Geometria Analítica

Prof. Dr. Lucas Barboza Sarno da Silva

LISTA DE EXERCÍCIOS

- 1. Identificar as quádricas representadas pelas equações:
 - a) $x^2 + y^2 + z^2 = 25$
 - b) $2x^2 + 4y^2 + z^2 = 16$
 - c) $z^2 4x^2 4z^2 = 4$ d) $x^2 + y^2 4y^2 = 0$

 - e) $x^2 + y^2 + 4z = 0$
 - f) $4x^2 y^2 = z$
 - g) $z^2 = x^2 + y^2$
 - h) $z = x^2 + y^2$
 - i) $x^2 + y^2 = 9$
 - i) $y^2 = 4z$
 - $k) -x^2 + 4y^2 + z^2 = 0$
 - 1) $16x^2 9y^2 z^2 = 144$
 - m) $4x^2 + 9y^2 = 36z$
- 2. Determinar a equação de cada uma das superfícies esféricas definidas pelas seguintes condições:
 - a) Centro C(2, -3, 1) e raio 4.
 - b) O segmento de extremos A(-1,3,-5) e B(5,-1,-3) é um de seus diâmetros.
 - c) Centro C(4, -1, -2) e tangente ao plano xOy.
 - d) Centro C(0, -4,3) e tangente ao plano de equação: x + 2y 2z 2 = 0.
- 3. Obtenha uma equação livre de parâmetros para as superfícies cilíndrica cuja diretriz é a interseção das superfícies Ω_1 e Ω_2 e cujas geratrizes são paralelas a r.
 - a) Ω_1 : $x^2 + y^2 = z$; Ω_2 : x y + z = 0; r: $X = (1,2,3) + \lambda(1,1,1)$
 - b) Ω_1 : $x^2 xy + 1 = 0$; Ω_2 : z = 0; r: x 2z + 3 = y z = 3
 - c) Ω_1 : xy = z; Ω_2 : x + y z = 0; r: x = y = z