state |111⟩ .
Similarly we can compute the effect of subsystem measurements on any n qubit state.
In some cases we will need to do measurements on a basis different from the computational

basis. This can be achieved by doing an appropriate transformation on the qubit register before
measurement. Details of how to do this is given in a subsequent section discussing observables and
expectation values.

The formalism discussed so far is sufficient to understand all measurement scenarios in this paper.
We refer the reader to Ref. [77] for a more detailed and more general treatment of measurement.

1.1.6 Unitary transformations and gates. A qubit or a system of qubits changes its state by going
through a series of unitary transformations. A unitary transformation is described by a matrix U
with complex entries. The matrixU is called unitary if

UU † = U †U = I , (12)

where U † is the transposed, complex conjugate of U (called its Hermitian conjugate) and I is the
identity matrix. A qubit state |ϕ⟩ = α |0⟩ + β |1⟩ evolves under the action of the 2 × 2 matrix U
according to

|ϕ⟩ → U |ϕ⟩ =
(
U00 U01
U10 U11

) (
α
β

)
=

(
U00α +U01β
U10α +U11β

)
. (13)
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Operators acting on different qubits can be combined using the Kronecker product. For example, if
U1 andU2 are operators acting on two different qubits then the full operator acting on the combined
two qubit system will be given byU1 ⊗ U2.
For an n qubit system the set of physically allowed transformations, excluding measurements,

consists of all 2n × 2n unitary matrices. Notice that the size of a general transformation increases
exponentially with the number of qubits. In practice a transformation on n qubits is effected by
using a combination of unitary transformations that act only on one or two qubits at a time. By
analogy to classical logic gates like NOT and AND, such basic unitary transformations, which
are used to build up more complicated n qubit transformations, are called gates. Gates are unitary
transformations themselves and from Eq. (12) it is clear that unitarity can only be satisfied if the
number of input qubits is equal to the number of output qubits. Also, for every gateU it is always
possible to have another gateU † that undoes the transformation. So unlike classical gates quantum
gates have to be reversible. Reversible means that the gate’s inputs can always be reconstructed
from the gate’s outputs. For instance, a classical NOT gate, which maps 0 to 1 and 1 to 0 is reversible
because an output of 1 implies the input was 0 and vice versa. However, a classical AND gate,
which returns 1 if and only if both of its inputs are 1, is not reversible. An output of 1 implies that
both inputs were 1, but an output of 0 provides insufficient information to determine if the inputs
were 00, 01, or 10.

But this extra restriction of reversibility does not mean that quantum gates are ‘less powerful’
than classical gates. Even classical gates can be made reversible with minimal overhead. Reversibility
does not restrict their expressive power [87]. Quantum gates can then be seen as a generalization
of classical reversible gates.

The most common gates are described in Table 1. The X gate is the quantum version of the NOT
gate. The CNOT or “controlled NOT” negates a target bit if and only if the control bit is 1. We will
use the notation CNOTi j for a CNOT gate controlled by qubit i acting on qubit j. The CNOT gate
can be expressed using the outer product notation as,

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ X = |00⟩ ⟨00| + |01⟩ ⟨01| + |10⟩ ⟨11| + |11⟩ ⟨10| . (14)

The Toffoli gate or “controlled-controlled NOT” or CCNOT, is a three qubit gate that is essentially
the quantum (reversible) version of the AND gate. It negates a target bit if and only if both control
bits are 1. In the outer product notation,

CCNOT = |11⟩ ⟨11| ⊗ X + (I − |11⟩ ⟨11|) ⊗ I . (15)

Another way to look at the CCNOT gate is as a CNOT gate with an additional control qubit,

CCNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ CNOT. (16)

In general, one can define controlled versions of any unitary gateU as,

CU = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U . (17)

CU appliesU to a set of qubits only if the first qubit (called the control qubit) is |1⟩.
A set of gates that together can execute all possible quantum computations is called a universal

gate set. Taken together, the set of all unary (i.e., acting on one qubit) gates and the binary (i.e., acting
on two qubits) CNOT gate form a universal gate set. More economically, the set {H ,T ,CNOT}
(Refer Table 1 for definitions of these gates) forms a universal set. Also, the Toffoli gate by itself is
universal [77].
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One-qubit gates Multi-qubit gates

Hadamard = H = 1√
2

(
1 1
1 −1

)
CNOT = CX =

©«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬
I =

(
1 0
0 1

)
, S =

(
1 0
0 i

)
CZ =

©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®®¬
T =

(
1 0
0 e iπ /4

)
Controlled-U = CU =

©«
1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11

ª®®®¬
NOT = X =

(
0 1
1 0

)
SWAP =

©«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®®¬

Y =
(

0 −i
i 0

)
, Z =

(
1 0
0 −1

)
Toffoli
(CCNOT)

=

©«

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

ª®®®®®®®®®®®¬
R(θ ) = P (θ ) =

(
1 0
0 e iθ

)
Table 1. Commonly used quantum gates.

1.1.7 Observables and expectation values. We have seen that experiments in quantum mechanics
are probabilistic. Often in experiments we will need to associate a real number with a measurement
outcome. And quantities that we measure in quantum mechanics will always be statistical averages
of these numbers. For instance, suppose we do the following experiment on many copies of the
single qubit state in Eq. (1): We measure a copy of the state and if we get |0⟩ we record 1 in our lab
notebook , otherwise we record −1. While doing this experiment we can never predict the outcome
of a specific measurement. But we can ask statistical questions like: “What will be the average
value of the numbers in the notebook?” From our earlier discussion on measurement we know that
the probability of measuring |0⟩ is |α |2 and the probability of measuring |1⟩ is |β |2. So the average
value of the numbers in the notebook will be,

|α |2 − |β |2 (18)



10 Abhijith J., et al.

In quantum formalism, there is neat way to express such experiments and their average outcomes,
without all the verbiage, using certain operators. For the experiment described above the associated
operator would be the Z gate,

Z = |0⟩ ⟨0| − |1⟩ ⟨1| =
(
1 0
0 −1

)
(19)

By associating this operator with the experiment we can write the average outcome of the experi-
ment, on |ϕ⟩, as the overlap between |ϕ⟩ and Z |ϕ⟩,

⟨ϕ |Z |ϕ⟩ = ⟨ϕ |0⟩ ⟨0|ϕ⟩ − ⟨ϕ |1⟩ ⟨1|ϕ⟩ = |α |2 − |β |2. (20)

The operator Z is called the observable associated with this experiment. And the quantity ⟨ϕ |Z |ϕ⟩
is called its expectation value. The expectation value is sometimes denoted by ⟨Z ⟩, when there is no
ambiguity about the state on which the experiment is performed.
Here we saw an experiment done in the computational basis. But this need not always be the

case. Experiments can be designed by associating real numbers to measurement outcomes in any
basis. What would be the observable for such an experiment? For an experiment that associates
the real numbers {ai } to a measurement onto a basis set {|Φi ⟩}, the observable will be,

O ≡
∑
i

ai |Φi ⟩ ⟨Φi | . (21)

This observable will reproduce the correct expectation value for this experiment done on any state
|ψ ⟩,

⟨ψ |O |ψ ⟩ =
∑
i

ai ⟨ψ |Φi ⟩ ⟨Φi |ψ ⟩ =
∑
i

ai | ⟨Φi |ψ ⟩ |2. (22)

Because the states {|Φi ⟩} are orthonormal, we can see that O obeys the following eigenvalue
equation,

O
��Φj

〉
=

∑
i

ai |Φi ⟩
〈
Φi |Φj

〉
= aj

��Φj
〉
. (23)

So O is an operator that has complete set of orthogonal eigenvectors and real eigenvalues. Such
operators are called Hermitian operators. Equivalently, these operators are equal to their Hermitian
conjugates (O = O†). In quantum mechanics, any Hermitian operator is a valid observable. The
eigenvectors of the operator give the possible outcomes of the experiment and the corresponding
eigenvalues are the real numbers associated with that outcome.

But can all valid observables be measured in practice? The answer to this depends on the quantum
system under consideration. In this tutorial, the system under consideration is an IBM quantum
processor. And in these processors only measurements onto the computational basis are supported
natively. Measurements to other basis states can be performed by applying an appropriate unitary
transformation before measurement. Suppose that the hardware only lets us do measurements onto
the computational basis {|i⟩} but we want to perform a measurement onto the basis set {|Φi ⟩}.
This problem can be solved if we can implement the following unitary transformation,

U =
∑
i

|i⟩ ⟨Φi | . (24)

Now measuring U |ψ ⟩ in the computational basis is the same as measuring |ψ ⟩ in the {|Φi ⟩} basis.
This can be seen by computing the outcome probabilities onU |ψ ⟩,

| ⟨j |U |ψ ⟩ |2 = |
∑
i

⟨j |i⟩ ⟨Φi |ψ ⟩ |2 = |
〈
Φj |ψ

〉
|2. (25)
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So once U is applied, the outcome |j⟩ becomes equivalent to the outcome
��Φj

〉
in the original

measurement scenario. Now, not all such unitary transformations are easy to implement. So if
a quantum algorithm requires us to perform a measurement onto some complicated set of basis
states, then the cost of implementing the correspondingU has be taken into account.

1.1.8 Quantum circuits. Quantum algorithms are often diagrammatically represented as circuits
in literature. Here we will describe how to construct and read quantum circuits. In the circuit
representation, qubits are represented by horizontal lines. Gates are then drawn on the qubits they
act on. This is done in sequence from left to right. The initial state of the qubit is denoted at the
beginning of each of the qubit lines. Notice that when we write down a mathematical expression
for the circuit, the gates are written down from right to left in the order of their application.
These principles are best illustrated by an example. Given in Fig. 1 is a circuit to preparing an

entangled two qubit state called a Bell state from |00⟩.

|0⟩ H •

|0⟩

Fig. 1. Quantum circuit for preparing a Bell state

The circuit encodes the equation,

CNOT12 (H ⊗ I ) |00⟩ = 1
√
2
(|00⟩ + |11⟩).

Let us now carefully go over how the circuit produces the Bell state. We read the circuit from left
to right. The qubits are numerically labelled starting from the top. First the H gate acts on the top
most qubit changing the state of the system to,

H ⊗ I |00⟩ = (H |0⟩) ⊗ (I |0⟩) =
(
|0⟩ + |1⟩

√
2

)
⊗ |0⟩ = 1

√
2
(|00⟩ + |10⟩).

Then CNOT12 acts on both of these qubits. The blackened dot on the first qubit implies that this
qubit is the control qubit for the CNOT. The ⊕ symbol on the second qubit implies that this qubit is
the target of the NOT gate (controlled by the state of the first qubit). The action of the CNOT then
gives,

CNOT12

(
1
√
2
(|00⟩ + |10⟩)

)
=

1
√
2
(CNOT12 |00⟩ + CNOT12 |10⟩) =

1
√
2
(|00⟩ + |11⟩).

Themeasurement of a qubit is also denoted by a special gate with a meter symbol on it, given in Fig 2.
The presence of this gate on a qubit means that the qubit must be measured in the computational
basis.

Fig. 2. The measurement gate
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1.1.9 Quantum algorithms. We have now introduced all the basic elements needed for the discus-
sion of practical quantum algorithms. A quantum algorithm consists of three basic steps:

• Encoding of the data, which could be classical or quantum, into the state of a set of input
qubits.

• A sequence of quantum gates applied to this set of input qubits.
• Measurements of one or more of the qubits at the end to obtain a classically interpretable
result.

In this review, we will describe the implementation of these three steps for a variety of quantum
algorithms.

1.2 Implementations on a real quantum computer
1.2.1 The IBM quantum computer. In this article, we consider IBM’s publicly available quantum
computers. In most cases, we specifically consider the ibmqx4, which is a 5-qubit computer, although
in some cases we also consider other quantum processors freely accessible through the IBM
Quantum Experience platform. These processors can be accessed by visiting the IBM Quantum
Experience website (https://quantum-computing.ibm.com/)

There are several issues to consider when implementing an algorithm on real quantum computers,
for example:
(1) What is the available gate set with which the user can state their algorithm?
(2) What physical gates are actually implemented?
(3) What is the qubit connectivity (i.e., which pairs of qubits can two-qubit gates be applied to)?
(4) What are the sources of noise (i.e., errors)?
We first discuss the available gate set. In IBM’s graphical interface to the ibmqx4, the available

gates include:

{I ,X ,Y ,Z ,H , S, S†,T ,T †,U1(λ),U2(λ,ϕ),U3(λ,ϕ,θ ),CNOT}. (26)

The Graphical User Interface (GUI) also provides other controlled gates and operations like measure-
ment and reset. Most of these gates appear in our Table 1. The gatesU1(λ),U2(λ,ϕ), andU3(λ,ϕ,θ )
are continuously parameterized gates, defined as follows:

U1(λ) =
(
1 0
0 eiλ

)
, U2(λ,ϕ) =

1
√
2

(
1 −eiλ
eiϕ ei(λ+ϕ)

)
, U3(λ,ϕ,θ ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(λ+ϕ) cos(θ/2)

)
.

(27)

Note thatU3(λ,ϕ,θ ) is essentially an arbitrary one-qubit gate.
The gates listed in Eq. (26) are provided by IBM for the user’s convenience. However these are

not the gates that are physically implemented by their quantum computer. IBM has a compiler that
translates the gates in (26) into products of gates from a physical gate set. The physical gate set
employed by IBM is essentially composed of three gates [1]:

{U1(λ),RX (π/2),CNOT} . (28)

Here, RX (π/2) is a rotation by angle π/2 of the qubit about it’s X -axis, corresponding to a matrix
similar to the Hadamard:

RX (π/2) =
1
√
2

(
1 −i
−i 1

)
. (29)

The reason why it could be important to know the physical gate set is that some user-programmed
gates may need to be decomposed into multiple physical gates, and hence could lead to a longer

https://quantum-computing.ibm.com/
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2

1

0 3

4

Fig. 3. The connectivity diagram of ibmqx4. The circles represent qubits and the arrows represent the ability
to apply a physical CNOT gate between the qubits.

physical algorithm. For example, the X gate gets decomposed into three gates: two RX (π/2) gates
sandwiching oneU1(λ) gate.

The connectivity of the computer is another important issue. Textbook algorithms are typically
written for a fully-connected hardware, which means that one can apply a two-qubit gate to any
two qubits. In practice, real quantum computers may not have full connectivity. In the ibmqx4,
which has 5 qubits, there are 6 connections, i.e., there are only 6 pairs of qubits to which a CNOT
gate can be applied (Fig.3). In contrast a fully connected 5-qubit system would allow a CNOT to be
applied to 20 different qubit pairs. In this sense, there are 14 “missing connections”. Fortunately,
there are ways to effectively generate connections through clever gate sequences. For example, a
CNOT gate with qubit j as the control and qubit k as the target can be reversed (such that j is the
target and k is the control) by applying Hadamard gates on each qubit both before and after the
CNOT, i.e.,

CNOTk j = (H ⊗ H )CNOTjk (H ⊗ H ) . (30)

Similarly, there exists a gate sequence to make a CNOT between qubits j and l if one has connections
between j and k , and k and l , as follows:

CNOTjl = CNOTklCNOTjkCNOTklCNOTjk . (31)

Hence, using (30) and (31), one can make up for lack of connectivity at the expense of using extra
gates.

Finally, when implementing a quantum algorithm it is important to consider the sources of noise
in the computer. The two main sources of noise are typically gate infidelity and decoherence. Gate
infidelity refers to the fact that the user-specified gates do not precisely correspond to the physically
implemented gates. Gate infidelity is usually worse for multi-qubit gates than for one-qubit gates, so
typically one wants to minimize the number of multi-qubit gates in one’s algorithm. Decoherence
refers to the fact that gradually over time the quantum computer loses its “quantumness” and
behaves more like a classical object. After decoherence has fully occurred, the computer can
no longer take advantage of quantum effects. This introduces progressively more noise as the
quantum algorithm proceeds in time. Ultimately this limits the depth of quantum algorithms that
can be implemented on quantum computers. It is worth noting that different qubits decohere at
different rates, and one can use this information to better design one’s algorithm. The error rates
for individual qubits in the IBM processors are listed in the IBM Quantum Experience website.
In this tutorial, we will show in many cases how infidelity and decoherence affect the algorithm
performance in practice.
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Fig. 4. The quantum circuit to prepare a Bell state and measure it in the IBM quantum experience GUI

A simple example of programming the IBM quantum computer is given in Fig. 4, which shows
the Bell state preparation circuit Fig.1 compiled using the IBM quantum experience GUI. Extra
measurement operations at the end serve to verify the fidelity of the implementation.

1.2.2 Programming the IBM quantum computer: Qiskit library. Qiskit [3] is an open-source quantum
computing library developed under the aegis of IBM. Qiskit allows users to write and run programs
on either IBM’s quantum processors or on a local simulator, without the use of the graphical
interface. This is an important feature because the graphical interface becomes impractical as
the number qubits become large. At the time of writing, users can use Qiskit to access quantum
processors with up to 16 qubits. Smaller processors are also accessible. Qiskit is a very powerful
software development kit (SDK) which has multiple elements in it that tackle a variety of problems
associated with practical quantum computing. Qiskit is further split into four modules called:
Terra, Aer, Aqua, and Ignis. Each of these modules deal with a specific part of quantum software
development. In this section we will only give a brief overview of programming simple quantum
circuits with Qiskit. For a comprehensive overview of Qiskit and its various capabilities, the reader
is encouraged to visit the official website ( www.qiskit.org ) [3].
For our purposes, Qiskit can be viewed as a Python library for quantum circuit execution. A

basic Qiskit code has two parts, designing the circuit and running it. In the circuit design phase, we
create an instance of QuantumCircuit with the required number of qubits and classical bits. Then
gates and measurements are added to this blank circuit. Gates and measurements are implemented
in Qiskit as methods of the QuantumCircuit class. After the circuit has been designed we need to
choose a backend to run the circuit. This can be either be a simulator called the qasm_simulator
or it can be one of IBM’s quantum processors. To use a quantum processor, you will need to load
your IBM Q account information into Qiskit. Given in Fig. 5 is a simple code to construct the Bell
state. This is the Qiskit version of the circuit in Fig. 1 with measurement added at the end to verify
our results.

www.qiskit.org
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### Quantum circuit for preparing the Bell state ####

import numpy as np
from qiskit import QuantumCircuit, execute, Aer

# Create a Quantum Circuit with two qbits and 2 classical bits
circuit = QuantumCircuit(2,2)

# Add a H gate on qubit 0
circuit.h(0)

# Add a CX (CNOT) gate on control qubit 0 and target qubit 1
circuit.cx(0,1)

# Map the quantum measurement to the classical bits
circuit.measure([0,1],[0,1])

# Use Aer's qasm_simulator
simulator = Aer.get_backend('qasm_simulator')

# Execute the circuit on the qasm simulator
job = execute(circuit, simulator, shots=1000)

# Grab results from the job
result = job.result()

# Returns counts
counts = result.get_counts(circuit)
print("\nTotal count for 00 and 11 are:",counts)

Fig. 5. Qiskit code to create and measure a Bell state. Source: www.qiskit.org

In Fig.5 we are running the circuit on the simulator for 1000 independent runs. The final output
was {'11': 493, '00': 507}. This is what we expect from measuring the Bell state ( |00⟩+ |11⟩√

2
), up

to statistical fluctuations. While running the same code on the 14 qubit ibmq_16_melbourne
processor for 1024 runs gave |11⟩ with probability 0.358 and |00⟩ with probability 0.54. The
remaining probability was distributed over 01 and 10, which should not be a part of the Bell
state. As we discussed before, this phenomenon is due to errors inherent to the quantum processor.
As the backend technology improves we expect to get better results from these trials. Often, we will
also present a circuit using OpenQASM (Open Quantum Assembly Language). OpenQASM provides
an intermediate representation of a program in the form of a quantum circuit, that is neither the
actual program written by the programmer nor the machine instructions seen by the processor.
OpenQASM ‘scores’ we show in this paper will be simple sequence of gates and measurements, with
the corresponding registers that they act on. The syntax of these scores will be self explanatory.

www.qiskit.org
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Class Problem/Algorithm Paradigms used Hardware Simulation Match

Inverse Function Computation Grover’s Algorithm GO QX4 med
Bernstein-Vazirani n.a. QX4, QX5 high

Number-theoretic Applications Shor’s Factoring Algorithm QFT QX4 med

Algebraic Applications Linear Systems HHL QX4 low
Matrix Element Group Representations QFT ESSEX low
Matrix Product Verification GO n.a. n.a.
Subgroup Isomorphism QFT none n.a.
Persistent Homology GO, QFT QX4 med-low

Graph Applications Quantum Random Walk n.a. VIGO med-low
Minimum Spanning Tree GO QX4 med-low
Maximum Flow GO QX4 med-low
Approximate Quantum Algorithms SIM QX4 high

Learning Applications Quantum Principal Component Analysis (PCA) QFT QX4 med
Quantum Support Vector Machines (SVM) QFT none n.a.
Partition Function QFT QX4 med-low

Quantum Simulation Schrödinger Equation Simulation SIM QX4 low
Transverse Ising Model Simulation VQE none n.a.

Quantum Utilities State Preparation n.a. QX4 med
Quantum Tomography n.a. QX4 med
Quantum Error Correction n.a. QX4 med

Table 2. Overview of studied quantum algorithms. Paradigms include Grover Operator (GO), Quantum
Fourier Transform (QFT), Harrow-Hassidim-Lloyd (HHL), Variational Quantum Eigenvalue solver (VQE),
and direct Hamiltonian simulation (SIM). The simulation match column indicates how well the hardware
quantum results matched the simulator results

1.3 Classes of quantum algorithms
In this review, we broadly classify quantum algorithms according to their area of application. We
will discuss quantum algorithms for graph theory, number theory, machine learning and so on. The
complete list of algorithms discussed in this paper, classified according to their application areas,
can be found in Table 2. The reader is also encouraged to take a look at the excellent Quantum
Algorithm Zoo website [58] for a concise and comprehensive list of quantum algorithms.

In classical computing, algorithms are often designed by making use of one or more algorithmic
paradigms like dynamic programming or local search, to name a few. Most known quantum
algorithms also use a combination of algorithmic paradigms specific to quantum computing. These
paradigms are the Quantum Fourier Transform (QFT), the Grover Operator (GO), the Harrow-
Hassidim-Lloyd (HHL) method for linear systems, variational quantum eigenvalue solver (VQE),
and direct Hamiltonian simulation (SIM). The number of known quantum algorithmic paradigms is
much smaller compared to the number of known classical paradigms. The constraint of unitarity on
quantum operations and the impossibility of non-intrusive measurement make it difficult to design
quantum paradigms from existing classical paradigms. But researchers are constantly in search
for new paradigms and we can expect this list to get longer in the future. Table 2 also contains
information about the paradigms used by the algorithms in this article.
The rest of the paper presents each of the algorithms shown in Table 2, one after the other. In

each case, we first discuss the goal of the algorithm (the problem it attempts to solve). Then we
describe the gate sequence required to implement this algorithm. Finally, we show the results from
implementing this algorithm on IBM’s quantum computer1.

1The code and implementations for most of the algorithms can be found at https://github.com/lanl/quantum_algorithms.

https://github.com/lanl/quantum_algorithms
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2 GROVER’S ALGORITHM
2.1 Problem definition and background
Grover’s algorithm as initially described [52] enables one to find (with probability > 1/2) a specific
item within a randomly ordered database of N items using O(

√
N ) operations. By contrast, a

classical computer would require O(N ) operations to achieve this. Therefore, Grover’s algorithm
provides a quadratic speedup over an optimal classical algorithm. It has also been shown [14] that
Grover’s algorithm is optimal in the sense that no quantum Turing machine can do this in less than
O(

√
N ) operations.

While Grover’s algorithm is commonly thought of as being useful for searching a database, the
basic ideas that comprise this algorithm are applicable in a much broader context. This approach
can be used to accelerate search algorithms where one could construct a “quantum oracle” that
distinguishes the needle from the haystack. The needle and hay need not be part of a database. For
example, it could be used to search for two integers 1 < a < b such that ab = n for some number n,
resulting in a factoring algorithm. Grover’s search in this case would have worse performance than
Shor’s algorithm [93, 94] described below, which is a specialised algorithm to solve the factoring
problem. Implementing the quantum oracle can be reduced to constructing a quantum circuit that
flips an ancillary qubit, q, if a function, f (x), evaluates to 1 for an input x. We use the term ancilla
or ancillary qubit to refer to some extra qubits that are used by the algorithm.
The function f (x) is defined by

f (x) =
{
1 if x = x∗

0 if x , x∗
(32)

where x = x1x2 . . . xn are binary strings and x∗ is the specific string that is being sought. It may
seem paradoxical at first that an algorithm for finding x∗ is needed if such a function can be
constructed. The key here is that f (x) need only recognize x∗ – it is similar to the difference
between writing down an equation and solving an equation. For example, it is easy to check if the
product of a and b is equal to n, but harder to factor n. In essence, Grover’s algorithm can invert
an arbitrary function with binary outputs, provided we have a quantum oracle that implements
the function. Grover’s algorithm has been used, with appropriate oracles, to solve problems like
finding triangles in a graph [72], finding cycles [28], and finding maximal cliques [109]. For the
analysis of Grover’s algorithm, the internals of the oracle is typically considered a black-box. Often,
the oracle operator for the problem at hand has to be constructed as a quantum circuit. But, keep
in mind that an inefficient oracle construction can nullify any practical advantages gained by using
Grover’s search.
Here we implement a simple instance of Grover’s algorithm. That is, the quantum oracle we

utilize is a very simple one. Let x = x1x2 and we wish to find x∗ such that x∗1 = 1 and x∗2 = 1. While
finding such an x∗ is trivial, we don a veil of ignorance and proceed as if it were not. This essentially
means that our function f (x) is an AND gate. But AND gate is not reversible and cannot be a
quantum gate. However the Toffoli gate, that was introduced in the previous section, is a reversible
version of the classical AND gate. The Toffoli gate takes three bits as input and outputs three bits.
The first two bits are unmodified. The third bit is flipped if the first two bits are 1. The unitary
matrix corresponding to the Toffoli gate can be found in Table 1. In other words, the Toffoli gate
implements our desired quantum oracle where the first two inputs are x1 and x2 and the third bit is
the ancillary bit, q. The behavior of the oracle in general is |x⟩ |q⟩ → |x⟩

��f (x)⊕q
〉
, where

⊕
is

the XOR operation . Here we will only discuss the case where x∗ is unique. Grover’s algorithm can
also be used to search for multiple items in a database.
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Fig. 6. A schematic diagram of Grover’s algorithm is shown. Note that in this case, one application of the
Grover operator is performed. This is all that is necessary when there are only two bits in x, but the Grover
operator should be applied repeatedly for larger problems.

2.2 Algorithm description
Here we present a brief introduction to Grover’s algorithm. A more detailed account can be found
in Nielsen and Chuang [77]. Let N be the number of items (represented as bit strings) amongst
which we are performing the search. This number will also be equal to the dimension of the vector
space we are working with. An operator, called the Grover operator or the diffusion operator, is
the key piece of machinery in Grover’s algorithm. This operator is defined by

G = (2 |ψ ⟩ ⟨ψ | − I )O (33)
where |ψ ⟩ = 1√

N

∑
i |i⟩ is the uniform superposition over all the basis states and O is the oracle

operator (see Fig. 6 for a representation of this operator in the case where x consists of 2 bits). The
action of (2 |ψ ⟩ ⟨ψ | − I ) on an arbitrary state, given by

∑
i ai |i⟩, when decomposed over the basis

states is,
(2 |ψ ⟩ ⟨ψ | − I )

∑
i

ai |i⟩ =
∑
i

(2 ⟨a⟩ − ai ) |i⟩ (34)

where ⟨a⟩ =
∑
i ai
N is the average amplitude in the basis states. From Eq. (34) one can see that the

amplitude of each |i⟩-state (ai ) is flipped about the mean amplitude.
In order to use the Grover operator to successfully perform a search, the qubit register must

be appropriately initialized. The initialization is carried out by applying a Hadamard transform
to each of the the main qubits (H ⊗n) and applying a Pauli X transform followed by a Hadamard
transform (HX ) to the ancilla. This leaves the main register in the uniform superposition of all
states, |ψ ⟩, and the ancilla in the state |0⟩−|1⟩√

2
. After performing these operations, the system is in

the state |ψ ⟩ |0⟩−|1⟩√
2

. Using Eq. (34), we can now understand how the Grover operator works. The

action of the oracle operator on |x∗⟩ |0⟩−|1⟩√
2

reverses the amplitude of that state

O |x∗⟩ |0⟩ − |1⟩
√
2

→ |x∗⟩
��f (x∗)⊕ 0

〉
−

��f (x∗)⊕ 1
〉
)

√
2

= |x∗⟩ |1⟩ − |0⟩
√
2
= − |x∗⟩ |0⟩ − |1⟩

√
2

(35)

A similar argument shows that all other states are unmodified by the oracle operator. Combining
this with Eq. (34) reveals why the Grover operator is able to successfully perform a search. Consider
what happens on the first iteration: The oracle operator makes it so that the amplitude of |x∗⟩ is
below ⟨a⟩ (using the notation of Eq. (34)) while all the other states have an amplitude that is slightly
above ⟨a⟩. The effect of applying 2 |ψ ⟩ ⟨ψ | − I is then to make |x∗⟩ have an amplitude above the
mean while all other states have an amplitude below the mean. The desired behavior of the Grover
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operator is to increase the amplitude of |x∗⟩ while decreasing the amplitude of the other states. If
the Grover operator is applied too many times, this will eventually stop happening. The Grover
operator should be applied exactly

⌈
π
√
N

4

⌉
times after which a measurement will reveal x∗ with

probability close to 1. In the case where x has two bits, a single application of Grover’s operator is
sufficient to find x∗ with certainty (in theory). Below is a high level pseudocode for the algorithm.

Algorithm 1 Grover’s algorithm
Input:

• An Oracle operator effecting the transformation |x⟩ |q⟩ → |x⟩ |q ⊕ f (x)⟩.
Output:

• The unique bit string x∗ satisfying Eq. (32)
Procedure:

Step 1. Perform state initialization |0 . . . 0⟩ → |ψ ⟩ ( |0⟩−|1⟩√
2

)

Step 2. Apply Grover operator
⌈
π
√
N

4

⌉
times

Step 3. Perform measurement on all qubit except the ancillary qubit.

2.3 Algorithm implemented on IBM’s 5-qubit computer
Fig. 7 shows the circuit that was designed to fit the ibmqx4 quantum computer. The Toffoli gate is
not available directly in ibmqx4 so it has to be constructed from the available set of gates given in
Eq. 26.
The circuit consists of state preparation (first two time slots), a Toffoli gate (the next 13 time

slots), followed by the 2 |ψ ⟩ ⟨ψ | − I operator (7 time slots), and measurement (the final 2 time slots).
We use q[0] (in the register notation from Fig. 7) as the ancillary qubit, and q[1] and q[2] as x1 and
x2 respectively. Note that the quantum computer imposes constraints on the possible source and
target of CNOT gates.

Using the simulator, this circuit produces the correct answer x = (1, 1) every time. We executed
1,024 shots using the ibmqx4 and x = (1, 1) was obtained 662 times with (0, 0), (0, 1), and (1, 0)
occurring 119, 101, and 142 times respectively. This indicates that the probability of obtaining
the correct answer is approximately 65%. The deviation between the simulator and the quantum
computer is due to the inherent errors in ibmqx4. This deviation will get worse for circuits of larger
size.

We also ran another test using CNOT gates that did not respect the underlying connectivity of
the computer. This resulted in a significantly deeper circuit and the results were inferior to the
results with the circuit in Fig. 7.

This implementation used a Toffoli gate with a depth of 23 (compared to a depth of 13 here) and
obtained the correct answer 48% of the time.

3 BERNSTEIN-VAZIRANI ALGORITHM
3.1 Problem definition and background
Suppose we are given a classical Boolean function, f : {0, 1}n 7→ {0, 1}. It is guaranteed that this
function can always be represented in the form, fs(x) =

⊕
i sixi ≡ ⟨s, x⟩. Here, s is an unknown

bit string, which we shall call a hidden string. Just like in Grover’s algorithm we assume that we
have a quantum oracle that can compute this function.

The Bernstein-Vazirani (BV) algorithm then finds the hidden string with just a single application
of the oracle. The number of times the oracle is applied during an algorithm algorithm is known as
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Fig. 7. The circuit that was executed on IBM’s 5-qubit quantum computer. The first two time slots correspond
to the state preparation. The next 13 time slots implement a Toffoli gate. The next 7 time slots implement the
2 |ψ ⟩ ⟨ψ | − I operator, and the final two time slots are used for observing x1 and x2.

its query complexity. The BV algorithm has a query complexity of one. From our earlier discussions
we saw that Grover’s algorithm has a query complexity of O(

√
N ).

In the classical case each call to fs(x) produces just 1 bit of information, and since an arbitrary
hidden string s has n-bits of information, the classical query complexity is seen to be n. Even with
bounded error, there is no way that this classical complexity can be brought down, as can be seen
using slightly more rigorous information-theoretic arguments.
The quantum algorithm to solve this problem was developed by Bernstein and Vazirani [15]

building upon the earlier work of Deutsch and Jozsa [36]. Their contribution was a quantum
algorithm for the hidden string problem, which has a non-recursive quantum query complexity
of just 1. This constitutes a polynomial O(n) query-complexity separation between classical and
quantum computation. They also discovered a less widely known recursive hidden-string query
algorithm, which shows a O(nlogn) separation between classical and quantum query-complexities.
These developments preceded the more famous results of Shor and Grover, and kindled a lot of
early academic interest in the inherent computational power of quantum computers.

One thing to note about the BV algorithm is that the black-box function fs(·) can be very complex
to implement using reversible quantum gates. For an n-bit hidden string, the number of simple
gates needed to implement fs(·) scales typically as O(4n)[77]. Since the black box is a step in the
algorithm, its serial execution time could in the worst-case even scale exponentially. The real
breakthrough of this quantum algorithm lies in speeding up the query complexity and not the
execution time per se.

3.2 Algorithm description
Let us explore the BV algorithm in more detail. LetUs be the oracle for the function fs(x). It acts in
the usual way and computes the value of the function onto an ancilla qubit,

Us |x⟩ |q⟩ = |x⟩ |q ⊕ ⟨s, x⟩⟩ (36)
Denoting |−⟩ = (|0⟩ − |1⟩)/

√
2, we can easily verify from Eq. (35) that,

Us |x⟩ |−⟩ = (−1)⟨s,x⟩ |x⟩ |−⟩ . (37)

Also, note that the n-qubit Hadamard operator, which is just n single qubit H operators applied
in parallel, can be expanded as,

H ⊗n =
1

√
2n

∑
x,y∈{0,1}n

(−1)⟨x,y⟩ |y⟩ ⟨x| (38)

The reader may verify this identity by applying H ⊗n to the computational basis states.
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Fig. 8. Bernstein-Vazirani hidden string discovery quantum algorithm. The hidden string s is discovered with
just a single query. The measurement result s̃ gives the hidden string.

Us and H ⊗n are the only two operators needed for the BV algorithm. The pseudocode for the
algorithm is given in Algorithm 2. Notice that the initialization part is identical to that of Grover’s
algorithm. This kind of initialization is a very common strategy in quantum algorithms.

Algorithm 2 Bernstein-Vazirani algorithm
Input:

• An oracle operator,Us , effecting the transformation |x⟩ |q⟩ → |x⟩ |q ⊕ ⟨s, x⟩⟩.
Output:

• The hidden string s.
Procedure:

Step 1. Perform state initialization on n + 1 qubits, |0 . . . 0⟩ → |ψ ⟩ |−⟩
Step 2. ApplyUs .
Step 3. Apply H ⊗n to the first n qubits.
Step 4. Measure all qubits except the ancillary qubit.

The final measurement will reveal the hidden string, s, with probability 1. Let us now delve
into the algorithm to see how this result is achieved. The entire circuit for the BV algorithm is
represented in Figure 8. This circuit can be analyzed as follows,

|0⟩n |1⟩ H ⊗(n)⊗H−−−−−−−→ 1
√
2n

2n−1∑
x=0

|x⟩ ⊗ |−⟩ Us−−→ 1
√
2n

2n−1∑
x=0

(−1)⟨s,x⟩ |x⟩ ⊗ |−⟩

H ⊗n
−−−→ 1

√
2n

2n−1∑
x,y=0

(−1)⟨s,x⟩⊕ ⟨x,y⟩ |y⟩ ⊗ |−⟩ ≡ |s⟩ ⊗ |−⟩ . (39)

Here we have crucially used the identity for H ⊗n given in Eq.(38).
3.3 Algorithm implemented on IBM’s 5-qubit and 16-qubit computers
From the BV algorithm description in the previous section, we see that in any practical implementa-
tion of this algorithm, the main ingredient is the construction of the oracleUs given a binary hidden
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string s. Let us see how this is done using an example binary hidden string “01”. Equation (40)
below shows how the 3-qubit operator maps the 23 = 8 basis vectors onto themselves. The first line
is the input binary vector (in the order x1,x0,q), and the second line is the output binary vector.

U01 =

(
000 010 100 110 001 011 101 111
000 011 100 111 001 010 101 110

)
(40)

This mapping, U01 : |x⟩ |q⟩ 7→ |x⟩ |⟨01, x⟩ ⊕ q⟩, is unitary. The next task in implementation is to
lower the unitary matrix operator U01 to primitive gates available in the quantum computer’s
architecture given in Eq (26). The time cost of applying these gates can be accessed from IBM’s
published calibration models [103] for the primitive hardware gates.

In order to decompose arbitrary unitary matrices to the primitive gates, we need to first perform
a unitary diagonalization of the 2(n+1) × 2(n+1) matrix using multi-qubit-controlled single-qubit
unitary Given’s rotation operations. Such multi-qubit-controlled single-qubit operations can be
decomposed further to primitive gates using standard techniques [77] to the hardware primitive
gates. Even after this step we will be left with arbitrary CNOT gates that do not respect the topology
of the underlying quantum processor. Since both ibmqx4, ibmqx5 computers have restricted CNOT
connectivity between qubits, we will need to decompose the CNOT gates further into available
CNOT gates using the method discussed in the introductory section. As we saw in the Grover’s
algorithm section, such decompositions will further degrade the quality of our results. As the overall
primitive gate counts scale as O(4n) for arbitrary n-qubit unitary operators, these decompositions
quickly becomes hard to do by hand. To address this we wrote a piece of software called Quantum
Netlist Compiler (QNC) [89] for performing these transformations automatically. QNC can do
much more than convert arbitrary unitary operators to OpenQASM-2.0 circuits—it has specialized
routines implemented to generate circuits to do state-preparations, permutation operators, Gray
coding to reduce gate counts, mapping to physical machine-topologies, as wells as gate-merging
optimizations. Applying QNC tool to the unitary matrixUs gives us a corresponding quantum gate
circuit Gs as shown in Figure 8 for a specific bit-string s.
QNC generated black-box circuits with following gate-counts for the non-trivial 2-bit hidden-

strings: “01”: 36, “11”: 38, “10”: 37, with estimated execution time2 for critical path ∼17µs on an ideal
machine with all-to-all connection topology. For the 5-qubit ibmqx4 machine the corresponding
gate-counts where: “01”: 42, “11”: 43, “10”: 41, with estimated execution time for critical path ∼15µs ,
and for the 16-qubit ibmqx5, they were: “01”: 66, “11”: 67, “10”: 67, with estimated execution time for
critical path ∼28µs . In all these cases, QNC used a specialized decomposition ofU01, considering its
permutation matrix nature, and therefore was able to reduce gate-counts by 5× over the case when
this special structure was ignored. Considering that the machines’ observed coherence times are of
the order of ∼60µs , these QNC optimizations were crucial to the feasibility of the resulting score.
The quantum score (circuit) generated by QNC forU01 for ibmqx4 is shown in Figure 9. A similarly
prepared score for 3-bit hidden-string “111” had a gate-count of 428 in the ibmqx4 architecture
with an estimated execution time of 153µs which was well above the machines’ coherence times.

We tested the QNC generated quantum scores for all non-trivial 1-qubit, 2-bit and 3-bit strings
using the IBM-Qiskit based local simulator. In all cases, the simulator produced the exact hidden-
string as the measurement result, 100% of the trials. We then tested all 1-bit and 2-bit strings on
both the 5-qubit ibmqx4 and the 16-qubit ibmqx5 machines. The results are shown in Figure 10.
For 2-bit strings, the worst case noise was observed for the string “01” on ibmqx4 when the qubits
q0,q1,q2 where used for x0,x1,y respectively. Since the estimated critical path times exceeded the
machines’ coherence times for 3-bit strings, we did not run those scores on the physical machines.
2 These times are estimated using the data available from IBM at the time of writing. These values will change as the
hardware improves.
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Even for 2-bit strings, the scores were quite long, and the results were quite noisy even with 8192
machine-shots.

Fig. 10. Results from running the BV algorithm for 8192 shots on 2-bit hidden-strings “01”, “10” and “11”
respectively (left to right) on ibmqx4. The y-axis here is the probability of obtaining the hidden string, which
theoretically should be 1.

4 LINEAR SYSTEMS
4.1 Problem definition and background
Solving linear systems is central to a majority of science, engineering, finance and economics
applications. For example, one comes across such systems while solving differential or partial
differential equations or while performing regression. The problem of solving a system of linear
equations is the following: Given a system A®x = ®b, find ®x for a given matrix ®A and vector ®b. Here
we assume that A is a Hermitian matrix, in that it is self-adjoint. To represent ®x , ®b as quantum
states |x⟩, |b⟩, respectively, one has to rescale them as unit vectors, such that || ®x || = || ®b || = 1. Thus,
one can pose the problem as finding |x⟩ such that

A |x⟩ = |b⟩ , (41)

with the solution |x⟩ being

|x⟩ = A−1 |b⟩
||A−1 |b⟩ || . (42)

4.2 Algorithm description
The quantum algorithm for the linear system was first proposed by Harrow, Hassidim, and Lloyd
(HHL) [53]. The HHL algorithm has been implemented on various quantum computers in [11, 24,
111]. The problem of solving for ®x in the system A®x = ®b is posed as obtaining expectation value of
some operator M with ®x , ®x†M ®x , instead of directly obtaining the value of ®x . This is particularly
useful when solving on a quantum computer, since one usually obtains probabilities with respect
to some measurement, typically, these operators are Pauli’s operators X , Y , Z . These probabilities
can then be translated to expectation values with respect to these operators.

Fig. 9. Quantum circuit for BV algorithm with hidden string “01” targeting the ibmqx4 architecture.
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The main idea of the algorithm is as follows. Let {
��uj 〉} and {λj } be the eigenvectors and

eigenvalues of A, respectively, with the eigenvalues rescaled such that 0 < λj < 1. Then the state
|b⟩, can be written as a linear combination of the eigenvectors {

��uj 〉}, |b⟩ = ∑N
j=1 βj

��uj 〉. The goal
of the HHL algorithm is to obtain |x⟩ in the form |x⟩ = ∑N

j=1 βj
1
λj

��uj 〉. By decomposing A = R†ΛR,
the HHL algorithms in a nutshell involves performing a set of operations that essentially performs
the three steps:

R†ΛR |x⟩ = |b⟩
Step1
=⇒ ΛR |x⟩ = R |b⟩

Step2
=⇒ R |x⟩ = Λ−1R |b⟩

Step3
=⇒ |x⟩ = R†Λ−1R |b⟩ (43)

This procedure requires us to find the eigenvalues of A. This can be done using a quantum
subroutine called phase estimation. We will discuss this subroutine in some detail as it is a common
ingredient in many quantum algorithms.

4.3 Phase estimation
Phase estimation is a quantum subroutine that lets us find the eigenvalues of a unitary matrixU
given the ability to apply it to a quantum register as a controlled gate. Let |u⟩ be an eigenvector
of U such that, U |u⟩ = e2π iλu |u⟩. Then the phase estimation subroutine effects the following
transformation,

|0⟩ |u⟩ −→
���λ̃u 〉 |u⟩ . (44)

Here λ̃u is an estimate for λu . This subroutine makes use of an important transformation called
the Quantum Fourier Transform (QFT)

Quantum Fourier Transform. The Discrete Fourier Transform (DFT) takes as an input a vector X
of size N and outputs vector Y =WX where the Fourier matrixW is defined by

W =
1

√
N



1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)


,

where the ij-th element of the matrix isWi j = ω
i j and ω is a primitive N -th root of one(ωN = 1). A

straightforward implementation of the matrix-vector multiplication takesO(N 2) operations, but, by
using the special structure of the matrix, the Fast Fourier Transform (FFT) does the multiplication
in only O(N logN ) time. The algorithm is recursive and is illustrated on Figure 11. The Quantum
Fourier Transform (QFT) is defined as a transformation between two quantum states that are
determined using the values of DFT (FFT). IfW is a Fourier matrix and X = {xi } and Y = {yi } are
vectors such that Y =WX , then the QFT is defined as the transformation

QFT

(
N−1∑
k=0

xk |k⟩
)
=

N−1∑
k=0

yk |k⟩ . (45)

The implementation of the QFT mimics the stages (recursive calls) of the FFT, but implements
each stage using only n + 1 additional gates per stage. A single Hadamard gate on the last (least
significant) bit implements the additions/subtractions of the outputs from the recursive call and
the multiplications by ω j are done using n controlled phase gates. The circuit for n = 5 is shown
on Figure 12.
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10.5.3 The quantum Fourier transform circuit
Here we have reproduced the diagram (from Section 2.6.4) showing how the classical FFT cir-
cuit for M -vectors is composed of two FFT circuits for (M/2)-vectors followed by some simple
gates.

x0
x2

x3 ωj

x1

yj+N/2FFTN/2

FFTN/2
... yj

FFTM (input: α0, . . . , αM−1, output: β0, . . . , βM−1)

xN−2

xN−1

Let’s see how to simulate this on a quantum system. The input is now encoded in the 2m

amplitudes of m = logM qubits. Thus the decomposition of the inputs into evens and odds,
as shown in the preceding figure, is clearly determined by one of the qubits—the least sig-
nificant qubit. How do we separate the even and odd inputs and apply the recursive circuits
to compute FFTM/2 on each half? The answer is remarkable: just apply the quantum circuit
QFTM/2 to the remaining m− 1 qubits. The effect of this is to apply QFTM/2 to the superpo-
sition of all the m-bit strings of the form x0 (of which there are M/2), and separately to the
superposition of all the m-bit strings of the form x1. Thus the two recursive classical circuits
can be emulated by a single quantum circuit—an exponential speedup when we unwind the
recursion!

QFTM/2

least significant bit

m− 1 qubits QFTM/2

H

Let us now consider the gates in the classical FFT circuit after the recursive calls to
FFTM/2: the wires pair up j with M/2 + j, and ignoring for now the phase that is applied
to the contents of the (M/2 + j)th wire, we must add and subtract these two quantities to ob-
tain the jth and the (M/2 + j)th outputs, respectively. How would a quantum circuit achieve
the result of these M classical gates? Simple: just perform the Hadamard gate on the first
qubit! Recall from the preceding discussion (Section 10.5.1) that for every possible configura-
tion of the remaining m − 1 qubits x, this pairs up the strings 0x and 1x. Translating from
binary, this means we are pairing up x andM/2+x. Moreover the result of the Hadamard gate
is that for each such pair, the amplitudes are replaced by the sum and difference (normalized
by 1/

√
2) , respectively. So far the QFT requires almost no gates at all!

The phase that must be applied to the (M/2 + j)th wire for each j requires a little more
work. Notice that the phase of ωj must be applied only if the first qubit is 1. Now if j is

...

+

-

Fig. 11. Fast Fourier Transform circuit, where j denotes a row from the top half of the circuit and ω j denotes
that the corresponding value is multiplied by ω j . The plus and minus symbols indicate that the corresponding
values have to be added or subtracted, respectively.

H P( π2 ) P( π4 ) P( π8 ) P( π16 )

• H P( π2 ) P( π4 ) P( π8 )

• • H P( π2 ) P( π4 )

• • • H P( π2 )

• • • • H

Fig. 12. AQuantum Fourier Transform circuit for five qubits (n = 5).

The phase estimation procedure cleverly uses the QFT operator to estimate the eigenphases of
the operatorU . The circuit for performing phase estimation given in Fig. 13. Notice that the QFT is
applied in reverse.

|0⟩ H · · · •

QFT †

. . .

|0⟩ H • · · ·

|0⟩ H • · · ·

|u⟩ / U U 2 · · · U 2t

Fig. 13. Quantum circuit for phase estimation.

The pseudocode for phase estimation is given in Algorithm 3. Notice that the algorithm also
works if the input state is not an eigenstate. The output in this case can be determined by expanding
the input state in terms of the eigenstates and then applying the linearity of quantum operations.
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In the code, we have numbered the ancillary qubits from the top and CiU denotes the unitary
controlled by the ith ancilla qubit acting on the main n qubit register.

Algorithm 3 Phase estimation subroutine
Input:

• Controlled unitaries CiU
• An n qubit input state |ψ ⟩ = ∑

u ψu |u⟩, whereU |u⟩ = e2π iλu |u⟩ .
Output:

• ∑
u ψu

���λ̃u 〉 |u⟩
Procedure:

Step 1. Take t ancillary qubits initialized to zero and perform H ⊗t on them to produce the
uniform superposition state over them.

for 0 ≤ i < t do
Step 2. Apply Ct−i−1U 2i

end for
Step 3. Apply QFT † .
Optional Measure the ancillary qubits to get

���λ̃u 〉 |u⟩ with probability |ψu |2

The number of ancillary qubits used in the phase estimation algorithm will determine both its
run-time and its accuracy. On the accuracy front, the number of ancillary qubits used is equal to the
bit precision of λ̃u as the answer is stored in this register. The exact complexity of this subroutine
is discussed in Ref. [77].

Now we can discuss the HHL algorithm which makes use of the phase estimation procedure to
perform a matrix inversion. The HHL algorithm requires three sets of qubits: a single ancilla qubit,
a register of n qubits used to store the eigenvalues of A in binary format with precision up to n
bits, and a memory ofO(log(N )) that initially stores |b⟩ and eventually stores |x⟩. Start with a state
|0⟩a |0⟩r |b⟩m , where the subscripts a, r ,m, denote the sets of ancilla, register and memory qubits,
respectively. This subscript notation was used in [111], and we found it to be most useful in keeping
things clear. The HHL algorithm requires us to run the phase estimation procedure on the unitary
operator eiA. The phases estimated would be approximations to the eigenvalues of A. The problem
of applying the unitary operation eiA given the matrix A is called quantum simulation. There are
many algorithms in literature that tackle the problem of quantum simulation [16] [47] and that will
not be our focus in this section. We will explain the steps of the HHL algorithm below assuming
that the quantum simulation part is taken care of. We will also include some mathematical details
in the pseudocode given in Algorithm 4 .

These three steps are equivalent to the three steps shown in Eq. (43). The algorithm is probabilistic,
we get |x⟩ only if the final measurement gives |1⟩. But this probability can be boosted using a
technique called amplitude amplification [21]. This technique is explained in detail in Section VII.

4.4 Algorithm implemented on IBM’s 5 qubit computer

Now we implement the HHL algorithm on a 2 × 2 system. For this, we chose A =
(
1.5 0.5
0.5 1.5

)
. We

use four qubits for solving the system – one ancilla, one memory and two register qubits. For this

case, the eigenvalues of A are λ1 = 1 and λ2 = 2 with the eigenvectors being 1√
2

(
1
−1

)
≡ |−⟩ and
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This algorithm was discussed in Ref. XXX Need citation XX. It is then straightforward to calculate the eigenvalues
of ⌃ from P , as follows:

e1 = Tr(⌃) ⇤ (1 +
p

1 � 2(1 � P ))/2 (6)

e2 = Tr(⌃) ⇤ (1 �
p

1 � 2(1 � P ))/2 . (7)

As depicted in Fig. ??, this simple algorithm is schematically divided up into four steps: classical pre-processing,
state preparation, quantifying the purity, and classical post-processing.

Classical Pre-processing

State preparation

Quantifying the purity

Classical Post-processing

|0iData vectors ! ⌃ ! ⇢! | i vector

Algorithm implemented on IBM’s 5-qubit computer

Classical Post-processing

Conclusions

The advantage of RB it that it is insensitive to state-preparation and measurement errors (SPAM), and that it can
be implemented more efficiently on logical qubits than process tomography.

The RB protocol goes as follows.

1. Randomly choose a set of m elements from G, denoted G = {G1, ..., Gm}.

2. Prepare qudit in state |0i.

3. Act on the qudit with unitary Gj+1G
†
j for j = 0, .., m, with G0 = Gm+1 = 11.

4. Measure the qudit with POVM Q = {Q0, 11 � Q0}, where we typically take Q0 = |0ih0|.

5. Repeat steps 2-4 many times into order to estimate pG := Pr(Q0), the probability of obtaining outcome Q0.

6. Repeat steps 1-5 many times into order to estimate hpGi, the expectation value of pG (averaged over all G).
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Fig. 14. Schematic of the circuit for the quantum algorithm for solving a 2 × 2 linear system. The first step
involves phase estimation, which maps the eigenvalues λj of A into the register in the binary form. The
second step involves controlled rotation of the ancilla qubit, so that the inverse of the eigenvalues 1

λj
show

up in the state. The third step is the inverse phase estimation to disentangle the system, and restores the
registers to |0⟩. The memory qubit now stores |x⟩, which is then post-processed to get the expectation values
with respect to the Pauli operators X , Y and Z .

Algorithm 4 HHL algorithm
Input:

• The state |b⟩ = ∑
j βj

��uj 〉
• The ability to perform controlled operations with unitaries of the form eiAt

Output:
• The quantum state |x⟩ such that A®x = ®b .

Procedure:
Step 1. Perform quantum phase estimation using the unitary transformation eiA. This maps

the eigenvalues λj into the register in the binary form to transform the system,

|0⟩a |0⟩r |b⟩m →
N∑
j=1

βj |0⟩a
��λj 〉r ��uj 〉m . (46)

Step 2. Rotate the ancilla qubit |0⟩a to
√
1 − C2

λ2j
|0⟩a + C

λj
|1⟩a for each λj . This is performed

through controlled rotation on the |0⟩a ancilla qubit. The system will evolve to
N∑
j=1

βj

(√
1 − C2

λ2j
|0⟩a +

C

λj
|1⟩a

) ��λj 〉r ��uj 〉m . (47)

Step 3. Perform the reverse of Step 1. This will lead the system to
N∑
j=1

βj

(√
1 − C2

λ2j
|0⟩a +

C

λj
|1⟩a

)
|0⟩r

��uj 〉m . (48)

Step 4. Measuring the ancilla qubit will give ,

|x⟩ ≈
N∑
j=1

C

(
βj

λj

) ��uj 〉 , (49)

if the measurement outcome is |1⟩
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Fig. 15. Circuit implemented on IBM’s 5-qubit ibmqx4 quantum computer for the case with |b⟩ set to |0⟩ and
with ⟨Z ⟩ measurement. After implementing the circuit in Fig. 14 and setting the coupling map of the ibmqx4
architecture, Qiskit-sdk-py re-arranges the qubits to fit the mapping. This circuit represents the outcome of
the re-arrangement which was implemented on the ibmqx4 quantum computer.

Table 3. Comparison between theoretical and simulator values for the expectation values ⟨X ⟩, ⟨Y ⟩, ⟨Z ⟩. T
stands for theoretical and S stands for simulator.

|b⟩ T ⟨X ⟩ S ⟨X ⟩ T ⟨Y ⟩ S ⟨Y ⟩ T ⟨Z ⟩ S ⟨Z ⟩
|0⟩ -0.60 -0.60 0.00 -0.027 0.80 0.81
|+⟩ 1.00 1.00 0.00 -0.06 0.00 0.02
|−⟩ -1.00 -1.00 0.0060 0.000 -0.02 0.00

1√
2

(
1
1

)
≡ |+⟩, respectively. For this system, the three steps of the HHL algorithm, can be performed

by the operations shown in Fig. 14. For the controlled rotation, we use a controlled U rotation
with θ = π for λ1 and θ = π/3 for λ2. This is done by setting C = 1 in the Eq. (47). Both λ and ϕ
are set to zero in these controlled U rotations. Although the composer on Quantum Experience
does not have this gate, in IBM Qiskit-sdk-py, we use cu3 function for this purpose. Three cases

are used for b:
(
1
0

)
, 1√

2

(
1
−1

)
and 1√

2

(
1
1

)
. We post selected the states with |1⟩ in the ancilla qubit.

The probabilities of these states are normalized such that their sum is one. Measurements with
respect to ⟨X ⟩, ⟨Y ⟩, ⟨Z ⟩ can then be performed to obtain the expectation values. QASM code is
output from Qiskit-sdk-py and then uploaded on to IBM Quantum Experience. Figure 15 shows
the equivalent composer circuit generated from QASM for the measurement in the computational
basis (Z measurement).
To first test our implementation of the algorithm, we ran nine cases on the local simulator

provided by Qiskit-sdk-py – three b cases and three measurements with respect to the operators X ,
Y , Z , for each b case. The comparison between the theoretical expectation values ⟨X ⟩, ⟨Y ⟩, ⟨Z ⟩
and the simulator values are shown in Table 3. The simulator expectation values and the theoretical
values match well. This shows that the implementation of the algorithm gives expected results.
Similar expectation values were also seen using the simulator on IBM Quantum Experience instead
of the local simulator. We then ran the circuit on the quantum computer ibmqx4. Fig. 16 shows a
comparison between the simulator results and the results from the ibmqx4 with Z measurement on
the circuit. As can be seen from Fig. 16, the results from the actual run do not give the expected
answer as seen in the simulator results. We remark that recent modifications to the algorithm [22,
101] can in some cases allow for larger scale and more accurate implementations on noisy quantum
computers.

5 SHOR’S ALGORITHM FOR INTEGER FACTORIZATION
5.1 Problem definition and background
The integer factorization problem asks, given an integer N as an input, to find integers 1 < N1,N2 <
N such that N = N1N2. This problem is hardest when N1 and N2 are primes with roughly the
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Fig. 16. Results of the circuit with Z measurement (computational basis measurement) from the actual run
and the simulator on a ibmqx4. 4096 shots were used for both the cases.

same number of bits. If n denotes the number of bits of N , no algorithm with polynomial in n time
complexity is known. The straightforward algorithm that tries all factors from 2 to

√
N takes time

polynomial in N , but exponential in n. The most efficient known classical algorithm has running

time O
(
exp

(
3
√

64
9 n(logn)2

))
[81]. In practice, integers with 1000 or more bits are impossible to

factor using known algorithms and classical hardware. The difficulty of factoring big numbers is
the basis for the security of the RSA cryptosystem [86], one of the most widely used public-key
cryptosystems.
One of the most celebrated results in quantum computing is the development of a quantum

algorithm for factorization that works in time polynomial in n. This algorithm, due to Peter Shor
and known as Shor’s algorithm [93], runs in O(n3 logn) time and uses O(n2 logn log logn) gates.
The first experimental implementation of this algorithm on a quantum computer was reported in
2001, when the number 15 was factored [106]. The largest integer factored by Shor’s algorithm so
far is 21 [73].

In this section we describe Shor’s algorithm and its implementation on ibmqx4

5.2 Algorithm description
Reducing factorization to period finding. One way to factor an integer is by using modular

exponentiation. Specifically, let an odd integer N = N1N2 be given, where 1 < N1,N2 < N . Pick
any integer k < N such that gcd(k,N ) = 1, where gcd denotes the greatest common divisor. One
can show that there exists an exponent p > 0 such that kp ≡ 1 (mod N ). Recall that, by definition,
x ≡ y (mod m) if and only ifm divides x − y. Assume that p is the smallest such number. If we
find such p and p is even, then, by the definition of the modulo operation, N divides

kp − 1 = (kp/2 − 1)(kp/2 + 1).

But since the difference between n1 = k
p/2 + 1 and n2 = kp/2 − 1 is 2, n1 and n2 have no common

factor greater than 2. Moreover, both numbers are nonzeros by the minimality of p. Since N = N1N2
was assumed to be odd, then N1 is a factor of either n1 or n2. Assume N1 is a factor of n1. Since N1
is also a factor of N , then N1 divides both n1 and N and one can find N1 by computing gcd(n1,N ).
Hence, if one can compute such a p, one can find the factors of N efficiently as gcd can be computed
in polynomial time.

In order to find p, consider the modular exponentiation sequence A = a0,a1, . . . , where ai = ki
(mod N ). Each ai is a number from the finite set {0, . . . ,N − 1}, and hence there exists indices q
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and r such that aq = ar . If q and r are the smallest such indices, one can show that q = 0 and A is
periodic with period r . For instance, for N = 15 and k = 7, the modular exponentiation sequence is
1, 7, 4, 13, 1, 7, 4, 13, 1, . . . with period 4. Since the period 4 is an even number, we can apply the
above idea to find

74 mod 15 ≡ 1 ⇒ 74 − 1 mod 15 ≡ 0 ⇒ (72 − 1)(72 + 1) mod 15 ≡ 0 ⇒ 15 divides 48 · 50,
which can be used to compute the factors of 15 as gcd(48, 15) = 3 and gcd(50, 15) = 5.

Finding the period of the sequenceA is, however, not classically easier than directly searching for
factors of N , since one may need to check as many as

√
N different values ofA before encountering

a repetition. However, with quantum computing, the period can be found in polynomial time using
the Quantum Fourier Transform (QFT). The QFT operation was introduced earlier during our
discussion of phase estimation.

The property of the QFT that is essential for the factorization algorithm is that it can “compute”
the period of a periodic input. Specifically, if the input vector X is of lengthM and period r , where
r dividesM , and its elements are of the form

xi =

{√
r/M if i mod r ≡ s

0 otherwise

for some offset s < r , and QFT
(∑M

i=0 xi |i⟩
)
=

∑M
i=0 yi |i⟩, then

yi =

{
1/
√
r if i mod M/r ≡ 0

0 otherwise

i.e., the output has nonzero values at multiples of M/r (the values
√
r/M and 1/

√
r are used for

normalization). Then, in order to factor an integer, one can find the period of the corresponding
modular exponentiation sequence using QFT, if one is able to encode its period in the amplitudes
of a quantum state (the input to QFT).
A period-finding circuit for solving the integer factorization problem is shown in Fig 17 [34].

The first QFT on register A produces an equal superposition of the qubits from A, i.e., the resulting
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O(n3) steps (as we saw in Section 1.2.2) and the quantumFourier transform takes O(n2) steps,
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Next is a modular exponentiation circuit that computes the function f (i) = x i (mod N ) on the
second register. The resulting state is

1
√
M

M∑
i=0

|i, f (i)⟩ .

Before we apply the next QFT transform, we do a measurement of register B. (By the principle of
deferred measurement [77] and due to the fact that register A and B don’t interact from that point
on, we don’t have to actually implement the measurement, but it will help to understand the final
output.) If the value measured is s , then the resulting state becomes

1√
M/r

M∑
i=0

f (i)=s

|i, s⟩ ,

where r is the period of f (i). In particular, register A is a superposition with equal non-zero
amplitudes only of |i⟩ for which f (i) = s , i.e., it is a periodic superposition with period r . Given the
property of QFT, the result of the transformation is the state

1
√
r

r∑
i=0

|i(M/r ), s⟩ .

Hence, the measurement of register A will output a multiple ofM/r . If the simplifying assumption
that r dividesM is not made, then the circuit is the same, but the classical postprocessing is a bit
more involved [77].
Period finding can also be viewed as a special case of phase estimation. The reader may refer

Nielsen and Chuang [77] for this perspective on period finding.

5.3 Algorithm implemented on IBM’s 5-qubit computer
We implemented the algorithm on ibmqx4, a 5-qubit quantum processor from the IBM Quantum
Experience, in order to factor number 15 with x = 11. The circuit as described on Figure 17
requires 12 qubits and 196 gates, too large to be implemented on ibmqx4. Hence, we used an
optimized/compiled version from [106] that uses 5 qubit and 11 gates (Fig 18).

|0⟩ H P( π2 ) H •

|0⟩ H H • •

|0⟩ H • • P( π4 ) P( π2 )

|0⟩
|0⟩

Fig. 18. Circuit for Shor’s algorithm for N = 15 and x = 11.

The results from the measurements are shown on Figure 19.
The periods found by the simulator are p = 0, which is ignored as a trivial period, and p = 4,

which is a good one. Since M = 8, we can conclude that r divides M/p = 8/4 = 2, hence r = 2.
Then 15 divides

(xr − 1) = (112 − 1) = (11 − 1)(11 + 1) = 10 · 12.
By computing gcd(15, 10) = 5 and gcd(15, 12) = 3, we find the factors of 15.
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Fig. 19. Output from the circuit from Figure 18 implemented on the simulator (left) and ibmqx4 (right).

The output from ibmqx4 finds the same periods 0 and 4 with the highest probabilities, but
contains much more noise.

6 MATRIX ELEMENTS OF GROUP REPRESENTATIONS
6.1 Problem definition and background
In this section we will discuss another quantum algorithm that makes use of the QFT operation. In
this section we will also introduce a subroutine called the Hadamard test, which lets us compute
matrix elements of unitary operators. But first, we will require some knowledge of group theory to
understand the problem being tackled here. This section follows the work of Jordan in Ref. [59].

A Group (G , ·) or (G) is a mathematical object defined by its elements (д1, д2, . . . ) and an operation
between elements (·), such that these four properties are satisfied.
(1) Closure: for any two group elements, the defined group operation produces another element,

which belongs to the group (for ∀ дi ,дj ∈ G, дi · дj = дk ∈ G).
(2) Associativity: for ∀ дi ,дj ,дm ∈ G, дi ·

(
дj · дm

)
=

(
дi · дj

)
· дm .

(3) Identity element: e ∈ G, such that e · дi = дi · e = дi .
(4) Inverse element: for ∀ дi ∈ G, there exists дp , such that дi · дp = дp · дi = e .
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A group with a finite amount of elements n is called a finite group with order n, while a group
with an infinite amount of elements is an infinite group. In this section, we will discuss quantum
algorithms to solve certain problems related to finite groups. As before, we will also implement
them on the IBM machines. Some examples of groups are given below.

Example 1A. Abelian groupAn with n elements: 0, 1, . . . ,n − 1, and the group operation addition
modulo n: дi · дj = (i + j)mod(n). For instance, for n = 3: a0 = 0, a1 = 1, a2 = 2. Then, a2 · a2 = 4
mod(3) = 1 = a1, a2 · a1 = 3 mod(3) = 0 = a0, etc. The identity element is a0 = 0 and its inverse
is itself. For all other elements the inverse element is, a−1i = an−i . This group is called Abelian or
commutative, because in addition to the four group properties, it has a property of commutativity:
ai · aj = aj · ai for ∀ ai , aj ∈ An .

Example 1S. Symmetry group Sn with n! group elements, each is a permutation of n objects:
[1, 2..,n], [2, 1..,n], . . . , [n,n − 1.., 2, 1]. Consequent application of two permutations is a group
operation. For instance, for group S2: (e ,p) we have two objects a and b. The identity element e is
no permutation: ab → ab, while one permutation p is the second group element: ab → ba. Then,
p ·p = e , and p−1 = p. Only S1 and S2 are Abelian groups. For n ≥ 3, Sn are not commutative. Let us
write elements of group S3 as a permutation of elements 123 in the next order: [123] → [123], [231],
[312], [213], [132], [321]. Then s4 · s2 = s6, while s2 · s4 = s5.
While group definition is quite simple, it is not straightforward how to operate with group

elements in general, especially when defined operations between them is not trivial and/or the
group order, n, is large. In this case, it is helpful to apply the representation theory to the group.
The idea is simple: if we can map a group of unknown objects with nontrivial operations to the
group of known objects with some trivial operations, we can gain some information about the
unknown group. In general, we introduce a function applied to a group element: ρ (дi ), which does
this mapping between two groups. Such function defines the group representation of G if for ∀ дi ,
дj ∈ G, ρ(дi ) ∗ ρ(дi ) = ρ(дi · дj ), where (∗) can be a different operation from (·).

Example 2A. Representation of Abelian group An : aj → ρ(aj ) = ei2π j/N , where the original
operation (+mod(n)) is substituted by the new operation of multiplication. Note that the group S2
can be represented in the same way as A2.
Example 2S. Representation of group S3: sj → ρ(sj ) = 1, where the original operation is again

substituted by the new operation of multiplication. Such representation of the group S3 is trivial,
since it does not carry any information about the group, however it satisfies the definition of
the group representation. Moreover, [1,1, . . . ] is a trivial representation for any group. Another
representation of group S3 is, [1, 1, 1,−1,−1,−1] → [s1, s2, . . . , sn], where wemap odd permutations
to −1 and even permutations to 1 . While it carries more information about the initial group than
the trivial representation, it does not imply that the group S3 is not Abelian. One cannot construct
a one-dimensional representation for group S3 which would retains all its properties. The smallest
equivalent representation for S3 is two-dimensional. The multidimensional representations can be
easy understood when represented by matrices.

Most useful representations are often ones which map a group to a set of matrices. When ρ(д) is
a dρ × dρ matrix, the representation is referenced as a matrix representation of the order dρ , while
(∗) is the operation of matrix multiplication. All representations of finite group can be expressed
as unitary matrices given an appropriate choice of basis. To prove the last fact, we introduce a
particular representation called the regular representation.
The regular representation of a group of N elements is a matrix representation of order N .

We will explain the construction of the regular representation using the Dirac notation. First, we
associate with each element of the group дi a ket |дi ⟩. This ket could simply be the basis state |i⟩,
since the elements of the group are numbered. This ensures that the kets associated with different
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group elements are orthonormal by construction,
〈
дi |дj

〉
= δi j . This also ensures that the identity

operator can be expressed as
∑N

i=1 |дi ⟩ ⟨дi | . The regular representation of дk is then given by,

R(дk ) =
N∑
j=1

��дk · дj
〉〈
дj

�� . (50)

The matrix elements of this representation are, Ri j (дk ) ≡
〈
дi |R(дk )|дj

〉
= ⟨дi |дk · дj ⟩. From the

defining properties of a group it can be easily seen that multiplying every element in the group
by the same element just permutes the elements of the group. This means that R(дk ) matrices are
always permutation matrices and are hence unitary. We can prove that the regular representation
is a representation using simple algebra,

R(дk ) · R(дm) =
N∑
i=1

N∑
j=1

|дk · дi ⟩ ⟨дi |дm · дj ⟩
〈
дj

�� ,
=

N∑
i=1

N∑
j=1

��дk · дm · дj
〉
⟨дi |дm · дj ⟩

〈
дj

�� ,
=

N∑
j=1

��дk · дm · дj
〉〈
дj

�� = R(дk · дm). (51)

Here we used orthogonality: ⟨дi |дm · дj ⟩ = 1 only if |дi ⟩ =
��дm · дj

〉
and 0 otherwise, which

allowed us to swap these two states. Then, we used the same fact to calculate the sum over i . Below
we give some explicit examples of regular representations.

Example 3A. Regular representation of the Abelian group A4, where each matrix element is
calculated using the result derived above Ri j (ak ) = ⟨ai |ak · aj ⟩:

R(a0) =
©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ , R(a1) =
©«
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

ª®®®¬ , R(a2) =
©«
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®¬ , R(a3) =
©«
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

ª®®®¬ .
(52)

Commutative property is conserved: R(ai ) · R(aj ) = R(aj ) · R(ai ).
Example 3S. Regular representation of the group S3, where we use the same order of permutations

introduced above ([123] → [123], [231], [312], [213], [132], [321])

R(s1) =

©«

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®¬
, R(s2) =

©«

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

ª®®®®®®®¬
, R(s3) =

©«

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

ª®®®®®®®¬
,

(53)
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R(s4) =

©«

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

ª®®®®®®®¬
, R(s5) =

©«

0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

ª®®®®®®®¬
, R(s6) =

©«

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

ª®®®®®®®¬
.

(54)

Now we can finally explain the problem of calculating matrix elements of the group representa-
tions, which is equivalent to the problem of calculating an expectation value of an operator A in
respect to the state |ψ ⟩ in quantum mechanics: ⟨A⟩ = ⟨ψ |A |ψ ⟩.
Example 4A. Calculating matrix elements of the regular representation of the element a2 from

the Abelian group A4 with respect to the stateψ13 which is the equal superposition of |a1⟩ and |a3⟩.
In operator form we find:

⟨ψ12 | a2 |ψ12⟩ =
⟨a1 | + ⟨a3 |√

2

(
N−1∑
i=0

|a2 · ai ⟩⟨ai |
)
|a1⟩ + |a3⟩√

2
=

⟨a3 |a2 · a1⟩⟨a1 |a1⟩
2

+
⟨a1 |a2 · a3⟩⟨a3 |a3⟩

2
= 1 .

(55)

It is quite obvious that if a quantum computer is capable of finding expectation values of a
unitary operator, it will be able to solve the problem of finding the matrix elements of the regular
representation of a group element. This will consist of, at least, two stages: the first stage is the
state preparation, and the second is applying the unitary operator of the regular representation to
that state. The unitary operator of the regular representation of an element of any groupGn can be
created using a combination of only two type of operations: qubit flip (|0⟩ → |1⟩) and qubit swap
(
��qjqi 〉 → ��qiqj 〉).
Up to this point, we have only talked about the regular representation. The regular representation

is quite convenient, it is straightforward to find for any group, it carries all the information about the
group, and a corresponding unitary operator is easy to construct using standard quantum circuits.
However, for groupswith a large number of elements, it requiresmatrixmultiplication between large
matrices. So for many applications, instead of regular representations one is interested in what are
known as irreducible representations, which are matrix representations that cannot be decomposed
into smaller representations. Or in other words, every matrix representation (including the regular
representation) can be shown to be equivalent to a direct sum of irreducible representations, up to
a change of basis. This lets us reduce the representation theory of finite groups into the study of
irreducible representations. The importance of irreducible representations in group theory cannot
be overstated. The curious reader may refer these notes by Kaski [60].
A result from group theory ensures that the direct sum of all irreducible representations (each

has different dimensions dρ in general) where each irreducible representation appears exactly dρ
times is a block diagonal N × N matrix (the group has N elements). The Fourier transform pair
over this group representation can be introduced by decomposing each irreducible representation
over the group elements and vice versa. Moreover, the above defined direct sum of all irreducible
representations can be decomposed as a regular representation conjugated by the direct and inverse
Fourier transform operators [59]. This result lets us find the the matrix elements of the irreducible
representations given the ability to implement the regular representation.
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Fig. 20. Schematic diagram for the quantum algorithm

6.2 Algorithm description
In this section we will describe an algorithm to find the matrix elements of irreducible represen-
tations of a group given the ability to apply its regular representations to a quantum register in
a controlled fashion. The quantum algorithm calculating matrix elements ⟨ψ | U1 |ψ ⟩ of a unitary
operator U1 is known as the Hadamard test, which is illustrated on Fig. 20.

Algorithm 5 Hadamard test
Input:

• The controlled unitary CU .
• Input state |0⟩|ψ ⟩.

Output:
• An estimate for the real part of ⟨ψ |U |ψ ⟩

Procedure:
Step 1. Apply H to the ancilla. This produces the state,

|0⟩ + |1⟩
√
2

|ψ ⟩

Step 2. Apply CU controlled on the ancilla. This produces the state,

|0⟩ |ψ ⟩ + |1⟩U |ψ ⟩
√
2

Step 3. Apply H to the ancilla again. This gives,

|0⟩ (|ψ ⟩ +U |ψ ⟩) + |1⟩ (|ψ ⟩ −U |ψ ⟩)
√
2

Step 4. Measure the ancillary qubit. Repeat to estimate the probability of obtaining |0⟩ and
|1⟩ .

The ancilla qubit should be prepared as |0⟩−i |1⟩√
2

to calculate the imaginary parts of the matrix ele-

ment. From the pseudocode, we can see that the probability of measuring |0⟩ is P0 = | | |ψ ⟩+U |ψ ⟩√
2

| |2 =
1+Re ⟨ψ |U |ψ ⟩

2 . Hence, we find: Re ⟨ψ |U |ψ ⟩ = 2P0 − 1. The reader is encouraged to work out the same
steps for the imaginary part as well.
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Fig. 21. Actual circuit implemented on IBM’s 5-qubit computer for calculating matrix elements of the regular
representation for the second element of the group S2 and A2 in respect to the state |0⟩ on the left and
|0⟩+ |1⟩√

2
on the right. The expected probabilities to find a final state in the ground state are (1+ 0)/2 = 0.5 and

(1 + 1)/2 = 1 respectively. The results of the 1024 runs on the actual chip (on the top) and the simulator (on
the bottom) are presented on the right side of each circuit.

With the Hadamard test algorithm, the problem of calculating matrix elements of an arbitrary
unitary operator is reduced to the problem of effectively implementing it as a controlled gate. For
the regular representation of any groupU0, where unitary operator is an N x N square matrix with
only one non-zero element equal to 1 in each row, this implementation can be done for any group
as a combination of CNOT and Z gates.
At the same time solutions for the direct sum of all irreducible representations U1, which can

be decomposed asU1(д) = F1U0(д−1)F−11 , exists for any group whose Fourier transform over that
group can be effectively implemented using quantum circuits. Quantum circuits for the Fourier
transform are already known for the symmetric group S(n) [12], the alternating group An , and
some Lie groups: SU (n), SO(n) [9], while solutions for other groups, hopefully, will be found in the
future. For Abelian groups this Fourier transform implementation can be efficiently done using the
QFT circuit that was discussed in the earlier sections. For non-Abelian groups the implementation
is trickier and efficient implementations are not universally known.

6.3 Algorithm implemented on IBM’s 5-qubit computer
The actual gate sequence that we implemented on IBM’s 5-qubit computer (ibmq_essex) and IBM’s
quantum simulator to find matrix elements of the regular representation of the second element of
the group S2 is shown in Fig. 21. The matrix for this representation is simply a X gate. Hence, we
have to use one CNOT gate and two Hadamard gates, plus some gates to prepare state |ψ ⟩ from
the state |00⟩. We mapped the ancilla qubit to the actual machine q1 qubit instead of q0, because of
the machine architecture, where the first qubit can control the zero qubit but not vice versa. We
could have used the original qubit sequence as in Fig. 20, by realizing the CNOT gate as a swapped
CNOT and four Hadamard gates, but this would add more gates to the circuit and potentially more
computational errors rather than just a virtual swap of the qubits.

For the irreducible representation of the same element of the groupA2 , the element is represented
by the Z gate. Hence the Hadamard test requires implementing a controlled-Z gate, which is not
available as an actual gate on the IBM Quantum Experience. However, it can be constructed
using two Hadamard and one CNOT gates as shown in Fig. 22. Notice that the Hadamard gate
is actually the Fourier transform operator over group S2 and A2, while the X gate is a regular
representation operator, as we mentioned earlier. Hence, such controlled-Z gate representation
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Fig. 22. Actual circuit implemented on IBM’s 5-qubit computer for calculating matrix elements of the direct
sum of the irreducible representations for the second element of the group S2 and A2 with respect to the
state |0⟩ on the left and |1⟩ on the right. The expected probabilities to find a final state in the ground state
are (1 + 1)/2 = 1 and (1 − 1)/2 = 0 respectively. The results of the 1024 runs on the actual chip (on the top)
and the simulator (on the bottom) are presented on the right side of each circuit.

is in fact the decomposition of the irreducible representation to the regular representation using
Fourier transform over that group.

7 QUANTUM VERIFICATION OF MATRIX PRODUCTS
7.1 Problem definition and background
Matrix multiplication is one of the most important linear algebra subroutines. Most scientific
computing algorithms use matrix multiplication in one form or another. Therefore, the compu-
tational complexity of matrix multiplication is a subject of intense study. For two n × n matrices
the computational complexity of the naive matrix multiplication algorithm is O(n3) A faster algo-
rithm for matrix multiplication implies a considerable performance improvement for a variety of
computational tasks. Strassen [100] first showed that two n × n matrices can be multiplied in time
O(n2+α ) (α < 1). The best known algorithm to date with α ≈ 0.376 was found by Coppersmith and
Winnograd [32]. Despite that, it remains an open problem to determine the optimal value of α . The
so-called problem of matrix verification is defined as, verifying whether the product of two n × n
matrices is equal to a third one. So far the best classical algorithm can do this with high probability
in time proportional to n2 [45].
Ref. [4] was the first to study matrix verification for quantum computation. The authors use a

quantum algorithm based on Grover’s algorithm to verify whether two n × n matrices equal a third
in time O(n7/4), thereby improving the optimal classical bound of Ref. [45]. Ref. [23] presents a
quantum algorithm that verifies a product of two n × n matrices over any integral domain with
bounded error in worst-case timeO(n5/3) and expected timeO(n5/3/min(w,

√
n)1/3), wherew is the

number of wrong entries. This further improves the time performance O(n7/4) from Ref. [4].

7.2 Algorithm description
We briefly sketch the quantum algorithm from Ref. [4]. The presentation here follows from Ref. [99].
Before we discuss this algorithm we introduce the concept of amplitude amplification.

Many real world algorithms are probabilistic, i.e., independent runs of the algorithm on the same
input will not necessarily give the same output. This is because the algorithm uses some source of
randomness during its execution. Most quantum algorithms are probabilistic owing to the inherent
randomness present in quantum mechanics.
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Suppose that the job of our probabilistic classical/quantum algorithm is to return one of a specific
set of states. Assume that we also have at our disposal an oracle that can identify the members of
this set from other states. An example of this would be polynomial root finding. The set of states in
this case would correspond to the roots of the polynomial. Our algorithm should return one of the
roots of the polynomial and we can verify if an output is a root by plugging it in to the polynomial.
Obviously the algorithm is good only if it can return a state that is a member of this set with

high probability. But how high of a success probability is good enough? For practical reasons we
would like the probability of success to be a constant. That is, it should be a value independent of
the problem size and other parameters in the problem. Any constant value between 0 and 1 would
work here. The value 2

3 is usually used in literature.
But often algorithms won’t succeed with constant probability and their success provability will

diminish with growing input size. In that case, how can we boost the success probability to the
desired level? The classical answer to this question is to repeatedly run the algorithm until we
succeed, i.e., till the algorithm outputs a state from the specific set of states that we want. If the
algorithm initially had a success probability of p, after O( 1p ) repetitions we are guaranteed to find
the desired state with constant probability.

For quantum algorithms we can do something better. LetU be a quantum algorithm and suppose
that we want this algorithm to return a state from the subspace spanned by the orthogonal states,
{|ui ⟩}. Let P be the projection operator onto this subspace, P =

∑
i |ui ⟩ ⟨ui | . The oracle we have is

then,O = I − 2P . This oracle will mark the states in the desired subspace. The success probability of
our algorithm is p =

〈
0 . . . 0|U †PU |0 . . . 0

〉
. In this scenario we can use amplitude amplification to

boost the success probability to a constant with onlyO( 1√
p ) repetitions. This is a quadratic speedup

over the classical strategy.
Essentially, amplitude amplification is a generalization of Grover search described in Section II .

In Grover search we repeatedly apply the Grover operator, G = (2 |ψ ⟩ ⟨ψ | − I )O , where |ψ ⟩ is the
uniform superposition state. Amplitude amplification uses a more general operator,

GU = U (2 |0⟩ ⟨0| − I )U †O . (56)

To get the desired result we apply this to theU |0 . . . 0⟩ stateO( 1√
p ) times. Notice that the original

Grover search is a specific case of amplitude amplification withU = H ⊗ . . . ⊗ H . In that case, the
probability of getting the marked state in |ψ ⟩ is 1

N so we run the algorithm for O(
√
N ) steps. The

reader is referred to Ref. [21] for more details on amplitude amplification.
The matrix product verification procedure uses amplitude amplification as its outer loop. The

algorithm first splits the full matrix verification problem into smaller matrix verification problems.
Then it uses amplitude amplification to search if one of these verifications fail. Each of these smaller
verification steps also use a Grover search to look for disagreements. So the complete algorithm
uses one quantum search routine nested inside another quantum search routine. This is a common
strategy used while designing quantum algorithms to improve query complexity. The full algorithm
is sketched below.
The number of qubits and the circuit depth required for this algorithm is too large for it to be

successfully implemented on the IBM machines. But at the heart of this algorithm is the Grover
search procedure, which we have already discussed and implemented in Section II
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Algorithm 6Matrix product verification [4] [99]
Input:

• n × n matrices A,B,C .
Output:

• Verifies if AB = C
Procedure:

Step 1. Partition B andC into
√
n submatrices of sizen×

√
n. Call these Bi andCi respectively.

AB = C if and only if ABi = Ci for all i .
Step 2. Use amplitude amplification over i on these steps:

Step 2a. Choose a random vector x of dimension
√
n.

Step 2b. Compute y = Bix and z = Cix classically
Step 2c. Verify equation Ay = z by Grover search. Search for a row j such that

(Ay − z)j , 0

8 GROUP ISOMORPHISM
8.1 Problem definition and background
The group isomorphism problem, originally identified by Max Dehn in 1911 [35], is a well-known
decision problem in abstract algebra. Simply stated, it asks whether there exists an isomorphism
between two finite groups, G and G ′. Which, according to the standpoint of group theory, means
that they are equivalent (and need not be distinguished). At the end of Section 5 we saw an example
of two isomorphic groups, S2 and A2. These two are the same group in terms of how the group
operation works on the group elements, but are defined in different ways. More precisely, two
groups, (G1, ·) and (G2, ∗) are called isomorphic if there is a bijection, f : G1 → G2, between them
such that, f (д1 · д2) = f (д1) ∗ f (д2).

To solve this problem using a quantum algorithm, we assume that each element can be uniquely
identified by an arbitrary bit-string label. We also assume that a so-called group oracle can be used
to return the product of multiple elements. That is, given an ordered list of group-element labels,
the oracle will return the product label. In practice, this means that we must be able to construct a
quantum circuit to implementUa : |y⟩ → |ay⟩, for any a ∈ G.

In this section, we will focus our attention on the abelian group isomorphism problem, because
it can be solved using a generalization of Shor’s algorithm [94]. As we saw before, abelian simply
means that the operation (·) used to define the group is commutative, such that a · b = b · a, for
a,b ∈ G. Although Shor’s approach is specifically intended to leverage a quantum period-finding
algorithm to reduce the time-complexity of factoring, the procedure effectively solves the group
isomorphism problem over cyclic groups. Using this relationship, Cheung and Mosca [25] have
developed a theoretical quantum algorithm to solve the abelian group isomorphism problem by
computing the decomposition of a given group into a direct product of cyclic subgroups.

8.2 Algorithm description
The procedure presented in Algorithm 7 assumes the fundamental theorem of finite abelian groups,
that they can be decomposed as a direct sum of cyclic subgroups of prime power order. This
decomposition can then be used to test if an isomorphism exists between two groups.
Since the procedure in Algorithm 7 is mostly classical, we shall treat the task of finding the

generators of the hidden subgroup in Step 1 as the most critical for us to explore. This task is
commonly referred to as the hidden subgroup problem (HSP). This means that, given a function
д that maps a finite group A onto a finite set X , we are asked to find a generating set for the
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Algorithm 7 Decompose(a1, . . . ,ak , q), of Cheung and Mosca [25]
Input:

• A generating set {a1, . . . ,ak } of G.
• The maximum order, q, of the generating set.

Output:
• The set of elements д1, . . . ,дl from group G, with l ≤ k .

Procedure:
Step 1. Define д : Zkq → G by mapping (x1, . . . ,xk ) → д(x) = ax11 · · · axkk .
Find generators for the hidden subgroup K of Zkq as defined by function д.
Step 2. Compute a set y1, . . . ,yl ∈ Zkq/K of generators for Zkq/K .
Step 3. Output the set {д(y1), . . . ,д(yl )}.

subgroup K . For K to be the so-called hidden subgroup of A, we require that д is both constant and
distinct on the cosets of K . On a quantum computer, this problem can be solved using a number of
operations that is polynomial in log|A|, in addition to one oracle evaluation of the unitary transform
U |a⟩ |h⟩ = |a⟩ |h ⊕ д(a)⟩. The general procedure needed to complete Step 1 of algorithm 7 is
described in algorithm 8.

Algorithm 8 Solution to the hidden subgroup problem (for finite abelian groups). Based on Ref. [77]
Input:

• Two quantum registers.
• Elements of the finite abelian group A (or the generating set).
• A function д, such that д : A → X , with a ∈ A and h ∈ X .

Output:
• The generating set for the hidden subgroup K .

Procedure:
Step 1. Create initial state.
Step 2. Create superposition between resisters.
Step 3. Apply unitary operation (U ) for function д(a).

→ 1√
|A|

∑
a∈A

|a⟩ |д(a)⟩ (57)

Step 4. Apply inverse Fourier transform.

→ 1√
|A|

|A |−1∑
l=0

e2π ila/ |A | |д̂(l)⟩ (58)

Step 5. Measure the phase from first register.
→ l/|A| (59)

Step 6. Sample K from l / | A |.

Like the period-finding approach used in quantum factorization in Section V, Algorithm 8
is heavily based on the concept of phase estimation. Note that the Fourier transform in Eq. 58
represents a ∈ A indexed by l . The key concept of the procedure is that |д̂(l)⟩ has nearly zero
amplitude for all values of l , except those which satisfy
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Fig. 23. Basic phase-estimation quantum circuit needed to solve the general hidden subgroup problem in
algorithm 8. Here, |u⟩ is an eigenstate of the unitary operatorU .

|K | =
∑
h∈K

e−2π ilh/ |A |, (60)

and that knowledge of l can be used to determine both the elements and generating set of K .
As discussed by Nielsen and Chuang [77], the final step in algorithm 8 can be accomplished by
expressing the phase as

→ e2π ila/ |A | =
M∏
i=1

e2π iliai /pi . (61)

for ai ∈ Zpi , where pi are primes, and Zpi is the group containing integers {0, 1, . . . ,pi − 1} with
the operator being addition modulo pi .

The quantum circuit needed to solve the HSP is schematically illustrated in Fig. 23. This simplified
circuit includes steps 1-5 of algorithm 8, and makes it clear that all forms of the HSP (order-finding,
period-finding, discrete logarithm, etc.) are extensions of quantum phase estimation.

8.3 Algorithm implemented using Qiskit
Since the generalized group isomorphism problem is somewhat complex, we will focus here on the
implementation of the HSP circuit fragment illustrated in Fig. 23. We also chose a specific instance
of the HSP: the problem of finding the period of a mod n. In Fig. 24, the basic outline of the code
needed for this specific problem is illustrated using the python-based Qiskit interface.

Like most instances of the HSP, one of the most challenging practical tasks of finding the period
of a mod n on a quantum computer is the implementation of the oracle. The details of the oracle
are not explicitly shown in the Qiskit snippet, but for the required Ca mod 15 operations, one can
simply used the circuits developed by Markov and Saeedi [87]. The code in Fig. 24 also assumes
that a function qf t_inv() will return the gates for an inverse quantum Fourier transform, and that a
classical continued fractions algorithm can be used to convert the end result (a phase) to the desired
integer period.

Although the specific procedure outlined in Fig. 24 can be directly implemented using the IBM
Qiskit interface, the resulting QASM code is not expected to lead to accurate results on the IBMX4
(or IBMX5). This is because the generated circuit is long enough for decoherence error and noise to
ultimately dominate the measured state. In other words, the physical hardware requires further
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#======================================================================#
#---------- Finding period (r) of a % N, with N=15 ------------------#
#======================================================================#
def findperiod(a, N=15, nqubits1, nqubits2):

# Create QuantumProgram object, and define registers and circuit
Q_program = QuantumProgram()
qr1 = Q_program.create_quantum_register("qr1", nqubits1)
qr2 = Q_program.create_quantum_register("qr2", nqubits2)
cr1 = Q_program.create_classical_register("cr1", nqubits1)
cmod15 = Q_program.create_circuit("cmod15", [qr1, qr2], [cr1])

# Apply a hadamard to each qubit in register 1
# and prepare state |1> in regsiter 2
for j in range(nqubits1): cmod15.h(qr1[j])
cmod15.x(qr2[nqubits2-1])

# Loop over qubits in register 1
for p in range(nqubits1):

# Calculate next 'b' in the Ub to apply
# ( Note: b = a^(2^p) % N ).
# Then apply Ub
b = pow(a,pow(2,p),N)
CxModM(cmod15, qr1, qr2, p, b, N, nqubits1, nqubits2)

# Perform inverse QFT on first register
qft_inv(cmod15, qr1, nqubits1)

# Measure each qubit, storing the result in the classical register
for i in range(n_qr1): cmod15.measure(qr1[i], cr1[i])

Fig. 24. Simple implementation of the quantum period-finding algorithm in Qiskit

optimization to reduce the number of gates used between the initial state preparation and the final
measurement.

9 QUANTUM PERSISTENT HOMOLOGY
9.1 Problem definition and background
Big data analysis often involves large numbers of multidimensional data points. Understanding
their structure can lead to insights into the processes that generated them. Data clustering is
closely related to spatially connected components. Other features such as holes and voids and
their higher dimensional analogs that characterize the distributions of data points are useful for
understanding their structure. Persistent homology connects data points across scales to reveal
the most enduring features of datasets. Methods from algebraic topology are employed to build
simplicial complexes from data points, and the topological features of these simplicial complexes
are extracted by linear algebraic techniques. However, such an investigation on a set of n points
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Fig. 25. Examples of simplices, simplicial decomposition of a topological space X , relationships among groups
Cp (chains), Zp (cycles), and Bp (boundaries) under the action of boundary homomorphisms ∂p , and the
example of the torus.

leads to storage and computational costs of O(2n) as there is a combinatorial explosion in the
number of simplices generated by n points. Thus representational and computational efficiency has
to be greatly enhanced for viability. Quantum algorithms provide such efficiency by superposing
2n simplex states with only n qubits and implementing quantum parallel computations. The study
of such a quantum algorithm, proposed by Lloyd et. al [68] is the focus of this section.
Data points P = {p0, . . . ,pn−1} can be envisaged as vertices of a simplicial decomposition of a

subset X . An oriented k−simplex σk = [pj0 , . . . ,pjk ], 0 ≤ j0 < j1, . . . , < jk ≤ n − 1, is the convex
hull of k + 1 points, and the simplicial complex is comprised of all the simplices. Thus, a 0-simplex
is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on.
Determining which distance scales ϵ of vertex connectivity capture enduring topological features
is the goal of Persistent Homology [68]. The numbers of various topological features at any scale
are obtained from algebraic structures involving the simplices.

Define the kth chain group Ck as the set of all formal integer linear combinations of k-simplices:
Ck = {∑i aiσ

i
k |ai ∈ Z}. Ck is an abelian group generated by the k-simplices. Further, define

boundary operators ∂k : Ck → Ck−1 between chain groups as group homomorphisms whose action
on a k-simplex σk = [pj0 , . . . ,pjk ] is given by ∂kσk =

∑k
i=0(−1)i [pj0 , . . . ,pji−1 ,pji+1 , . . . ,pjk ] (i.e.,

the ith vertex is omitted from σk , 0 ≤ i ≤ k , to get the k + 1 oriented ith boundary (k − 1)-simplex
faces). With this, every k-chain cik ∈ Ck gives rise to a (k − 1)-chain cik−1 ∈ Ck−1. A chain c ∈ Ck
such that ∂kc = 0, where 0 is the null chain, is called a k-cycle. Also, ∂k∂k+1 ≡ 0. That is to say, the
boundary of a boundary is the null chain 0, since the boundary of every k + 1-chain is a k-cycle.
Zk = Ker (∂k ) is the subgroup ofCk consisting of all k-cycles, and Bk = Imaдe(∂k+1) is the subgroup
of Ck consisting of boundaries of all (k + 1)-chains in Ck+1. Clearly, Bk ⫅ Zk . The relationships
between chain groups, cycles and boundaries as established by the boundary homomorphisms is
illustrated in Fig. 25(c). The kth Betti number βk of a topological space X is defined as the number
of linearly independent k-cycles that are not boundaries of (k + 1)-chains, and characterizes the
topological features at dimension k . For instance, β0 is the number of connected components of X ,
β1 is the number of 1-dimensional holes, β2 is the number of voids, and so on. The kth Homoloдy
Group of X is defined as the quotient group Hk (X ) = Zk (X )/Bk (X ), whereby βk is the number of
generators of Hk (X ).
Equivalently, the kth Betti number βk is the dimension of the kernel of the combinatorial

Laplacian operator, ∆k = ∂
†
k∂k + ∂k+1∂

†
k+1, βk = dim(Ker (∆k )). This allows the computation of

Betti numbers by finding the null space of a linear transformation. Lloyd’s quantum algorithm [68]
diagonalizes the Laplacian to compute Betti numbers.
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Fig. 26. Grover’s Algorithm circuit implemented on the 5 qubit quantum computer showing 3 qubits being
used with the multiple solution version of Grover’s Algorithm. U3 gates are used to input the scaled distances
between points.

Fig. 27. Quantum Phase Estimation Algorithm circuit implemented on the 5 qubit quantum computer showing
how the quantum density matrix implemented on qubits 0, 1, and 2 would be applied to obtain a classical
measurement on qubit 3.

9.2 Quantum algorithm description
A quantum algorithm for calculating Betti Numbers is presented in [68]. The algorithm uses
Grover’s search combined with phase estimation to find the dimensionKer (∆k ). Grover’s algorithm
is used to prepare a suitable initial state for the phase estimation. We will demonstrate how phase
estimation can be used to estimate the dimension of the kernel of an eigenspace. Suppose that we
have an N × N unitary operator U = ei2πH on which we will apply phase estimation. Let

��uj 〉 and
ei2πλj be the eigenvectors and eigenvalues ofU . Now given a starting state 1√

N

∑N
j=1

��uj 〉 we know
that the phase estimation subroutine will effect the following transformation,

1
√
N

N∑
j=1

��uj 〉 |0⟩ → 1
√
N

N∑
j=1

��uj 〉 ���λ̃j 〉 , (62)

where λ̃j are approximations to the original eigenphases. Now consider a measurement on the
ancillary register that stores these eigenphases. If one of the λj were zero, we can see that the
probability of measuring |0⟩ on the second register is equal to dim(Ker (H ))

N . Moreover the probability
of measuring any

���λ̃j 〉 will similarly be related to the dimension of its eigenspace. So by estimating
these probabilities, we can figure out the dimensions of the eigenspaces. Notice that the performance
and correctness of the procedure will depend on the precision of λ̃j . This will in turn depend on
the number of ancillary qubits used in the procedure. For this procedure to work it was crucial
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that we started with the uniform superposition of all the eigenstates. This is a correct but naive
way to go about the problem especially if the dimension of the null space is exponentially small
compared to the size of the matrix. But, this technique will work equally well if the input to the
procedure was a classical mixture of some of the eigenstates such that the probability of the null
states in the said mixture was related to the dimension of the null space. This would let us recover
the dimension of the null space from the measurement probabilities. The algorithm to find Betti
numbers uses such a generalization of the naive procedure illustrated above.

We will roughly sketch the full algorithm without going into the details. We associate with each
simplex σk a computational basis state |σk ⟩ such that the 1s in |σk ⟩ correspond to the points chosen
in σk . Then the algorithm roughly goes as follows:

(1) First we construct a uniform superposition over all the simplex states in a set denoted by
Sϵk . The precise definition of the set is not important to us now. The crucial fact is that there
exists an easily computable function that determines the membership of a simplex to this set.
This requires an additional input of scaled distance between points. This function can then
be used as an oracle in Grover search to compute the desired state.

(2) Then this state is modified to produce an equiprobable mixture over all the simplicies in
Sϵk . This mixture is represented as a quantum density matrix ρ. Readers unfamiliar with the
concept of density matrices should read the section on quantum tomography.

(3) Now perform phase estimation on ρ to find the probabilities of an eigenvalue to be multiplied
with the number of simplices to obtain input for the calculation of a Betti number

Working with only 5 qubits implies that the largest number of points n that could be processed
at once is constrained by n(n − 1)/2 ≤ 5. Thus only 3 points at a time could be processed on the 5
qubit quantum computer. In the implementation of Grover’s Algorithm is shown in Fig. 26, only
one iteration of Grover’s algorithm is shown. The output of this part of the algorithm is a quantum
distribution of simplices.
Calculating the quantum density matrix could not be accomplished by the IBM machine due

to the lack of Quantum RAM needed for the algorithm. Options considered to circumvent this
problem included implementing a quantum algorithm for computing the outer product to form
an 8x8 quantum density matrix. This was abandoned as the sheer size of quantum algorithms
to implement four qubit addition [107] was well beyond the 5 qubits available on the quantum
computer. The Quantum Experience message boards’ suggestion to perform Grover’s algorithm
64 times and reassemble the output into a density matrix was also not viable due to decoherence.
Had a quantum density matrix been produced, phase estimation would have been applied to find
the probabilities of eigenvalues of the boundary operator. This would then be multiplied times the
number of simplices and used as input to find the Betti Number. The phase estimation quantum
circuit for this purpose is shown in Fig. 27. Hence the main bottleneck here is seen to the the
coherence time of the computer.

In order to check the coherence of the quantum 5 qubit computer a study was designed. All five
qubits were flipped in the first timestep and measurements were then taken place approximately
every five timesteps throughout the 74 available timesteps in the quantum composer. The quantum
algorithm applied is shown in Fig. 28 showing the use of the Idle gates for 5 timesteps after the
qubits are flipped with the X gate.
The data was collected for all the timesteps, processed into a form to evaluate the coherence

percentages for all individual qubits and for all qubits combined. The results are depicted in Fig. 29
showing the decoherence rates with quantum composer timesteps. The coherence rates here
measure the ‘quantumness’ of the qubits as detailed in Ref. [105]. Note that although the coherence
rates are fairly high for individual qubits, the overall qubit coherence percentages are far less. This
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Fig. 28. The quantum algorithm applied to estimate the Decoherence time of the 5 qubit quantum computer
as implemented in the Quantum Composer to measure the decoherence after 5 timesteps. Note that this
produces an optimistic estimate as the "id" quantum gates utilize minimal time whereas other gates, such as
CNOT and U3 gates, could use more time.

Fig. 29. Timesteps available with theQuantumComposer are shown on the x axis, ranging up to 74. Coherence
percentage is calculated for all individual qubits and is plotted on the y axis. Coherence percentages of all 5
qubits combined is also shown on the y axis. Note that the coherence percentage rate falls below 50 percent
between the 15th and the 20th timesteps.

is because a single qubit decohering also decoheres the entire 5 qubit quantum computer. This
should be considered to determine how many qubits will actually be usable in an actual machine. It
is also interesting that qubit 3 seems to decohere at a faster rate than the other qubits past timestep
15.

10 QUANTUM RANDOMWALKS
10.1 Problem definition and background
Quantum algorithms for graph properties using the adjacency matrix (as part of an oracle) have
been published for minimum spanning tree, shortest path, deciding if a graph is bipartite, detecting
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cycles, finding subgraphs (such as a triangle), maximal clique, and many more. Each typically
involves the use of Grover’s search [52] with an oracle constructed from the adjacency matrix.

But for some problems Grover’s algorithm is insufficient to achieve optimal query complexity. In
such cases, a quantum random walk can sometimes be useful in reducing the query complexity
of an algorithm further. An example of this is the quantum algorithm for element distinctness by
Ambainis [5]. Additionally, quantum walk algorithms can also be used to search and find graph
properties [29, 38, 42, 61, 62, 71]. Quantum random walks can be seen as a quantum mechanical
generalization of classical random walks. Quantum random walk algorithms come in two forms,
discrete time quantum walks and continuous time quantum walks [61]. The discrete form operates
in a step-wise fashion, requiring multiple copies of a set of gates per step. The continuous form
uses a transition matrix that is expressed as a Hamiltonian, whose time evolution is then simulated.
Quantum random walks can be used to walk a graph [38, 62], search for marked vertices [42], and
to solve s-t connectivity [62]. An excellent survey of this approach to quantum search can be found
in Ref. [88].

Most quantum algorithms that solve graph problems requires an oracle that knows the properties
of the underlying graph. A graph properties oracle can be assembled as a circuit based on the
adjacency matrix of the graph and linear algebra transformations. For example, a quantum circuit
for finding maximal cliques in a graph with n nodes, requires an oracle workspace of n2 data qubits
and n2 ancilla qubits (see [109]). Each oracle call requires execution of 6n2 Toffoli gates and 2n
CNOT gates. An oracle such as this can be run on a simulator, but requires too many qubits to run
on actual qubit hardware. Quantum algorithms for finding a triangle, quadrilateral, longer cycles,
and arbitrary subgraphs [28] typically use the adjacency matrix to create the oracles. Here we will
not get into using quantum random walks to solve such problems. Instead we will demonstrate
how to implement a simple quantum random walk on a quantum computer.

10.2 Example of a quantum random walk
Quantum random walks or simply quantum walks are quantum analogues of classical random
walks and Markov chains. Unlike the continuous time quantum walk, the discrete time quantum
walk algorithm requires the use of one or more coin qubits representing the number of movement
choices from each graph vertex. These extra coin degrees of freedom are necessary to ensure
unitarity of the quantum walk. An appropriate unitary transformation on these coin qubits then
acts like the quantum version of a random coin toss, to decide the next vertex for the walker.

Intuitively, the quantum walk is very similar to its classical cousin. In a classical walk, the walker
observes some random process, say a coin toss, and decides on his next step conditioned on the
output of this random process. So for a classical random walk, the walker is given a probability
to make a transition. In a quantum walk, on the other hand, the random process is replaced by a
quantum process. This quantum process is the application of the coin operator, which is a unitary
matrix. So the next step of the walker is controlled by a complex amplitude rather than a probability.
This generalization, from positive numbers to complex numbers, makes quantum walks more
powerful than classical random walks.

The full Hilbert space for the discrete quantum walk on a cycle with N = 2n nodes can then be
constructed as follows. We use an n qubit register to represent the nodes of the graph as bit strings.
For the cycle every node has only two neighbours, so the coin space only needs a dimension of 2.
Hence, only one extra coin qubit is required. The basis vectors of the coin (|0⟩ and |1⟩) will denote
the right and left neighbours. So a basis state in the full Hilbert space will have the form |k,q⟩,
where k is represents a node on the cycle and q is a single bit representing the coin state.

The quantum walk is then a product of two operators, the shift operator (S) and the coin operator
(C). As we mentioned before the coin operator only acts on the coin qubit. The coin operator can be
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in principle any unitary that mixes the coin states, but here we will use the Hadamard coin which
is just the H gate on the coin qubit,

C |k,q⟩ = I ⊗ H |k,q⟩ = |k, 0⟩ + (−1)q |k, 1⟩
√
2

. (63)

The shift operator acts on both the registers. It moves the walker to the left or right depending
on the coin state and then flips the coin state,

S |k,q⟩ = |k + (−1)q ,q ⊕ 1⟩ (64)

The quantum walk then proceeds by applying these two operators in alternation. A p step
quantum walk is just the operator (SC)p . This type of a walk was first introduced in Ref. [92] and
is sometimes referred to as a ‘flip-flop’ quantum walk.
The definition of these operators can change for different types of quantum walk. The coin

operator can be a Hadamard gate or a sub-circuit that results in mixing the coin states. The shift
operator can be simple as described above or can be a more complicated circuit that selects the
next vertex in the path based on the state of the coin. A simple pseudo-code for implementing the
quantum walk is given in Algorithm 9.

Algorithm 9 Discrete time quantum walk
Input:

• Two quantum registers. The coin register and the position register.
• Number of steps, T .

Output:
• State of the quantum walk after T steps.

Procedure:
Step 1. Create the initial state. The initial state depends on the application. For instance, in

quantum search algorithms, the initial state is the uniform superposition state.

for 0 ≤ k < T do
Step 2a. Apply the coin operator, C , to the coin register.
Step 2b. Apply the shift operator, S . This shifts the position of the walker controlled

on the coin state.
end for
Step 3. (Optional) Measure the final state.

10.3 Algorithm implementation using Qiskit on IBM Q
In this section we will implement a simple quantum walk on Qiskit and execute it on both the
simulator and ibmq_vigo, which is a 5 qubit machine available on IBM Q. We will test the quantum
walk on a simple 4 vertex cycle with the vertices labels as given in Fig. 30.
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Fig. 30. A graph of 4 nodes in the form of a square is used for the random walk algorithm. The starting vertex
is labeled 00. The next possible vertex choices vary by 1-bit in their labels, 01 and 10. The quantum walk
algorithm will walk around the graph.

The coin operator in Eq. (63) is just theH gate acting on the coin qubit. The shift operator defined
in Eq. (64) is more non-trivial. We can implement it by the circuit given in Fig. 31.

• • X • •

• X • X

Fig. 31. Quantum circuit for the shift operation on the 4 vertex cycle. The top qubit is the coin qubit.

Running the walk for multiple steps requires us to apply the shift operator circuit many times.
So it would be tedious to implement the quantum walk on the IBM Q graphical interface. Instead
we can use Qiskit to design the shift operator as a user defined gate and then run the walk for
multiple steps using a simple for loop. The Qiskit code for this is given in Fig. 32.
We ran this Qiskit code for 4 steps of the quantum walk. We chose 4 steps since, a simple

calculation shows that, starting from |000⟩ and applying (SC)4 will concentrate all the probability
to the state |100⟩ . This is confirmed by running the Qiskit code on the simulator. But running the
same code on ibm_vigo gave |100⟩ with only 21.7% probability. The rest of the probability was
distributed among the other basis states, but |100⟩ was still the state with the largest probability.
This poor performance is due to the circuit having large depth. We can expect to get better results
by running the quantum walk for a single step. After a single step, starting from |000⟩, the state of
the system is |111⟩+ |010⟩√

2
. This is again confirmed by the simulator. Running on ibm_vigo, we got

|111⟩ with 33.5% probability and |010⟩ with 28.5% probability.

11 QUANTUMMINIMAL SPANNING TREE
11.1 Problem definition and background
A common problem in network design is to find a minimum spanning tree. Suppose we are
responsible for maintaining a simple network of roads. Unfortunately, each segment needs repair
and our budget is limited. What combination of repairs will guarantee the network remains
connected? Fig 33 shows a model of a simple road network as a graph, together with a minimal
spanning tree.
Formally, a graph G = (V ,E) consists of a set V (the nodes) and a set E consisting of pairs of

nodes. A graph is connected if between any two nodes there exists a path. A spanning tree of
a connected graph G = (V ,E) is the graph T = (V ,ET ) where ET ⊂ E and T contains no cycles
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from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import Aer, execute

n_steps = 4 #Number of steps

#Defining the shift gate

shift_q = QuantumRegister(3) #3 qubit register
shift_circ = QuantumCircuit (shift_q, name='shift_circ') #Circuit for shift operator
shift_circ.ccx (shift_q[0], shift_q[1], shift_q[2]) #Toffoli gate
shift_circ.cx ( shift_q[0], shift_q[1] ) #CNOT gate
shift_circ.x ( shift_q[0] )
shift_circ.x ( shift_q[1] )
shift_circ.ccx (shift_q[0], shift_q[1], shift_q[2])
shift_circ.x ( shift_q[1] )
shift_circ.cx ( shift_q[0], shift_q[1] )

shift_gate = shift_circ.to_instruction() #Convert the circuit to a gate

q = QuantumRegister (3, name='q') #3 qubit register
c = ClassicalRegister (3, name='c') #3 bit classical register
circ = QuantumCircuit (q,c) #Main circuit
for i in range(n_steps):

circ.h (q[0]) #Coin step
circ.append (shift_gate, [q[0],q[1],q[2]]) #Shift step

circ.measure ([q[0],q[1],q[2]], [c[0],c[1],c[2]])

Fig. 32. Qiskit code to implement the quantum walk on a 4 vertex cycle.

(i.e., there is exactly one path between any two vertices). It is not hard to see that a graph T is a
spanning tree if and only if T is connected and has n nodes and n − 1 edges. A weighted graph is
a graph G = (V ,E,w) where w is a map on the edges w : E → R. A minimal spanning tree of a
graph G is then a spanning tree T = (V ,ET ) which minimizes∑

e ∈ET
w(e). (65)

11.2 Algorithm description
Algorithmically, a graph is usually presented in one of two ways: either as a list of edges or as an
adjacency matrix. We consider the case whereG is presented as a list of edges. A quantum algorithm
for finding a minimal spanning tree of an input graph is given in [39]. This algorithm requires
only O(

√
nm) queries where n is the number of nodes andm the number of edges in the graph.

Classically, the best algorithms run in time O(m logn). In particular, this is the time complexity of
Borůvka’s algorithm [19]. The quantum algorithm combines Borůvka’s algorithm together with
the quantum search algorithm of Grover [52].
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(a) The weighted graph model.
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(b) A minimal spanning tree.

Fig. 33. A graph modeling repair costs of a simple transportation network (a) together with (b) its minimal
spanning tree (the solid edges). The sum of the weights of the edges in the minimal spanning tree is 21.
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Fig. 34. The first two steps of Borůvka’s algorithm. Starting with each node as a distinct tree, find the minimal
weighed edge between each tree and the rest of the trees. The direction of the solid edges indicates the edge
is the minimal weighted edge for the source node. The components connected by solid edges (disregarding
the directions) will form the trees at the start of the second run of step (2) of Borůvka’s algorithm

Borůvka’s algorithm builds a collection of disjoint trees (i.e., a forest) and successively merges by
adding minimal weight edges. The first two steps of the algorithm are shown in Fig 34. Formally,
we have

(1) Let T be the collection of n disjoint trees, each consisting of exactly one node from the graph
G.
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(2) Repeat:
(a) For each tree Ti in T find the minimal weighted edge, ei , of G between Ti and the other

trees of T .
(b) Merge the trees {Ti ∪ {ei }} so that they are disjoint: set this new collection to T .

If there are k trees in T at a given iteration of Step (2), then the algorithm performs k searches
for the respective minimal weighted edges. As the trees are disjoint, we can perform the k searches
in one sweep by inspecting each of them edges of G once. As there will be at most logn iterations
of Step (2), this results in a running time of O(m logn). The quantum algorithm takes advantage of
the Grover search algorithm, to speed up the searches in Step (2).

In the previous sections we used Grover search to look for a single item in a list of N elements.
But the search algorithm will work even if there areM elements in the list that are marked by the
oracle. One of these marked elements can then be found using O(

√
N
M ) queries to the oracle.

In the algorithm above, we need to find the minimal element of an appropriate list. Clearly this
can not be implemented directly as an oracle without actually inspecting each of the list elements.
Luckily, there is a simple work around given by Durr et al [39] which involves multiple calls to the
Grover algorithm as described in Algorithm 10.

Algorithm 10Minima finding algorithm
Input:

• A unitary implementation a function F on a list of N elements,
UF |x⟩ |y⟩ = |x⟩ |y ⊕ F (x)⟩ .

Output:
• |x∗⟩ such that F (x∗) is the minimum of the function over the list.

Procedure:
Step 1. Pick a random j from the list.

for 0 ≤ k < T do
Step 2a. Do Grover search [20] with the oracle for function fj such that,

fj (i) =
{
1 if F (i) ≤ F (j)
0 if F (i) > F (j)

Step 2b. Update j with the result of Grover search.
end for

A probabilistic analysis shows thatT = 22.5
√
N +1.4 log22(N ) suffices to find the minimal element

with high probability [40] . The inner loop of the algorithm uses a Grover search routine with
potentially multiple marked items. But the number of marked items is not known beforehand. This
poses problem as Grover search being a unitary algorithm needs to be stopped exactly at the right
number of iterations to give the correct answer. Running the procedure for longer deteriorates
the quality of the answer. If the number of marked items is unknown the stopping criterion of the
algorithm is also unknown. This problem can be rectified using some extra steps by a technique
given in Boyer et al [20]. We have to use this modified version of Grover search in the inner loop.
We did not implement the full algorithm due to space constraints on the IBM computer. Even

to successfully implement a minima finding algorithm, at least 6 qubits would be necessary to
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compare two 3-bit numbers. Therefore we implemented the minima finding algorithm by hard
coding the oracle for each of eight possible functions fx : { fx (i) = 1 if F (i) ≤ F (x)}. The results are
shown in Figure 35. The QASM code for implementing f2(i) = 1 if F (i) ≤ F (2) required just under
100 lines of code (more than 100 individual gates.) The results, even when using the simulator
are not good when k ≥ N /4 elements are marked. A typical way to get around this is to double
the length of the list by adding N extra items which will evaluate to 0 under fx , which however
requires an extra qubit.
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(a) IBM Q Implementation
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(b) Simulator Implementation

Fig. 35. The results of running 1000 trials of the minima finding algorithm on both (a) the ibmqx4 chip and
(b) the IBM simulator to find values less than or equal to the input x .

12 QUANTUMMAXIMUM FLOW ANALYSIS
12.1 Problem definition and background
Network flow problems play a major role in computational graph theory and operations research
(OR). Solving the max-flow problem is the key to solving many important graph problems, such
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Fig. 36. A simple directed graph representing flows and capacities. Conventionally, the state of the flow
problem is indicated by the current flow relative to the capacity on any directed link using the notation f/c.

Fig. 37. The Ford-Fulkerson solution to the max-flow problem in three steps. Each step represents the
application of an augmenting path to the previous flow state.

as finding a minimum cut set, and finding a maximal graph matching. The Ford-Fulkerson algo-
rithm [44] is a landmark method that defines key heuristics for solving the max flow problem. The
most important of these heuristics include the construction of a residual graph, and the notion of
augmenting paths. For integer-capacity flows, Ford-Fulkerson has complexity O(f m) form edges
and max flow f . The Edmonds-Karp variant has complexity O(nm2) for n vertices andm edges.
The quantum-accelerated classical algorithm discussed here [6] claims complexity O(n7/6

√
m).

The best classical implementations of the max-flow solver involve several important improve-
ments [41], especially that of using breadth-first search to find the shortest augmenting path on
each iteration. This is equivalent to constructing layered subgraphs for finding augmenting paths.

An illustration of the essential method introduced by Ford and Fulkerson can be described using
Figures 36 and 37. At each link in the network, the current flow f and the capacity c are shown.
Typically, the state of flow on the graph is designated by f /c , with the residual capacity implicitly
given by c − f . In Figure 36, the initial flow has been set to zero.

The basic steps in the solution to the max-flow problem are illustrated by Figure 37. The algorithm
begins on the left by considering the path [s,v,t]. Since 2 is the maximum capacity allowed along
that path, all the flows on the path are tacitly set to that value. Implicitly, a reverse flow of -2 is
also assigned to each edge so that the tacit flow may be “undone” if necessary. Next, the middle of
the figure examines the lower path [s,w,t]. This path is constrained by a maximum capacity on
the edge [s,w] of again 2. Finally, the path [s,v,w,t] is the only remaining path. It can only support
the residual capacity of 1 on edge [s,v]. We can then read off the maximum flow result at the sink
vertex t since the total flow must end there. The maximum flow is seen to be 5.
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While this method seems straightforward, without the efficiencies provided by the improvements
of Edmonds and Karp, convergence might be slow for integer flows on large graphs, and may not
converge at all for real-valued flows. The modification of always choosing the shortest next path in
the residual network to augment, is what makes the algorithm practical. To see this, consider what
would have happened if the path [s,v,w,t] had been chosen first. Since augmenting that path blocks
the remaining paths, flows would have to be reversed before the algorithm could proceed.

Choosing the shortest path requires performing a breadth-first search whenever new flow values
have been assigned to the residual graph. This is equivalent to building a layered set of subgraphs to
partition the residual graph. This is the step that leads to them2 complexity of Edmonds-Karp, and
it is this step that is speeded up in the “quantized” version of the algorithm, leading to a complexity
term of

√
m instead ofm2.

12.2 Algorithm description
The Quantum algorithm described by Ambainis and Spalek is a “quantized” version of the Edmonds-
Karp algorithm, that is, the classical algorithm with quantum acceleration. The key quantum
component is a generalized version of Grover’s search algorithm that finds k items in an unsorted
list of length L [20]. The algorithm is used in creating a layered subgraph data structure that is
subsequently used to find the shortest augmenting path at a given iteration. Like in Section XI, we
will be oblivious to the number of marked items Grover’s algorithm is searching for. So once again
we have to use techniques from Ref.[20] while performing the search.

Here we will describe how to build a layered graph partition. In a layered graph partition each
vertex in the graph is assigned to thew i-th layer such that edges of the graph only connect between
i-th and (i + 1)-th layers. The key to “quantization” lies in using Grover’s search to build a layered
graph partition by computing layer numbers for all vertices. The layers are represented by an array
L indexing the vertices of the graph, and assigning to each element a subgraph layer number. The
sink vertex at vertex zero is set to zero. The the algorithm proceeds according to the following
pseudo-code described in Algorithm 11.

Algorithm 11 Layered graph partitioning
Input:

• Adjacency information of the graph (Adjacency matrix, list of edges,etc.)
• Source vertex s .

Output:
• L such that L[i] is the layer number of the i-th vertex.

Procedure:
Step 1. Set L[s] = 0 and L[x] = ∞ for x , 0
Step 2. Create a one-entry queueW = {s} (x = 0)
whileW , ϕ do

Step 3a. Take the first vertex x fromW .
Step 3b. Find by Grover search all its neighbors y with L[y] = ∞.
Step 3c. Set L(y) = L[x] + 1, append y intoW , and remove x fromW

end while

Notice that the oracle for Grover search required for this algorithm is one that marks all the
neighbours of x whose layer number is currently set to∞. Grover’s search speeds up the layers
assignment of the vertices by quickly finding all the entries in the layer array L that contain the
value ∞. In practical terms, ∞ might simply be the largest value reachable in an n-qubit machine.
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The generalized Grover search would look for all such values without a priori knowing the number
of such values. The size of a circuit required to do a full layered graph partitioning makes it
impractical to implement it on the IBM machine. But the heart of the algorithm is Grover search,
which we have already implemented earlier.

13 QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM
13.1 Problem definition and background
Combinatorial optimization problems are pervasive and appear in applications such as hardware
verification, artificial intelligence and compiler design, just to name a few. Some examples of
combinatorial optimization problems include Knapsack, Traveling Saleman, Vehicle Routing, and
Graph Coloring problems. A variety of combinatorial optimization problems including MaxSat,
MaxCut, and MaxClique can be characterized by the following generic unconstrained discrete
maximization problem,

maximize:
m∑
α=1

Cα (z)

zi ∈ {0, 1} ∀i ∈ {1, . . . ,n}
(66)

In this generic formulation, there are n binary decisions variables, z, andm binary functions of
those variables,C(z), called clauses. The challenge is to find the assignment of z that maximizes the
number of clauses that can be satisfied. This is the so-called MaxSat problem, which is NP-Hard
in general [64], and is an optimization variant of the well-known satisfiability problem, which
is NP-Complete [31]. Hence, solving an instance of Eq. (66) in practice can be computationally
challenging.
To provide a concrete example of Eq. (66), let us consider the MaxCut problem. As input, the

MaxCut problem takes a graph G = (V , E), which is characterized by a set of nods V and a set of
undirected edges E. The task is to partition the nodes into two sets, such that the number of edges
crossing these sets is maximized. Figure 38 provides an illustrative example, in which a graph with
five nodes and six edges is partitioned into two sets that result in a cut of size five.

5 Cut

Fig. 38. An illustration of the MaxCut problem.

In general, the MaxCut problem is characterized by the following unconstrained discrete maximiza-
tion problem,

maximize:
∑
i, j ∈E

1
2
(1 − σiσj )

σi ∈ {−1, 1} ∀i ∈ N
(67)

In this formulation, there is one binary decision variable for each node in the graph, indicating
which set it belongs to. The objective function consists of one term for each edge in the graph.
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This term is 0 if the the nodes of that edge take the same value and 1 otherwise. Consequently,
the optimal solution of (67) will be a maximal cut of the graph G. Interestingly, the form of
Eq. (67) also highlights that finding a maximal cut of G is equivalent to finding a ground state of
the antiferromagnet of G in an Ising model interpretation. In either case, it is clear that Eq. (67)
conforms to the structure of Eq. (66). Note that the linear transform z = (σ + 1)/2 can be used to
convert the variables from the σ ∈ {−1, 1} space to the z ∈ {0, 1} space.

13.2 Algorithm description
The Quantum Approximate Optimization Algorithm (QAOA) as proposed in [43] leverages gate-
based quantum computing for finding high-quality solutions to combinatorial optimization problems
that have the form of Eq. (66). To apply this algorithm the user first translates the clause functions
Cα (z) into equivalent quantum clause Hamiltonians Cα and then selects a number of rounds r ≥ 1
and two angles per round, 0 ≤ β[k] ≤ π and 0 ≤ γ [k] ≤ 2π for the k-th round. The pseudocode for
QAOA is given in Algorithm 12.

Algorithm 12 Quantum approximate optimization algorithm
Input:

• Number of rounds of optimization r
• Two size r array of angles, γ and β .
• Hamiltonians Cα corresponding to the clauses of the optimization problem.

Output:
• An approximation to the solution of problem in Eq. (66).

Procedure:
Step 1. Construct the n-qubit uniform superposition state by applying H ⊗n to |0 . . . 0⟩
for 1 ≤ k ≤ r do

Step 2a. Apply
∏m

α=1 e
−iγ [k ]Cα

Step 2b. Apply
∏n

j=1 e
−iβ [k ]X j

end for
Step 3. We will call the state so constructed |β,γ ⟩ . The expectation value,∑m

α=1 ⟨β,γ |Cα |β ,γ ⟩ , gives an approximate solution to the problem.

For an appropriate selection of r , β ,γ , this algorithm will give a high-quality solution to Eq. (66).
As the number of rounds used increases, the quality of the solution produced by the above algorithm
also increases provided that the angles chosen for the previous rounds are optimal. Conducting an
exhaustive search over a fine grid is proposed in [43] for the selection of each round’s optimal β ,γ
angles. The use of a quantum-variational-eigensolver is also possible [74, 79].
The translation of the clauses to Hamiltonians and the determination of the final expectation

value depends on the specific optimization problem being solved. To provide a concrete example
of the generic QAOA formulation, let us consider its application to the MaxCut problem give in
Eq. (67). It is important to note that the MaxCut problem is particularly advantageous for QAOA
for the following reasons: (1) all of the clauses in the objective function have the same structure,
hence only one clause Hamiltonian Cα needs to be designed; (2) Each clause only involves two
decision variables, which keeps the structure of Cα relativity simple. The design of MaxCut clause
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Fig. 39. The CNOT connectivity and error rates of the ibmqx2 Computer (left) followed by the Single
Edge (center left), Triangle (center right) and Four edge (right) graphs considered in the proof-of-concept
experiments.

Hamiltonian is as follows,

C(i, j) = 1
2
(1 − σiσj ) (68)

σi = −1 σi = 1( )
0 1 σj = −1
1 0 σj = 1

(69)

|00⟩ |01⟩ |10⟩ |11⟩©«
ª®®¬

0 0 0 0 |00⟩
0 1 0 0 |01⟩
0 0 1 0 |10⟩
0 0 0 0 |11⟩

(70)

Ci, j =
1
2
(I − Zi ⊗ Z j ) (71)

Eq. (68) presents the binary function used by each edge in the objective of Eq. (67). Eq. (69) shows
the enumeration of all inputs and outputs of the binary function, and Eq. (70) illustrates how to
encode these inputs and outputs into a quantum Hamiltonian. Finally, the quantum Hamiltonian in
Eq. (70) can be compactly written as in Eq. (71).
These clause Hamiltonians can then be used in the QAOA algorithm. Notice that the clause

Hamiltonians here are all combinations of Z gates. This makes finding the final expectation value
very simple. For each run of the algorithm, one only needs to measure the final state in the
computational basis. This measurement will give a bit string that corresponds to an assignment to
the classical σi variables. The output of the algorithm is then found by estimating the expectation
value of

∑
i, j ∈E

1
2 (1 − σiσj ) over independent runs of the algorithm.

13.3 QAOA MaxCut on ibmqx2

This section investigates the implementation of the QAOA MaxCut algorithm on the ibmqx2
quantum computer (Figure 39). The first challenge is to transform the QAOA algorithm from its
mathematical form into a sequence of operations that are available in the IBM Quantum Experience
platform. For the sake of convenience we will mention here the gates we will use in the ensuing
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discussion,

U1(λ) =
(
1 0
0 eiλ

)
, U3(θ ,ϕ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(λ+ϕ) cos(θ/2)

)
, CNOT =

©«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬ .
The inner loop of the algorithm first requires the application of the γ angle with the clause

Hamiltonians. For the MaxCut Hamiltonian, this can be expanded as follows,

e−i
γ [k ]
2 (I−Za ⊗Zb ) = e

−iγ [k ]

©«
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

ª®®®®®®¬ = ©«
1 0 0 0
0 e−iγ [k ] 0 0
0 0 e−iγ [k ] 0
0 0 0 1

ª®®®¬ (72)

After some derivation, it is observed that this gate can be implemented as a combination of two
CNOT gates and oneU1(−γ ) gate, as indicated in Figure 40. It is also interesting to note the alternate
implementation of this gate in [30], which leverages a different variety of gate operations [96].

U1
(-gamma)

Fig. 40. An IBMQuantum Experience score illustrating an implementation of the MaxCut edge gate (72).

The next term in the loop is the application of the β angle, which is expanded as follows,

e−iβ [k ]X = e
−iβ [k ]

(
0 1
1 0

)
=

(
cos(β[k]) −i sin(β[k])
i sin(β[k]) cos(β[k])

)
(73)

Careful inspection of the IBM Quantum Experience gates reveals that this operation is implemented
byU3(2βk ,−π/2,π/2). So we need to apply this gate to every qubit in the register.

Putting all of these components together, Figure 41 presents an IBM Quantum Experience circuit
for implementing QAOA for MaxCut on the “Triangle plus Edge” graph from Figure 39 using the
following parameters,

r = 2 : γ1 = 0.2 · π = 0.628.., β1 = 0.15 · π = 0.471..,
γ2 = 0.4 · π = 1.256.., β2 = 0.05 · π = 0.157...

H

H

H

H

U1
(-0.62...)

U1
(-0.62...)

U1
(-0.62...)

U1
(-0.62...)

U3
(0.942...)

U3
(0.942...)

U3
(0.942...)

U3
(0.942...)

U1
(-1.25...)

U1
(-1.25...)

U1
(-1.25...)

U1
(-1.25...)

U3
(0.314...)

U3
(0.314...)

U3
(0.314...)

U3
(0.314...)

1 2 3 4

q[0]

q[1]

q[2]

q[3]

q[4]

c5

Fig. 41. An IBMQuantum Experience circuit for QAOA MaxCut with two rounds on a “Triangle plus Edge”
graph.



Quantum Algorithm Implementations for Beginners 61

13.4 A proof-of-concept experiment
With a basic implementation of QAOA for MaxCut in qiskit, a preliminary proof-of-concept study
is conducted to investigate the effectiveness of QAOA for finding high-quality cuts in the a) Single
Edge, b) Triangle and c) Triangle plus Edge graphs presented in Figure 39. This study compares
three types of MaxCut computations: (1) Random assigns each node in the graph to one of the
two sets uniformly at random; (2) Simulation executes the IBM Quantum Experience circuit via
simulation on a classical computer; (3) Hardware executes the IBM Quantum Experience circuit
on the ibmqx2 hardware. The simulation computation serves to demonstrate the mathematical
correctness of the proposed QAOA circuit. The hardware computation demonstrates the viability
of the circuit in a deployment scenario where environmental noise, intrinsic bias, and decoherence
can have a significant impact on the results. The random computation serves to demonstrate that
the hardware results are better than what one would expect by chance from pure noise. For each
computation we give the expectation/mean of the returned solutions and the probability to sample
the maximum cut. All of these computations are stochastic, therefore event probabilities on IBM
Quantum Experience are computed based on 4096 independent runs of each computation.
a) The first experiment considers the Single Edge graph from Figure 39 (center left) and imple-

ments a 1-round QAOA with the parameters

r = 1 : γ1 = 0.5 · π , β1 = 0.125 · π .
The results are summarized in Table 4. The simulation results indicate that the proposed score is
mathematically sound and the hardware results indicate similar performance to the simulation,
with a few additional errors. The random results indicate that both the simulation and hardware
perform significantly better than random chance.

Table 4. MaxCut QAOA with one round on a Single Edge.

Random Simulation Hardware

Expected Size of a sampled cut 0.500 1.000 0.950
Probability of sampling a maximum cut 0.500 1.000 0.950

b) The second experiment considers the Triangle graph from Figure 39 (center right) with
parameters

r = 1 : γ1 = 0.8 · π , β1 = 0.4 · π .
The results are summarized in Table 5. The simulation results indicate that the proposed circuit
is mathematically sound. Even though the QAOA circuit for a Triangle is longer than the QAOA
circuit for a Single Edge, the Hardware performance is better, most likely to the more favourable
distribution of the cuts, also notable in Random.

Table 5. MaxCut QAOA with one round on a Triangle.

Random Simulation Hardware

Expected Size of a sampled cut 1.500 1.999 1.904
Probability of sampling a maximum cut 0.750 1.000 0.952

c) The third experiment considers the Triangle plus Edge graph from Figure 39 (right). We run
QAOA both in a 1-round and a 2-round scenario, implemented with the following parameters,
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found through numerical grid searches with a resolution of π/1000 (1-round) and π/20, respectively
(2-round):

r = 1 : γ1 = 0.208 · π , β1 = 0.105 · π . r = 2 : γ1 = 0.2 · π , β1 = 0.15 · π ,
γ2 = 0.4 · π , β2 = 0.05 · π .

The results are summarized in Table 6, the 2-round circuit is shown in Figure 41. Simulation and
Hardware outperform Random both on 1-round and 2-round QAOA. However, the gains made
by Simulation in 2-round over 1-round QAOA almost vanish on the Hardware. This degradation
in performance is likely due to the double length in the circuit, making the experiment more
susceptible to gate errors, environmental noise and qubit decoherence.

Table 6. MaxCut QAOA with several rounds on a Triangle plus Edge graph.

1-round QAOA 2-round QAOA

Random Simulation Hardware Simulation Hardware

Expected Size of a sampled cut 2.000 2.720 2.519 2.874 2.570
Probability of sampling a maximum cut 0.375 0.744 0.652 0.895 0.727

14 QUANTUM PRINCIPAL COMPONENT ANALYSIS
14.1 Problem definition and background
In data analysis, it is common to have many features, some of which are redundant or correlated.
As an example, consider housing prices, which are a function of many features of the house, such
as the number of bedrooms, number of bathrooms, square footage, lot size, date of construction,
and the location of the house. Often, one is interested in reducing the number of features to the few,
most important features. Here, by important, we mean features that capture the largest variance in
the data. For example, if one is only considering houses on one particular street, then the location
may not be important, while the square footage may capture a large variance.
Determining which features capture the largest variance is the goal of Principal Component

Anaylsis (PCA) [78]. Mathematically, PCA involves taking the raw data (e.g., the feature vectors for
various houses) and computing the covariance matrix, Σ. For example, for two features, X1 and X2,
the covariance is given by

Σ =

(
E(X1 ∗ X1) E(X1 ∗ X2)
E(X2 ∗ X1) E(X2 ∗ X2)

)
, (74)

where E(A) is the expectation value of A, and we have assumed that E(X1) = E(X2) = 0. Next, one
diagonalizes Σ such that the eigenvalues e1 ≥ e2 ≥ e3 ≥ · · · are listed in decreasing order. Again,
for the two-feature case, this becomes

Σ =

(
e1 0
0 e2

)
. (75)

Once Σ is in this form, one can choose to keep the features with n-largest eigenvalues and discard
the other features. Here, n is a free parameter that depends on how much one wants to reduce the
dimensionality. Naturally, if there are only two features, one would consider n = 1, i.e., the single
feature that captures the largest variance.
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As an example, consider the number of bedrooms and the square footage of several houses for
sale in Los Alamos. Here is the raw data, taken from www.zillow.com, for 15 houses:

X1 = number of bedrooms = {4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 5, 4, 3, 4}
X2 = square footage = {3028, 1365, 2726, 2538, 1318, 1693, 1412, 1632, 2875, 3564, 4412, 4444, 4278, 3064, 3857} .

(76)

Henceforth, for scaling purposes, we will divide the square footage by 1000 and subtract off the
mean of both features. Classically, we compute the covariance matrix and its eigenvalues to be the
following:

Σ =

(
0.380952 0.573476
0.573476 1.29693

)
, e1 = 1.57286 , e2 = 0.105029 . (77)

We now discuss the quantum algorithm for doing the above calculation, i.e., for finding the
eigenvalues of Σ.

14.2 Algorithm description
Before we discuss the algorithm we will provide a quick introduction to the concept of a density
matrix. Density matrices are used to represent probabilistic mixtures of quantum states. Suppose
that there is a quantum system whose state is not known, rather we know that it can be in one of
M states, |ψi ⟩, each occurring with probability pi . The state of this system is then represented by a
density matrix ρ, defined as

ρ =
M∑
i=1

pi |ψi ⟩ ⟨ψi | . (78)

If the state of a system is known (with probability 1) to be |ψ ⟩, then the density matrix would just
be |ψ ⟩ ⟨ψ | and the system is said to be in a pure state. Otherwise, the system is said to be in a mixed
state. So the density matrix can be seen as a generalization of the usual state representation with
the extra ability to represent a probabilistic mixture of quantum states. From the definition of the
density matrix it can be seen that it is a positive semi-definite matrix with unit trace. In fact, any
matrix that satisfies these two properties can be interpreted as a density matrix. More details on
the definition and interpretation of density matrices are given in the quantum tomography section
(Section 20).

Density matrices are clearly more expressive than state vectors as state vectors can only represent
pure states. But, even a system in a mixed state can be seen as a part of a larger system that is in
a pure state. This process of converting a mixed state into a pure state of an enlarged system is
called purification. A mixed state of an n qubit system can be purified by adding n more qubits
and working with the 2n qubit system. Once purified, the joint system of 2n qubits will be in a
pure state while the first n qubits will still be in the original mixed state. We will not discuss the
transformations required to purify a state. Interested readers are referred to Ref. [77] for a complete
discussion.
The quantum algorithm for performing PCA presented in Ref. [70] uses the density matrix

representation. The algorithm discussed there has four main steps: (1) encode Σ in a quantum
density matrix ρ (exploiting the fact that Σ is a positive semi-definite matrix), (2) prepare many
copies of ρ, (3) perform the exponential SWAP operation on each copy and a target system, and (4)
perform quantum phase estimation to determine the eigenvalues. For an implementation of this
quantum PCA algorithm on a noisy simulator, we refer the reader to Ref. [66], which also gives a
short-depth compilation of the exponential SWAP operation.
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Fig. 42. Schematic diagram for the quantum algorithm for PCA, in the special case of only two features. The
first step is classical pre-processing: transforming the raw data into a covariance matrix Σ, then normalizing
to compute ρ = Σ/Tr(Σ), then purifying ρ to a two-qubit pure state |ψ ⟩, and finally determining the unitary
Uprep needed to prepare |ψ ⟩. The second step is to prepare two copies of |ψ ⟩ by implementing Uprep on a
quantum computer. The third step is purity calculation, which is the bulk of the quantum algorithm. This
involves doing a Hadamard on an ancilla, which then is used to implement a controlled-SWAP gate on two
qubits (from different copies of |ψ ⟩), and then another Hadamard on the ancilla. Finally measuring ⟨Z ⟩ on the
ancilla gives the purity P = Tr(ρ2). The last step is to classically compute the eigenvalues using Eqs. (79)-(80).

However, given the constraint of only 5 qubits on IBM’s computer, preparing many copies of ρ
is not possible. Hence, we consider a simpler algorithm as follows. In the special case where there
are only two features, Σ and ρ are 2 × 2 matrices (one qubit states), and ρ can be purified to a pure
state |ψ ⟩ on two qubits. Suppose one prepares two copies of |ψ ⟩, which uses a total of 4 qubits,
then the fifth qubit (on IBM’s computer) can be used as an ancilla to implement an algorithm that
determines the purity P := Tr(ρ2) of ρ. This algorithm was discussed, e.g., in Ref. [57]. It is then
straightforward to calculate the eigenvalues of Σ from P , as follows:

e1 = Tr(Σ) ∗ (1 +
√
1 − 2(1 − P))/2 (79)

e2 = Tr(Σ) ∗ (1 −
√
1 − 2(1 − P))/2 . (80)

We remark that recently (after completion of this review article), a simpler algorithm for computing
purity P was given in Ref. [27]. While the results presented in what follows use the approach in
Ref. [57], the approach in Ref. [27] could lead to more accurate results.

As depicted in Fig. 42, this simple algorithm is schematically divided up into four steps: (1) classical
pre-processing, (2) state preparation, (3) quantifying the purity, and (4) classical post-processing.
In the first step, the classical computer converts the raw data vectors into a covariance matrix

Σ, then normalizes this matrix to form ρ = Σ/Tr(Σ), then purifies it to make a pure state |ψ ⟩, and
finally computes the unitaryUprep needed to prepare |ψ ⟩ from a pair of qubits each initially in the
|0⟩ state.
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In the second step, the quantum computer actually prepares the state |ψ ⟩, or in fact, two copies
of |ψ ⟩, usingUprep, which can be decomposed as follows:

Uprep = (UA ⊗ UB )CNOTAB (U ′
A ⊗ 1B ) . (81)

Note that Uprep acts on two qubits, denoted A and B, and CNOTAB is a CNOT gate with A the
control qubit and B the target. The single qubit unitariesUA,UB , andU ′

A can be written in IBM’s
standard form: (

cos(θ/2) −eiλ sin(θ/2)
eiϕ sin(θ/2) eiλ+ϕ cos(θ/2)

)
, (82)

where the parameters θ , λ, and ϕ were calculated in the previous (classical pre-processing) step.
The third step is purity calculation, which makes up the bulk of the quantum algorithm. As

shown in Fig. 42, first one does a Hadamard on an ancilla. Let us denote the ancilla as C , while the
other four qubits are denoted A, B, A′, and B′. During the state preparation step, qubits A and B
were prepared in state |ψ ⟩ with the state of A being ρ. Likewise we have the state of A′ to be ρ.
Next, qubit C is used to control a controlled-SWAP gate, where the targets of the controlled-SWAP
are qubits A and A′. Then, another Hadamard is performed on C . Finally, C is measured in the Z
basis. One can show that the final expectation value of Z on qubitC is precisely the purity of ρ, i.e.,

⟨Z ⟩C = p0 − p1 = Tr(ρ2) = P , (83)

where p0 (p1) is the probability for the zero (one) outcome on C .
The fourth step is classical post-processing, where one converts P into the eigenvalues of Σ using

Eqs. (79) and (80).

14.3 Algorithm implemented on IBM’s 5-qubit computer
The actual gate sequence that we implemented on IBM’s 5-qubit computer is shown in Fig. 43. This
involved a total of 16 CNOT gates. The decomposition of controlled-SWAP into one- and two-qubit
gates is done first by relating it to the Toffoli gate:

controlled-SWAPCAB = (1C ⊗ CNOTBA)ToffoliCAB (1C ⊗ CNOTBA) (84)

and then decomposing the Toffoli gate, as in Ref. [91].
We note that the limited connectivity of IBM’s computer played a signficant role in determining

the algorithm. For example, we needed to implement a CNOT from q[1] to q[2], which required a
circuit that reverses the direction of the CNOT from q[2] to q[1]. Also, we needed a CNOT from
q[3] to q[1], which required a circuit involving a total of four CNOTs (from q[3] to q[2] and from
q[2] to q[1]).

Our results are as follows. For the example given in Eq. (76), IBM’s 5-qubit simulator with 40960
trials gave:

e1 = 1.57492 , e2 = 0.102965 (IBM’s simulator) . (85)

A comparison with Eq. (77) shows that IBM’s simulator essentially gave the correct answer. On the
other hand, IBM’s 5-qubit quantum computer with 40960 trials gave:

e1 = 0.838943 + 0.45396i , e2 = 0.838943 − 0.45396i (IBM’s Quantum Computer) . (86)

This is a non-sensical result, since the eigenvalues of a covariance matrix must be (non-negative)
real numbers. So, unfortunately IBM’s quantum computer did not give the correct answer for this
problem.
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Fig. 43. Actual circuit for quantum PCA implemented on IBM’s 5-qubit simulator and quantum computer.
The first three time slots in the score correspond to the state preparation step of the algorithm, and the
subsequent time slots correspond to the purity calculation step. Due to connectivity reasons, we chose qubit
q[3] as the ancilla and qubits q[1] and q[2] as the targets of the controlled-SWAP operation. We decomposed
the controlled-SWAP operation into CNOT gates by first relating it to the Toffoli gate via Eq. (84), and then
decomposing the Toffoli gate into CNOT gates [91].

15 QUANTUM SUPPORT VECTOR MACHINE
Support Vector Machines (SVM) are a class of supervised machine learning algorithms for binary
classifications. Consider M data points of {(®x j ,yj ) : j = 1, 2, . . . ,M}. Here ®x j is a N -dimensional
vector in data feature space, and yj is the label of the data, which is +1 or −1. SVM finds the
hyperplane ®w · ®x +b = 0 that divides the data points into two categories so that ®w · ®x j +b ≥ 1 when
yj = +1 and ®w · ®x j + b ≤ −1 when yj = −1, and that is maximally separated from the nearest data
points on each category. Least Squares SVM (LS-SVM) is a version of SVM [102]. It approximates
the hyperplane finding procedure of SVM by solving the following linear equation:

[
0 ®1T
®1 K + γ−11

] [
b
®α

]
=

[
0
®y

]
. (87)

Here K is called the kernel matrix of dimensionM ×M , γ is a tuning parameter, and ®α forms the
normal vector ®w where ®w = ∑M

j=1 α j ®x j . Various definitions for the kernel matrix are available, but
the quantum SVM [84] uses linear kernel: Ki j = ®xi · ®x j . Classically, the complexity of the LS-SVM
is O

(
M2(M + N )

)
.

The quantum version of SVM performs the LS-SVM algorithm using quantum computers [84].
It calculates the kernel matrix using the quantum algorithm for inner product [69] on quantum
random access memory [50], solves the linear equation using a quantum algorithm for solving
linear equations [50], and performs the classification of a query data using the trained qubits with
a quantum algorithm [84]. The overall complexity of the quantum SVM is O

(
logNM

)
.

The algorithm is summarized below:
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Algorithm 13 Quantum SVM [84]
Input:

• Training data set {(®x j ,yj ) : j = 1, 2, . . . ,M}.
• A query data ®x .

Output:
• Classification of ®x : +1 or −1.

Procedure:
Step 1. Calculate kernel matrix Ki j = ®xi · ®x j using quantum inner product algorithm [69].
Step 2. Solve linear equation Eq. (87) and find |b, ®α⟩ using a quantum algorithm for solving

linear equations [50] (training step).
Step 3. Perform classification of the query data ®x against the training results |b, ®α⟩ using a

quantum algorithm [84].

The inner product calculation to compute the kernel matrix cannot be done reliably in the
currently available quantum processors. The other important part of the algorithm, which is linear
system solving, can be quantized and has been dealt with in Section IV.

16 QUANTUM SIMULATION OF THE SCHRÖDINGER EQUATION
16.1 Problem definition and background
The Schrödinger’s equation describes the evolution of a wave functionψ (x , t) for a given Hamil-
tonian Ĥ of a quantum system:

iℏ
∂

∂t
ψ (x , t) = Ĥψ (x , t) =

[
ℏ2k̂2

2m
+V (x̂)

]
ψ (x , t), (88)

where the second equality illustrates the Hamiltonian of a particle of massm in a potential V (x).
Simulating this equation starting with a known wave functionψ (x , 0) provides knowledge about the
wave function at a given time tf and allows determination of observation outcomes. For example,��ψ (x , tf )��2 is the probability of finding a quantum particle at a position x at time tf .

Solving the Schrödinger’s equation numerically is a common approach since analytical solutions
are only known for a handful of systems. On a classical computer, the numerical algorithm starts
by defining a wave function on a discrete gridψ (xi , 0) with a large number of points i ∈ [1,N ]. The
form of the Hamiltonian, Eq. (88), allows one to split the system’s evolution on a single time step
∆t in two steps, which are easy to perform:

ψ (xi , tn+1) = e−iV (xi )∆tQFT†e−ik
2∆tQFTψ (xi , tn), (89)

wherewe have assumed that ℏ = 1 andm = 1
2 . AndQFT andQFT

† are the quantum Fourier transform
and its inverse. The quantum state evolution thus consists of alternating application of the phase
shift operators in the coordinate and momentum representations. These two representation are
linked together by the Fourier Transformation as in the following example of a free space evolution
of a quantum particle:

ψ (xi , tf ) = QFT† e−ik
2tf QFTψ (xi , 0), (90)

where V (x) = 0 for a free particle.
We now discuss the quantum simulation of the Schrödinger’s equation similar to the one discussed

in [13], [98] that provides the wave function of the system at a given time tf . Finding a proper
measurement on a quantum simulator that reveals information about the quantum system will
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however be left out of the discussion.
��ψ (x , tf )��2 will be the only information we will be interested

in finding out.

16.2 Algorithm description
A quantum algorithm that performs a quantum simulation of one dimensional quantum systems
was presented in [13]. The procedure is outlined in Algorithm 14.

Algorithm 14 Quantum simulation of Schrödinger equation [98], [13]
Input:

• Initial wave function
• Time step size, ∆t , and the number of time steps, T .
• The ability to apply phase shifts in the computational basis.
• The potential function V .

Output:
• Final wave function at time tf = Tδt when evolved using the Schrödinger equation with

the potential V .
Procedure:

Step 1. Encode the wave function on a N-point grid in a quantum state of n = log2(N )
qubits. The value of this discretized wavefunction on a grid point is equal to the value of the
original wave function at the same point. The constant of proportionality must then be calculated
by renormalizing the discretized wavefunction.

for 1 ≤ j ≤ T do
Step 2a. Apply the Quantum Fourier Transform (QFT) to go to the momentum

representation.
Step 2b. Apply a diagonal phase shift of the form |x⟩ → e−ix

2∆t |x⟩ in the computa-
tional basis.

Step 2c. Apply the inverse Quantum Fourier Transform to come back to the position
representation.

Step 2d. Apply a phase shift of the form |x⟩ → e−iV (x )∆t |x⟩ .
end for
Step 3. Measure the state in the computational basis.

Figure 44 shows the following stages of the algorithm. The implementation of QFT was discussed
in Section IV. Implementing phase shifts corresponding to arbitrary functions can be done using a
series of controlled Z gates or CNOT gates [13]. Repeating the final measurement step over many
independent runs will let us estimate the probabilities |ψ (x , tf )|2. We will now consider a 2-qubit
example of the quantum simulation algorithm in the case of a free particle, V (x) = 0.

Our initial wave function is a Π-function (a rectangular wave), which has {0, 1, 1, 0} representa-
tion on a 2n-point grid for n = 2 qubits. Its representation by the state of the qubits is proportional
to |0, 1⟩ + |1, 0⟩, which can be prepared by constructing the Bell state (see Fig. 1) and applying the
X gate to the first qubit.

We define the 2-qubit QFT asQFT = SWAP12 H2 C2
[
P1

( π
2
) ]
H1, whereC2P is a phase operator

controlled from the second qubit. This transformation applies phase shifts to the probability
amplitudes of the qubit states similar to the ones applied by the classical FFT to the function values.
Hence, the resulting momentum representation is identical to the classical one in a sense that it is
not centered around k = 0, which can be easily remedied by a single X1 gate.
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Fig. 44. The quantum simulation of the Schrödinger’s equation. The first stage is a classical pre-processing
that encodes the wave function to available qubits and derives a state preparation operator that takes
an all-zero state of a quantum computer to a desired state. The second stage prepares an initial state by
implementing the state preparation operator Ûprep on a quantum computer. The third stage is an iterative
update looped over ∆t steps based on the operator splitting method.

|0⟩ P(2ϕ)

|0⟩ H X • X H P( π2 ) P(ϕ) • • P( π2 ) H

|0⟩ • H X P(2ϕ) • • X H •

Fig. 45. The quantum circuit implementation of a 2-qubit algorithm that solves the Schrödinger’s equation
on a quantum computer. The initial state preparation is followed by theQuantum Fourier Transform and
centering of the momentum representation. The single qubit phase shift transformations are followed by
the two-qubit phase shift transformation that uses an ancillary qubit q[0]. The inverse Quantum Fourier
Transform preceded by removing the centering operation completes the circuit and returns the wave function
to the coordinate representation.

The momentum encoding adopted in this discussion is k = − 1
2

√
ϕ
∆t

(
1 +

∑n
k=1 2

n−kZk
)
, where

ϕ is a characteristic phase shift experienced by the state on a time step ∆t . In this representation
−ik2∆t phase shift contains one and two qubit contributions that commute with each other and can
be individually implemented. The one qubit phase shift gate has a straightforward implementation
but the two qubit phase shift gate requires an ancillary qubit according to Ref. [77], which results
in a three qubit implementation on a quantum computer. This implementation is captured in Fig 45
where removing the centering of the momentum representation and the inverse QFT have been
added in order to return to the coordinate representation.

16.3 Algorithm implemented on IBM’s 5-qubit computer
The implementation in Fig. 46 takes into account the topology of the chip and the availability of
the gates such as U 1 andU 2. Finally, it performs a consolidation of the single qubit gates in order
to reduce the number of physical operations on the qubits.
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Fig. 46. The quantum circuit implementation of a 2-qubit algorithm that solves the Schrödinger’s equation
on the ibmqx4 quantum computer.

The circuit in Fig. 46 was run on the ibmqx4 quantum chip, where the maximum number of
executions in a single run is 210. The probabilities of observing qubit states in the computational
basis was measured for ϕ = 0, ϕ = π/2, ϕ = π , ϕ = 3π/2 and ϕ = 2π . We expect that as ϕ increases
from 0 to π the wave function evolves from a Π-function to a uniform function to a function
peaked at the ends of the interval. The consecutive increase returns the wave function back to the
Π-function.

We startedwith theϕ = 0 case that should have reproduced our initial statewith ideal probabilities
of {0, 0.5, 0.5, 0}. However, the observed probabilities were {0.173, 0.393, 0.351, 0.084}. Thus it was
surprising to see that the ϕ = π/2 case was very close to expected probability of 0.25 with the
observed values of {0.295, 0.257, 0.232, 0.216}. This surprise was however short lived as the ϕ = π
case has reverted back large errors for observed probabilities: {0.479, 0.078, 0.107, 0.335}. The final
two case had the following observed probabilities {0.333, 0.248, 0.220, 0.199} and {0.163, 0.419, 0.350,
0.068} respectively.

17 GROUND STATE OF THE TRANSVERSE ISING MODEL
In this section the ground state of the transverse Ising model is calculated using the variational
quantum eigenvalue solver, and the result is compared to the exact results. This is a hybrid method
that uses alternating rounds of classical and quantum computing.

In the previous section we saw how to simulate the evolution of a single quantum particle. But
often, real world phenomena are dependent on the interactions between many different quantum
systems. The study of many-body Hamiltonians that model physical systems is the central theme
of condensed matter physics (CMP).

Many-body Hamiltonians are inherently hard to study on classical computers as the dimension
of the Hilbert space grows exponentially with the number of particles in the system. But using a
quantum computer we can study these many-body systems with less overhead as the number of
qubits required only grows polynomialy.

17.1 Variational quantum eigenvalue solver
A central task in CMP is finding the ground state (lowest energy eigenstate) of a given Hamiltonian,
H ,

H|Ψ⟩ = Eд |Ψ⟩. (91)

Studying the ground state gives us information about the low temperature properties of the
system. Once we know |Ψ⟩, we can deduce the physical properties from the wave function. In
this section, we will describe how to use IBM Q to find the ground state energy of the transverse
Ising model. We will not be using the ibmqx4 in this section. This is because the algorithm we
use will require many rounds of optimization. Each round requires us to run a circuit on the
quantum computer followed by a classical optimization step on a local machine. This process can
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Fig. 47. Schematic view of the implementation of the variational quantum eigenvalue solver using a hybrid
classical and quantum circuit. The figure is adopted from Ref. [79].

be automated easily using Qiskit. But the long queuing times in IBM Q makes repeated runs on the
quantum processor impractical.

To find the eigenvalue of a Hamiltonian, we could use the quantum phase estimation algorithm
that was discussed in Section IV. To do this we need the ability to perform controlled operations
with the unitaryU = exp(−iHδt/ℏ), where δt is the time step. Then, by preparing different initial
states |ψi ⟩ and repeating the phase estimation many times one can obtain, in principle, the whole
spectrum of the eigenvalues and the corresponding eigenwave functions. For a general Hamiltonian,
however, the implementation of a controlled U may be not straightforward. For realistic problems,
the quantum phase estimation circuits have large depth. This requires qubits with long coherence
times, which are not available at the time of writing. For CMP problems, we are mainly interested
in the lowest eigenvalue for most cases.
To overcome these limitations, we use the recently developed variational quantum eigenvalue

solver (VQES) [74, 79]. The basic idea is to take the advantages of both quantum and classical
computers, as shown in Fig. 47. It allocates the classically easy tasks to classical computers and the
other tasks to quantum computers. The algorithm is summarized as follows:
(1) Prepare a variational state |ψ (θi )⟩ with parameters θi . For an efficient algorithm, the number

of variational parameters should grow linearly with the system size.
(2) Calculate the expectation value of theHamiltonian using a quantum computer,E = ⟨ψ |H |ψ ⟩/⟨ψ |ψ ⟩.
(3) Use classical nonlinear optimizer algorithms to find new optimal θi . In this report, we will use

the relaxation method τ0∂tθi = −∂E/∂θi , where τ0 is a parameter to control the relaxation
rate.

(4) Iterate this procedure until convergence.
VQES has the following advantage: For most CMP problems, where the interaction is local, we

can split the Hamiltonian into a summation over many terms. This means that we can parallelize
the algorithm to speed up the computation. The quantum expectation calculations for one term
in the Hamiltonian are relatively simple, thus no long coherence times are not required. On the
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ℎ
𝑔# Quantum phase transition

Ferromagnetic phase Paramagentic phase

Fig. 48. Schematic view of the quantum phases described by the transverse Ising model. The arrows represent
the spin configuration in the ordered and disordered phases.

other hand, VQES also has limitations. Because of its variational nature, the trial wave function
needs to be prepared carefully. This usually requires physical insights into the problem. The ground
state eigenvalue and eigenwave function are biased by the choice of the trial wave functions. In
addition, VQES requires communications between classical and quantum computers, which could
be a bottleneck for the performance.

17.2 Simulation and results
We use VQES to find the ground state of the transverse Ising model (TIM) defined by

H = −
∑
i

σ zi σ
z
i+1 − h

∑
i

σxi , (92)

where σ z , σx are Pauli matrices and h is the external magnetic field. Let us first review briefly the
physical properties of this Hamiltonian. This Hamiltonian is invariant under the global rotation of
spin along the x axis by π , RxHR†

x = H , where Rx (π ) is the rotation operator

Rxσ
xR†

x = σ
x , Rxσ

zR†
x = −σ z . (93)

The TIMhas two phases:When the transverse fieldh is small, the spins are ordered ferromagnetically
and the rotational symmetry associated with Rx is broken. In the ordered phase, the quantum
expectation value ⟨σ z⟩ , 0. As h is increased, there is a quantum phase transition from the ordered
phase to the disordered phase where ⟨σ z⟩ = 0, as the rotational symmetry is restored. The phase
diagram is shown schematically in Fig. 48.
Using the phase diagram as a guide, first we propose a product state as a trial wave function.

The wave function can be written as

|ψi (θi )⟩ =
∏
i

U (θi )|0i ⟩. (94)

Here U (θi ) is the unitary operation which describes the spin rotation along the y axis by an angle
θi ,

U (θi ) =
(
cos(θi/2) − sin(θi/2)
sin(θi/2) cos(θi/2)

)
,

where θi are the variational parameters. Here we have used the Bloch sphere representation for a
qubit state. For the TIM, we calculate the expectation value of

E J ,i = −⟨ψ |σ zi σ zi+1 |ψ ⟩, EZ ,i = −⟨ψ |σxi |ψ ⟩. (95)

The quantum circuit to perform the preparation of the state and calculation of the expectations
value are shown in Fig. 49(a) andFig. 49(b) . We have

E J ,i = −[P(qi = 0) − P(qi = 1)][P(qi+1 = 0) − P(qi+1 = 1)], (96)

EZ ,i = −[P(qi = 0) − P(qi = 1)], (97)
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(a) (b)

(c)

Fig. 49. Quantum circuits to prepare the trial wave-functions. The single qubit unitaries in the text can be
implemented using available gates in IBM Q. The first two circuits prepare unentangled trial states. Circuit (a)
can be used to measure ⟨ψ | σz2 σ

z
3 |ψ ⟩ . Circuit (b) can be used to measure the ⟨ψ | σx3 |ψ ⟩. Circuit (c) prepares

the entangled trial state.

where P(qi = 0, 1) is the measured probability for the qubitqi in the |0⟩ or |1⟩ state. As wementioned
before, the communication bottleneck prevented us from implementing this on ibmqx4. We ran the
code using the quantum simulator in Qiskit. The comparison of the results obtained from quantum
simulation and analytical results are shown in Fig. 50. Our trial wave function works very well
in the ordered phase, but the simulation results deviate from the exact solution in the quantum
phase transition region. This discrepancy is caused by the fact that we have neglected the quantum
entanglement in our trial wave function.

In a second set of experiments, we use a trial wave function that includes quantum entanglement.
Because of the symmetry, |Ψi (θi )⟩ and Rx (π )|Ψi (θi )⟩ are two degenerate wave functions with
the same energy. The trial wave function can be written as a linear superposition of these two
degenerate wave functions

|ψi (θi )⟩ = α |Ψi (θi )⟩ + βRx (π )|Ψi (θi )⟩. (98)

The first step is to prepare |ψi (θi )⟩ using quantum circuit. To prepare an arbitrary state in a quantum
circuit is not trivial as it requires of the order of 2n CNOT gates, where n is the number of qubits [80].
The state in Eq. (98) can be prepared easily using the circuit in Fig. 49(c). Here we consider 4 spins.
The firstU0(θ ,ϕ) operation transforms the state into

|0000⟩ → eiϕ sin(θ/2)|1000⟩ + cos(θ/2)|0000⟩.
The first CNOT transforms the state into

eiϕ sin(θ/2)|1100⟩ + cos(θ/2)|0000⟩.
The second CNOT transforms the state into

eiϕ sin(θ/2)|1110⟩ + cos(θ/2)|0000⟩.
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Fig. 50. Comparison of the ground state energy (a) and average magnetization (b) Mx = ⟨ψ |∑i σ
x
i |ψ ⟩/N

obtained by using the trial wave functions in Eq. (94) and the exact results. Here we have used the periodic
boundary condition. The simulations are run both on the quantum simulator (black symbols) and classical
computers (red symbols). The mean-field results (blue line) are also displayed for comparison.

The third CNOT transforms the state into

eiϕ sin(θ/2)|1111⟩ + cos(θ/2)|0000⟩.
Finally we applyU (θi ) rotation and we obtain the desired state in Eq. (98). Here

U0(θ ,ϕ) =
(

cos(θi/2) − sin(θi/2)
eiϕ sin(θi/2) eiϕ cos(θi/2)

)
.

We then use VQES to find the ground state energy. As can be seen in Fig. 51, the new trial
function nearly reproduces the exact results in the whole magnetic field region and improves upon
the product state trial function.

18 QUANTUM PARTITION FUNCTION
18.1 Background on the partition function
Calculation or approximation of the partition function is a sub-step of inference problems in Markov
networks [63]. Even for small networks, this calculation becomes intractable. Therefore an efficient
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Fig. 51. (color online) Comparison of the ground state energy obtained by using the trial wave functions in
Eqs. (94) and (98) and the exact result. Here we have used the periodic boundary condition. The number of
spins is 4.

quantum algorithm for the partition function would make many problems in graphical model
inference and learning tractable and scalable; the same holds for other problems in computational
physics [7, 46, 48, 49].

The partition function is of particular interest for calculating probabilities from graphical models
such as Markov random fields [63]. For this article, we consider the graphical model form known as
the Potts model. Let Γ = (E,V ) be a weighted graph with edge set E and vertex set V and n = |V |.
In the q-state Potts model, each vertex can be in any of q discrete states. The Potts model is a
generalization of the classical Ising model. In the classical Ising model q = 2, whereas in the Potts
model q ≥ 2. The edge connecting vertices i and j has a weight Ji j which is also known as the
interaction strength between corresponding states. The Potts model Hamiltonian for a particular
state configuration σ = (σ1, . . . ,σn) is

H (σ ) = −
∑
i∼j

Ji jδσi ,σj , (99)

where i ∼ j indicates that there exists an edge between vertices i and j; and where δσi ,σj = 1 if
σi = σj and 0 otherwise.

The probability of any particular configuration being realized in the Potts model at a given
temperature, T , is given by the Gibbs distribution:

P(σ ) = 1
Z
e−βH (σ ), (100)

where β = 1/(kBT ) is the inverse temperature in energy units and kB is the Boltzmann constant.
The normalization factor, Z , is also known as the partition function:

Z =
∑
{σ }

e−βH (σ ), (101)
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Fig. 52. (a) Simple example with (b) the enumeration of state configurations and the value of the Hamiltonian
for a fully-connected 3-vertex Ising model (q = 2 Potts model)
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Fig. 53. Overview of the quantum partition function algorithm.

where {σ } means the full set of all possible state configurations. There are qn possible state
configurations, and so this is a sum over a large number of items and is generally intractable as
well as difficult to approximate. The calculation of the partition function is #P-hard (i.e., it is a
counting problem which is at least as hard as the NP-hard class of decision problems). There is no
known fully polynomial randomized approximation scheme (fpras), and it is unlikely that there
exists one [49].

18.2 A simple example
We give a small example with a graph of n = 3,V = {a,b, c}, with edges between all pairs of vertices
for three total edges, pictured in Figure 52a, and we use q = 2 for binary states on each vertex. To
demonstrate the calculation of the partition function, we first enumerate the configurations as
shown in Fig. 52b.

We plug the value of the Hamiltonian for each of the qn configurations into the partition function
given in Eq. (101) to get the normalization constant:

Z = 2eβ (Jab+Jbc+Jac ) + 2eβ Jab + 2eβ Jbc + 2eβ Jac . (102)

Letting Ji j = 1 for all i ∼ j, gives:

Z = 2e3β + 6eβ . (103)
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Fig. 54. Circuit for preparing the first two qubits and quantum Fourier transform on 2 qubits.

18.3 Calculating the quantum partition function
An efficient quantum algorithm for the partition function is given by [49] for Potts models whose
graph, Γ, has a topology such that it can be represented with an irreducible cyclic cocycle code
(ICCC). This stipulation is non-intuitive and it takes a quantum algorithm to efficiently determine if
a given graph meets this requirement. From the graph, Γ, calculate a cyclic codeC(Γ) that represents
the generating structure of the graph by using Gaussian elimination on the incidence matrix of the
graph, and then use Shor’s algorithm to determine the irreducible set of code words χ . If the code is
not irreducible, then we will not be able to efficiently calculate the partition function for this graph.
Assuming that the given graph is ICCC, the first step in the partition function algorithm is

to calculate the Gauss sum of GFqk =
√
qkeiγ , where γ is a function of χ . The difficult part is to

calculate γ , which can be done efficiently using the quantum Fourier transform (QFT). Using the
set of values, {γ } for all of the words, {χ } in the code; we calculate the weight spectrum {Ai } of
the code representing Γ. From this weights spectrum, the partition function Z can be efficiently
calculated using classical computing.

18.4 Implementation of a quantum algorithm on the IBMQuantum Experience
We implemented one step of the full partition function algorithmusing the IBMQuantumExperience.
The implemented algorithm is the 2-qubit quantum Fourier transform (QFT2), as the first step
in actual calculation of the partition function. The input to this step is the irreducible cocyclic
code. The irreducible cyclic code for the example problem of a 3-vertex Ising model is [1,−1] with
n = |V | = 3 and k = |E | −c(Γ) = 2, where c(Γ) is the number of connected components in the graph
Γ. This small example does meet the ICCC requirement (as checked through classical calculation), so
we will continue with the calculation of the partition function of the example without implementing
the quantum algorithm for checking this requirement. In the fully-connected 3-vertex Ising model
example given, the input to QFT2 is q[0] = |+⟩ = |0⟩+ |1⟩√

2
and q[1] = |−⟩ = |0⟩−|1⟩√

2
. In the sample

score shown in Fig. 54, these qubits are prepared before the barrier. The QFT2 algorithm, as given
by the Qiskit Tutorial provided by IBM[3], is the rest of the code. The output bits should be read in
reverse order. Some gates could be added at the end of the QFT2 algorithm to read the gates in the
same order as the input.
The result from simulating 1000 shots gives P(γ = 1) = 0.47 and P(γ = 3) = 0.53. The results

from running on the actual hardware are, P(γ = 0) = 0.077, P(γ = 1) = 0.462, P(γ = 2) = 0.075, and
P(γ = 3) = 0.386. We can threshold the low-probability values of gamma, ensuring that no more
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than the maximum number (as given in [49]) of distinct values of gamma remain. These gammas
are then plugged into the calculation of the weight spectrum and the partition function.

19 QUANTUM STATE PREPARATION
The problem of preparing an n-qubit state consists first of finding the unitary transformation that
takes the N -dimensional vector (1,0,. . . 0) to the desired state (α1, . . . , αN ), where N = 2n , and then
rendering the unitary transformation into a sequence of gates.

19.1 Single qubit state preparation
As discussed before, a single qubit quantum state |ψ ⟩ is represented as a superposition of |0⟩ and
|1⟩ states |ψ ⟩ = α |0⟩ + β |1⟩, where |α |2 + |β |2 = 1. The sizes |α |2 and |β |2 represent the probability
of |ψ ⟩ being |0⟩ or |1⟩. Up to a non-observable global phase, we may assume that α is real, so that
|ψ ⟩ = cosθ |0⟩+eiϕ sinθ |1⟩ for some angles θ ,ϕ. In this way, we can represent the state as a point
on the unit sphere with θ the co-latitude and ϕ the longitude. This is the well-known Bloch sphere
representation. In this way, the problem of 1-qubit state preparation consists simply of finding the
unitary transformation that takes the North pole to (α , β). In practice, this amounts to finding a
sequence of available gates on actual hardware that will leave the qubit in the desired state, to a
specified desired accuracy.
To prepare a specified state |ψ ⟩, we must find a 2 × 2 unitary matrixU taking the vector |0⟩ to

|ψ ⟩. An obvious simple choice forU is

U =

(
cosθ − sinθe−iϕ

sinθeiϕ cosθ

)
This gate is directly available in IBM Q and is implemented in a composite fashion on ibmqx4 at

the hardware level. If our goal is to initialize a base state with the fewest possible standard gates,
this may not be the best choice. Instead, it makes sense to consider a more general possible unitary
operator whose first column is our desired base state, and then determine the requisite number of
standard gates to obtain it.

Any 2 × 2 unitary matrix may be obtained by means of a product of three rotation matrices, up
to a global phase

U = eiαRz (β)Ry (γ )Rz (δ )
where here Rz (β) = diag(eiβ/2, e−iβ/2) and Ry (γ ) is related to Rz (γ ) by Ry (γ ) = SHRz (γ )HSZ . The
rotation matrices Ry (γ ) and Rz (β) correspond to the associated rotations of the unit sphere under
the Bloch representation. In this way, the above decomposition is a reiteration of the standard
Euler angle decomposition of elements of SO(3). Thus the problem of approximating an arbitrary
quantum state is reduced to the problem of finding good approximations of Rz (γ ) for various values
of γ .
There has been a great deal of work done on finding efficient algorithms for approximating

elements Rz (γ ) using universal gates to a specified accuracy. However, these algorithms tend to
focus on the asymptotic efficiency: specifying approximations with the desired accuracy which are
the generically optimal in the limit of small errors. From a practical point of view, this is an issue
on current hardware, since representations tend to involve hundreds of standard gates, far outside
the realm of what may be considered practical. For this reason, it makes sense to ask the question
of how accurately one may initialize an arbitrary qubit with a specified number of gates.

We empirically observe that the maximum possible chordal distance from a point on the Bloch
sphere to the set of exact states decreases exponentially with the number of gates. With 30 gates,
every point is within a distance of 0.024 of a desired gate. Thus, to within an accuracy of about
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Fig. 55. Possible exact state initializations using 10, 15, and 20 gates. With 20 gates, every point on the sphere
is within a distance of approximately 0.072 of an exactly obtainable state. With 30 gates, every point is within
0.024

2.5%, we can represent any base state as a product of about 30 states. We do so by preserving the
states generated by 30 gates, and then for any point finding the closest exact point.

19.2 Schmidt decomposition
The initialization of qubit states using more than one qubit is aided by the so-called Schmidt
decomposition, which we now introduce. Specifically, the Schmidt decomposition allows one to
initialize a 2n-qubit state by initializing a single n-qubit state, along with two specific n-qubit gates,
combined together with n CNOT gates.

Mathematically, an arbitrary 2n-qubit state |ψ ⟩ may be represented as a superposition

|ψ ⟩ =
∑

i1, ...,in ∈{0,1}

∑
j1, ..., jn ∈{0,1}

ai1, ...,in, j1, ..., jn |i1i2 . . . in j1j2 . . . jn⟩ .

In a Schmidt decomposition, we obtain such a state by strategically choosing two orthonormal
bases

��ξ j 〉 , ��φ j 〉 for j = 1, . . . , 2n of the Hilbert space of n-qubit states and then writing |ψ ⟩ as the
product

|ψ ⟩ =
2n∑
i=1

λi |ξi ⟩ |φi ⟩ ,

for some well-chosen λi ’s.
The bases

��ξ j 〉 and ��φ j 〉 may be represented in terms of two unitary matricesU ,V ∈ U (2n), while
the λi ’s may be represented in terms of a single n-qubit state. We represent this latter state as
B |00 . . . 0⟩ for some B ∈ U (2n). Then from a quantum computing perspective, the product in the
Schmidt decomposition may be accomplished by a quantum circuit combiningU ,V , and B with n
CNOT gates as shown below for n = 6.
Let C j

i denote the CNOT operator with control j and target i . Algebraically, the above circuit
may be written as a unitary operator T ∈ U (22n) of the form

T = (U ⊗ V )(C1
n+1 ⊗ C2

n+2 ⊗ · · · ⊗ Cn
2n)(B ⊗ I ).

We will use |e1⟩ , . . . , |e2n ⟩ to denote the standard computational basis for the space of n-qubit
states, in the usual order. We view each of the elements ej as a vector in {0, 1}n . In this notation,
the formation of CNOT gates above acts on simple tensors by sending

C1
n+1 ⊗ C2

n+2 ⊗ · · · ⊗ Cn
2n : |ei ⟩

��ej 〉 7→ |ei ⟩
��ei + ej 〉 , ei , ej ∈ {0, 1}n ,
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B

•

U

•
•

•
•

•

V

Fig. 56. Schmidt decomposition.

where addition in the above is performedmodulo 2. Therefore the action of the operatorT associated
to the above circuit on the basis vector |00 . . . 0⟩ is

T |00 . . . 0⟩ = (U ⊗ V )(C1
n+1 ⊗ C2

n+2 ⊗ · · · ⊗ Cn
2n)(B ⊗ I ) |00 . . . 0⟩

= (U ⊗ V )(C1
n+1 ⊗ C2

n+2 ⊗ · · · ⊗ Cn
2n)

2n∑
i=1

bi1 |ei ⟩ |e1⟩

= (U ⊗ V )
2n∑
i=1

bi1 |ei ⟩ |ei ⟩

=

2n∑
i=1

bi1(U |ei ⟩)(V |ei ⟩) = |ψ ⟩ .

Thus we see that the above circuit performs precisely the sum desired from the Schmidt decompo-
sition.
To get the precise values of U ,V , and B, we write |ψ ⟩ = ∑2n

i, j=1 ai j |ei ⟩
��ej 〉 for some constants

ai j ∈ C and define A to be the 2n × 2n matrix whose entries are the ai j ’s. Then comparing this to
our previous expression for |ψ ⟩, we see

2n∑
i, j=1

ai j |ei ⟩
��ej 〉 = 2n∑

k=1
bk1(U |ek ⟩)(V |ek ⟩).

Multiplying on the left by ⟨ei |
〈
ej

�� this tells us
ai j =

2n∑
k=1

bk1uikvjk ,

where here uik = ⟨ei |U |ek ⟩ and vjk =
〈
ej

��V |ek ⟩ are the i,k’th and j,k’th entries of U and V ,
respectively. Encoding this in matrix form, this tells us

V diag(bi1, . . . ,bin)UT = A.

Then to calculate the value ofU ,V and the bi1’s, we use the fact that V is unitary to calculate:

A†A = UT †diag(|bi1 |2, . . . , |bin |2)UT .

Thus if we let |λ1 |2, . . . , |λn |2 be the eigenvalues of A†A, and letU to be a unitary matrix satisfying

UTA†AUT † = diag(|λ1 |2, . . . , |λN |2),
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let bi1 = λi for i = 1, . . . ,n and let

V = AUT †diag(λ1, . . . , λn)−1.

The matrixU is unitary, and one easily checks thatV is therefore also unitary. Moreover
∑

i |bi1 |2 =
Tr(A†A) = ∑

i |ai j |2 = 1, and so the bi1’s are representative of an n-qubit state and can be taken as
the first column of B. Readers familiar with singular value decompositions (SVD) will recognize
that the Schmidt decomposition of a bipartite state is essentially the SVD of the coefficient matrix
A associated with the state. The λi coefficients being the singular values of A.

19.3 Two-qubit state preparation
An arbitrary two-qubit state |ψ ⟩ is a linear combination of the four base states |00⟩ , |01⟩ , |10⟩ , |11⟩
such that the square sum of the magnitudes of the coefficients is 1. In terms of a quantum circuit,
this is the simplest case of the circuit defined above in the Schmidt decomposition, and may be
accomplished with three 1-qubit gates and exactly 1 CNOT gate, as featured in Fig. 57.

B • U

V

Fig. 57. Circuit for two qubit-state preparation. The choice ofU ,V , and B are covered comprehensively in the
Schmidt decomposition description.

19.4 Two-qubit gate preparation
In order to initialize a four-qubit state, we require the initialization of arbitrary two-qubit gates. A
two-qubit gate may be represented as an elementU of SU (4). As it happens, any element ofU (4)
may be obtained by means of precisely 3 CNOT gates, combined with 7 1-qubit gates arranged in a
circuit of the form given in Fig. 58.

C R1 • A

D • R2 R3 • B

Fig. 58. Circuit implementation of an arbitrary two qubit gate.

The proof of this is nontrivial and relies on a characterization of the image of SU (2)⊗2 in SU (4)
using the Makhlin invariants. We do not aim to reproduce the proof here. Instead, we merely aim to
provide a recipe by which one may successfully obtain any element of SU (4) via the above circuit
and an appropriate choice of the one-qubit gates.

LetU ∈ SU (4) be the element we wish to obtain. To choose A,B,C,D and the Ri ’s, let Ci
j denote

the CNOT gate with control on qubit i and target qubit j and define α , β ,δ by

α =
x + y

2
, β =

x + z

2
, δ =

y + z

2
for eix , eiy , eiz the eigenvalues of the operatorU (Y ⊗ Y )UT (Y ⊗ Y ). Then set

R1 = Rz (δ ),R2 = Ry (β),R3 = Ry (α),E = C2
1(Sz ⊗ Sx )
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B • U • C1 R1 • A1

V • D1 • R2 R3 • B1

C2 S1 • A2

D2 • S2 S3 • B2

Fig. 59. Circuit for four qubit-state preparation. The four phases of the circuit are indicated in dashed boxes.

and also
V = eiπ /4(Z ⊗ I )C2

1(I ⊗ R3)C1
2(R1 ⊗ R2)C2

1(I ⊗ S†z ).

Define Ũ , Ṽ by Ũ = E†UE and Ṽ = E†VE. Let Ã, B̃ be the real, unitary matrices diagonalizing the
eigenvectors of Ũ ŨT andVṼT , respectively. Set X = ÃT B̃ and Y = V †B̃T ÃU . Then EXE† and EYE†
are in SU (2)⊗2 and we choose A,B,C,D such that

(AS†Z ) ⊗ (Beiπ /4) = EXE† and C ⊗ (SzD) = EYE†.

By virtue of this construction, the above circuit is algebraically identical toU .

19.5 Four qubit state preparation
From the above results that any two-qubit state requires 1 CNOT gate, any two-qubit operator
requires three CNOT gates, and the Schmidt decomposition, we see that we should be able to write
a circuit initializating any four-qubit state with only 9 CNOT gates in total, along with 17 one-qubit
gates. This represents the second most simple case of the Schmidt decomposition, which we write
in combinantion with our generic expression for 2-qubit gates as shown in Fig. 59. The above circuit
naturally breaks down into four distinct stages, as shown by the separate groups surrounded by
dashed lines. During the first stage, we initialize the first two qubits to a specific state relating to a
Schmidt decomposition of the full 4 qubit state. Stage two consists of two CNOT gates relating the
first and last qubits. Stages three and four are generic circuits representing the unitary operators
associated to the orthonormal bases in the Schmidt decomposition.
The results of this circuit implemented on a quantum processor are given in Fig. 60. While the

results when implemented on a simulator are given in Fig. 61.

20 QUANTUM TOMOGRAPHY
20.1 Problem definition and background
Quantum state estimation, or tomography, deals with the reconstruction of the state of a quantum
system from measurements of several preparations of this state. In the context of quantum comput-
ing, imagine that we start with the state |00⟩, and apply some quantum algorithm (represented by
a unitary matrixU ) to the initial state, thus obtaining a state |ψ ⟩. We can measure this state in the
computational z basis, or apply some rotation (represented byV ) in order to perform measurements
in a different basis. Quantum state tomography aims to answer the following question: is it possi-
ble to reconstruct the state |ψ ⟩ from a certain number of such measurements? Hence, quantum
tomography is not a quantum algorithm per se, but it is an important procedure for certifying the
performance of quantum algorithms and assessing the quality of the results that can be corrupted
by decoherence, environmental noise, and biases, inevitably present in analogue machines, etc.
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Fig. 60. Verification of 4 qubit state preparation on ibmqx2 which is a 5 qubit machine. The last qubit is not
used in the circuit. The above histogram shows that, the state prepared in ibmqx2 has nonzero overlaps with
basis states that are orthogonal to the target state to be prepared.

Fig. 61. Verification of the quantum circuit for four qubit-state preparation. The differences in the exact
and the simulator results are due to statistical fluctuations arising from the probabilistic nature of quantum
measurement. They will become closer to each other when the number of samples are increased.

Moreover similar procedures can be used for certifying the initial state, as well as for measuring
the fidelity of gates.

A unique identification of state requires a sufficient number of tomographically completemeasure-
ments, meaning that the algorithm should be run several times. Unfortunately, because of the noise,
it is impossible to obtain the exact same state |ψ ⟩ every time; instead, one should see a mixture
of different states: |ψ1⟩, |ψ2⟩, . . ., |ψk ⟩. In general, there does not exist a single |ψ ⟩ describing this
mixture. Therefore, we need a to use the density matrix representation of quantum states. We
briefly discussed this representation in the context of quantum principal component analysis in
Section XIV.

Let us denotepi the probability of occurrence of the state |ψi ⟩. The density matrix of this ensemble
is given by,

ρ =
∑
i

pi |ψi ⟩⟨ψi |. (104)
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Using this more general definition of the state, the expected value of an observable A is given by
⟨A⟩ = ∑

i
piTr⟨ψi |A|ψi ⟩ = Tr(Aρ). The density matrix has the following properties:

• Tr ρ = 1, i.e., probabilities sum to one;
• ρ = ρ†, and ρ ≽ 0, i.e., all eigenvalues are either positive or zero.

In a popular setting for quantum tomography [77], the set of measurement operators Pi are taken
as projectors that form several Postive Operator-Valued Measures (POVM), i.e., they satisfy

∑
i Pi = I .

For single qubits, examples of such projectors in the computational basis are given by P0 = |0⟩⟨0|
and P1 = |1⟩⟨1|, and in the x-basis by P± =

1√
2
(|0⟩ ± |1⟩) ⊗ 1√

2
(⟨0| ± ⟨1|). Assume that the set of

projectors that we take represents a quorum, i.e., it provides sufficient information to identify the
state of the system in the limit of a large number of observations, and that for each subset forming
a POVM,m measurements are collected. Given the occurrencesmi for each projector Pi , we can
define the associated empirical frequency as ωi =mi/m. Then the quantum tomography problem
can be stated as follows: reconstruct ρ from the set of couples of projectors and measurement
frequencies {Pi ,ωi }. In other words, we would like to “match” Tr(Piρ) and ωi . The next section
presents a short overview of most popular general methods for the quantum state estimation.

20.2 Short survey of existing methods
Most popular methods for quantum tomography in the general case include:
(1) Linear inversion. In this method, we simply aim at inverting the system of equations

Tr(Piρ) = ωi . Although being fast, for a finite number of measurements thus obtained
estimation ρ̂ does not necessarily satisfy ρ̂ ≽ 0 (i.e., might contain negative eigenvalues) [56].

(2) Linear regression. This method corrects for the disadvantages of the linear inversion by
solving a constrained quadratic optimization problem [83]:

ρ̂ = argmin
ρ

∑
i

[Tr(Piρ) − ωi ]2 s.t. Tr ρ = 1 and ρ ≽ 0.

The advantage of this method is that data does not need to be stored, but only the current
estimation can be updated in the streaming fashion. However, this objective function implicitly
assumes that the residuals are Gaussian-distributed, which does not necessarily hold in
practice for a finite number of measurements.

(3) Maximum likelihood. In this by far most popular algorithm for quantum state estimation,
one aims at maximizing the log-probability of observations [54, 56]:

ρ̂ = argmax
ρ

∑
i

ωi ln Tr(Piρ) s.t. Tr ρ = 1 and ρ ≽ 0.

This is a convex problem that outputs a positive semidefinite (PSD) solution ρ̂ ≽ 0. However,
it is often stated that the maximum likelihood (ML) method is slow, and several recent papers
attempted to develop faster methods of gradient descent with projection to the space of PSD
matrices, see e.g. [90]. Among other common criticisms of this method one can name the fact
that ML might yield rank-deficient solutions, which results in an infinite conditional entropy
that is often used as a metric of success of the reconstruction.

(4) Bayesian methods. This is a slightly more general approach compared to the ML method
which includes some prior [18], or corrections to the basic ML objective, see e.g., the so-called
Hedged ML [17]. However, it is not always clear how to choose these priors in practice.
Markov Chain Monte Carlo Methods that are used for general priors are known to be slow.

Let us mention that there exist other state reconstruction methods that attempt to explore a
particular known structure of the density matrix, such as compressed-sensing methods [51] in the
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Fig. 62. Left: measurements of the single qubit state after the application of the Hadamard gate, in z, y and x
basis. Right: experimental setup for testing the effects of decoherence.

case of low-rank solutions, andmatrix product states [33] or neural networks based approaches [104]
for pure states with limited entanglement, etc. One of the points we can conclude from this section
is that the ultimately best general method for the quantum state tomography is not yet known.
However, it seems that maximum likelihood is still the most widely discussed method in the
literature; in what follows, we implement and test ML approach to quantum tomography on the
IBM quantum computer.
20.3 Implementation of the Maximum Likelihood method on 5-qubit IBM QX
We present an efficient implementation of the ML method using a fast gradient descent with an
optimal 2-norm projection [97] to the space of PSD matrices. In what follows, we apply quantum
tomography to study the performance of the IBM Q.

20.3.1 Warm-up: Hadamard gate. Let us start with a simple one-qubit case of theHadamard gate, see
Fig. 62, Left. This gate transforms the initial qubit state |0⟩ as follows:H : |0⟩ → |+⟩x = 1√

2
(|0⟩+ |1⟩),

so that the density matrix should be close to ρ = |+⟩x ⟨+|x . In the limit of a large number of
measurements, we expect to see the following frequencies in the z, y, and x basis (all vector
expressions are given in the computational basis):[
1
0

]
→ 1

2
,

[
0
1

]
→ 1

2
,

1
√
2

[
1
i

]
→ 1

2
,

1
√
2

[
1
−i

]
→ 1

2
,

1
√
2

[
1
1

]
→ 1 ,

1
√
2

[
1
−1

]
→ 0 .

We learn the estimated density matrix ρ̂ from measurements in each basis using the maximum
likelihood method, and look at the decomposition:

ρ̂ = λ1 |ψ1⟩⟨ψ1 | + λ2 |ψ2⟩⟨ψ2 |,

which would allow us to see what eigenstates contribute to the density matrix, and what is their

weight. Indeed, in the case of ideal observations we should get λ1 = 1, with |ψ1⟩ =
[

1√
2

1√
2

]T
, and

λ2 = 0 with |ψ2⟩ =
[

1√
2

− 1√
2

]T
, corresponding to the original pure state associated with |+⟩x .

Instead, we obtain the following results for the eigenvalues and associated eigenvectors after
8152 measurements (the maximum number in one run on IBM QX) in each basis (z,y,x):

λ1 = 0.968 →
[
0.715 − 0.012i

0.699

]
, λ2 = 0.032 →

[
0.699 − 0.012i

−0.715

]
,

i.e., in 96% of cases we observe the state close to |+⟩x , and the rest corresponds to the state which
is close to |−⟩x . Note that the quantum simulator indicates that this amount of measurements is
sufficient to estimate matrix elements of the density matrix with an error below 10−3 in the ideal
noiseless case. In order to check the effect of decoherence, we apply a number of identity matrices
(Fig. 62, Right) which forces an additional waiting on the system, and hence promotes decoherence
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Fig. 63. Left: example of a measurement of the two-qubit maximally entangled state created with the
combination of H , X and CNOT gates in the yz basis. Right: experimental setup for testing the effects of
decoherence.

of the state. When applying 18 identity matrices, we obtain the following decomposition for ρ̂

λ1 = 0.940 →
[
0.727 − 0.032i

0.686

]
, λ2 = 0.060 →

[
0.685 − 0.030i

−0.728

]
,

while application of 36 identity matrices results in

λ1 = 0.927 →
[
0.745 − 0.051i

0.664

]
, λ2 = 0.073 →

[
0.663 − 0.045i

−0.747

]
.

The effect of decoherence is visible in both more frequent occurrence of the state that is close to
|−⟩x , but also in the degradation of the eigenstates.

20.3.2 Maximally entangled state for two qubits. Let us now study the two-qubits maximally
entangled state, which is an important part of all quantum algorithms achieving quantum speed-up
over their classical counterparts. The state 1√

2
(|10⟩ + |01⟩) we are interested in is produced by the

combination of H , X and CNOT gates as shown in Fig. 63, Left. We follow the same procedure as
in the case of the Hadamard gate, described above, and first estimate the density matrix ρ̂ using
8152 measurements for each of the zz, yy, xx , zx and yz basis, and then decompose it as ρ̂ =∑4

i=1 λi |ψi ⟩⟨ψi |. Once again, ideally we should get λ1 = 1 associated with |ψ1⟩ =
[
0 1√

2
1√
2

0
]T

.
Instead, the analysis of the leading eigenvalues indicates that the eigenstate which is close (although
significantly distorted) to the theoretical “ground truth” |ψ1⟩ above occurs in the mixture only with
probability 0.87:

λ1 = 0.871 →


−0.025 − 0.024i

0.677
0.735

−0.029 − 0.017i

 , λ2 = 0.059 →


0.598

0.123 + 0.468i
−0.075 − 0.445i
0.454 − 0.022i

 .
Our test of decoherence implemented using 18 identity matrices (see Figure 63, Right) shows that
the probability of the “original” entangled state decreases to 0.79:

λ1 = 0.793 →


−0.025 − 0.012i

0.664
0.747

−0.017 − 0.008i

 , λ2 = 0.111 →


0.997

−0.002 − 0.058i
0.035 + 0.036i
0.006 + 0.007i

 .
Interestingly enough, the second most probable eigenstate changes to the one that is close to |00⟩.
This might serve as an indication of the presence of biases in the machine.
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The application of the quantum tomography state reconstruction to simple states in the IBM
QX revealed an important level of noise and decoherence present in the machine. It would be
interesting to check if the states can be protected by using the error correction schemes, which is
the subject of the next section.

21 TESTS OF QUANTUM ERROR CORRECTION IN IBM Q
In this section, we study whether quantum error correction (QEC) can improve computation
accuracy in ibmqx4. The practical answer to this question seems to be “No”. Although some error
correction effects are observed in ibmqx4, improvements are not exponential and get completely
spoiled by errors induced by extra gates and qubits needed for the error correction protocols.

21.1 Problem definition and background
As we have seen throughout this review, the quality of computation on actual quantum processors
is degraded by errors in the system. This is because currently available chips are not fault tolerant. It
is widely believed that once the inherent error rates of a quantum processor is sufficiently lowered,
fault tolerant quantum computation will be possible using quantum error correction (QEC). The
current error rates of the IBM Q machines are not small enough to allow fault tolerant computation.
We refer the reader to a survey and introduction on QEC [37], while at the same time offering an
alternative point of view that we support with a few experiments on the IBM chip. The central
idea of QEC is to use entanglement to encode quantum superposition in a manner which is robust
to errors. The exact encoding depends upon the kind of errors we want to protect against. In this
section we will look at a simple encoding that will protect against bit flip errors. Here we encode a
single qubit state,

|ψ ⟩ = C0 |0⟩ +C1 |1⟩, (105)

using an entangled state, such as

|ψ ⟩ = C0 |0⟩⊗nq +C1 |1⟩⊗nq , (106)

where nq is the number of qubits representing a single qubit in calculations.
The assumption is that small probability errors will likely lead to unwanted flips of only one

qubit (in case when nq > 3 this number can be bigger but we will not consider more complex
situations here). Such errors produce states that are essentially different from those described by
Equation (106). Measurements can then be used to fix a single qubit error using, for instance, a
majority voting strategy. More complex errors are assumed to be exponentially suppressed, which
can be justified if qubits experience independent decoherence sources.
We question whether QEC can work to protect quantum computations that require many

quantum gate operations for the following reason. Themain source of errors then is not spontaneous
qubit decoherence but rather the finite fidelity of quantum gates. When quantum gates are applied
to strongly entangled states, such as (106), they lead to highly correlated dynamics of all entangled
qubits. We point out that errors introduced by such gates have essentially different nature from
random uncorrelated qubit flips. Hence, gate-induced errors may not be treatable by standard error
correction strategies when transitions are made between arbitrary unknown quantum state.
To explore this point, imagine that we apply a gate that rotates a qubit by an angle π/2. It

switches superposition states |ψ±⟩ = (|0⟩ ± |1⟩)/
√
2 into, respectively, |0⟩ or |1⟩ in the measurement

basis. Let the initial state be |ψ+⟩ but we do not know this before the final measurement. Initially,
we know only that initial state can be either |ψ+⟩ or |ψ−⟩. To find what it is, we rotate qubit to the
measurement basis. The gate is not perfect, so the final state after the gate application is

|u⟩ = cos(δϕ)|0⟩ + sin(δϕ)|1⟩, (107)
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Fig. 64. Quantum circuit that creates the state |+⟩ = (|0⟩+ |1⟩)/
√
2 then applies 16 T-gates that are equivalent

to the identity operation, and then applies the gate that transforms the entangled state into the trivial state
|0⟩.

with some error angle δϕ ≪ 1. Measurement of this state would produce the wrong answer 1 with
probability

P ≈ (δϕ)2. (108)

The value 1 − P is called the fidelity of the gate. In IBM chip it is declared to be 0.99 at the time
of writing, which is not much. It means that after about 30 gates we should loose control. Error
correction strategies can increase the number of allowed gates by an order of magnitude even at
such a fidelity if we encode one qubit in three.
In order to reduce this error, we can attempt to work with the 3-qubit version of the states in

Eq. (106). For example, let us consider the desired gate that transfers states

|±⟩ = (|000⟩ ± |111⟩)/
√
2, (109)

into states |000⟩ and |111⟩ in the measurement basis, respectively. This gate is protected in the
sense that a single unwanted random qubit flip leads to final states that are easily corrected by
majority voting.
However, this is not enough because now we have to apply the gate that makes a rotation by

π/2 in the basis (109). The error in this rotation angle leads to the final state

|u⟩ = cos(δϕ)|000⟩ + sin(δϕ)|111⟩, (110)

i.e., this particular error cannot be treated with majority voting using our scheme because it flips
all three qubits. On the other hand, this is precisely the type of errors that is most important when
we have to apply many quantum gates because basic gate errors are mismatches between desired
and received qubit rotation angles irrespectively of how the qubits are encoded. With nine qubits,
we could protect the sign in Eq. 110 but this was beyond our hardware capabilities.

Based on these thoughts, traditional QEC may not succeed in achieving exponential suppression
of errors related to non-perfect quantum gate fidelity. The latter is the main source of decoherence
in quantum computing that involves many quantum gates. As error correction is often called the
only and first application that matters before quantum computing becomes viable at large scale,
this problem must be studied seriously and expeditiously. In the following subsection we report on
our experimental studies of this problem with IBM’s 5-qubit chip.

21.2 Test 1: errors in single qubit control
First, let us perform trivial operation shown in Fig. 64: we create a superposition of two qubit states

|+⟩ = (|0⟩ + |1⟩)/
√
2, (111)
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Fig. 65. Quantum circuit that creates state |−⟩ = (|000⟩− |111⟩)/
√
2 then applies 16 T-gates that are equivalent

to the identity operation, and then applies the gate that transforms the entangled GHZ state back into the
trivial state |000⟩. Measurements that return 1 for only one of the three qubits are interpreted as the |000⟩
state at the end, while outcomes with two or three units are interpreted as the final state |111⟩.

then apply many gates that altogether do nothing, i.e., they just bring the qubit back to the
superposition state (111). We need those gates just to accumulate some error while the qubit’s state
is not trivial in the measurement basis. Finally, we apply the gate that transforms its state back to
|0⟩.
Repeated experiments with measurements then produced wrong answer 13 times from 1000

samples. Thus, we estimate the error of the whole protocol, which did not use QEC, as

P1 = 0.013,

or 1.6%. This is consistent and even better than declared 1% single gate fidelity because we applied
totally 18 gates.

21.3 Test 2: errors in entangled 3 qubits control
Next, we consider the circuit in Fig. 65 that initially creates the GHZ state |−⟩ = (|000⟩ − |111⟩)/

√
2,

then applies the same number, i.e. 16, of T -gates that lead to the same GHZ state. Then we apply
the sub-circuit that brings the whole state back to |000⟩.

Our goal is to quantify the precision of identifying the final result with the state |000⟩. If a single
error bit flip happens, we can interpret results |100⟩, |010⟩ and |001⟩ as |000⟩ using majority voting.
If needed, we can then apply a proper pulse to correct for this. So, in such cases we can consider the
error treatable. If the total sum of probabilities of the final state |000⟩ and final states with a single
bit flipped is larger than P1 from the previous single-qubit test, then we say that the quantum error
correction works, otherwise, it doesn’t. Our experiments showed that probabilities of events that
lead to wrong final interpretation are as follows:

P110 = 0.006, P101 = 0.02, P011 = 0.016, P111 = 0.005.

Thus, the probability to get the wrong interpretation of the result as the final state |111⟩ of the
encoded qubit is

P3 = P110 + P101 + P011 + P111 = 0.047,
while the probability to get any error 1 − P000 = 0.16.

21.4 Discussion
Comparing results of the tests without and with QEC, we find that the implementation of a simple
version of QEC does not improve the probability to interpret the final outcome correctly. The
error probability of calculations without QEC gives a smaller probability of wrong interpretation,
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P1 = 1.3%, while the circuit with QEC gives an error probability P3 = 4.7%, even though we used
majority voting that was supposed to suppress errors by about an order of magnitude.

More importantly, errors that lead to more than one qubit flip are not exponentially suppressed.
For example, the probability P101 = 0.02 is close to the probability of a single bit flip event
P010 = 0.029. We interpret this to mean that errors are not the results of purely random bit flip
decoherence effects but rather follow from correlated errors induced by the finite precision of
quantum gates. The higher error rate in 3-qubit case could be attributed to the much worse fidelity
of the controlled-NOT gate. The circuit itself produces the absolutely correct result |000⟩ in 84% of
simulations. If the remaining errors were produced by uncorrelated bit flips, we would see outcomes
with more than one wrong bit flip with total probability less than 1% but we found that such events
have a much larger total probability P3 = 4.7%.
In defense of QEC, we note that probabilities of single bit flip errors were still several times

larger than probabilities of multiple (two or three) wrong qubit flip errors. This means that at least
partly QEC works, i.e., it corrects the state to |000⟩ with 4.7% precision, versus the initially 16%
in the wrong state. So, at least some part of the errors can be treated. However, an efficient error
correction must show exponential suppression of errors, which was not observed in this test.

Summarizing, this brief test shows no improvements that would be required for efficient quantum
error correction. The need to use more quantum gates and qubits to correct errors only leads to
a larger probability of wrong interpretation of the final state. This problem will likely become
increasingly much more important because without quantum error correction the whole idea
of conventional quantum computing is not practically useful. Fortunately, IBM’s quantum chips
can be used for experimental studies of this problem. We also would like to note that quantum
computers can provide computational advantages beyond standard quantum algorithms and using
only classical error correction [95]. So, they must be developed even if problems with quantum
error correction prove detrimental for conventional quantum computing schemes at achievable
hardware quality.
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