

CÁLCULO I – APLICAÇÕES DAS DERIVADAS

VALORES MÁXIMO E MÍNIMO

VALORES MÁXIMO E MÍNIMO

Def.: Se o gráfico de f estiver acima de todas as suas tangentes no intervalo I, então f é côncava para cima em I. Se o gráfico de f abaixo de todas as suas tangentes em I, então f é denominada de côncava para baixo em I, conforme Figura 1.

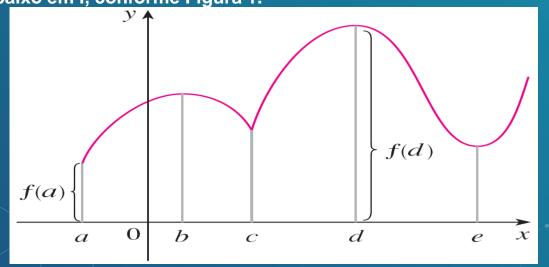


Figura 1- Mínimos absolutos f(a), máximos absolutos f(d), mínimos locais f(c), f(e), máximos locais f(b), f(d)

TESTE DA CONCAVIDADE

- 1- Se f" (x) > 0 para todo x em I, então o gráfico de f é côncavo para cima em I.
- 2- Se f" (x) < 0 para todo x em I, então o gráfico de f é côncavo para baixo em I.

Um ponto P na curva y = f(x) é denominado de ponto de inflexão se f é contínua no ponto e a curva mudar de côncava para cima para côncava para baixo ou vice-versa, conforme Figura 2:

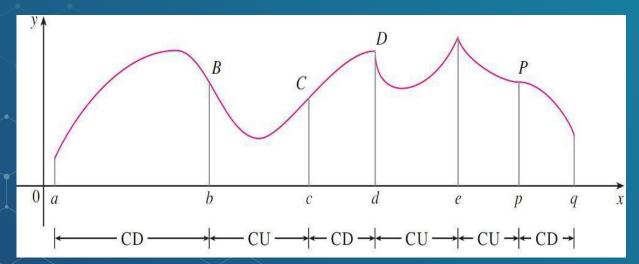


Figura 2- Gráfico com pontos de inflexão

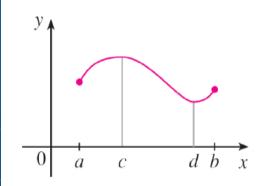
VALORES MÁXIMO E MÍNIMO

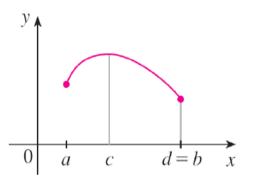
Seja C um número no domínio D de uma função f. Então f(c) é o valor máximo absoluto de f em D se f(c) \geq f(x) para todo x em D. O valor mínimo absoluto de f em D se f(c) \leq f(x) para todo x em D.

- 1 Definição Seja c um número no domínio D de uma função f. Então f(c) é o
- valor máximo absoluto de f em D se $f(c) \ge f(x)$ para todo x em D.
- valor mínimo absoluto de f em D se $f(c) \le f(x)$ para todo x em D.

3 O Teorema do Valor Extremo Se f for contínua em um intervalo fechado [a, b], então f assume um valor máximo absoluto f(c) e um valor mínimo absoluto f(d) em certos números c e d em [a, b].

O TEOREMA DO VALOR EXTREMO ESTÁ ILUSTRADO NAS SEGUINTES FIGURAS:





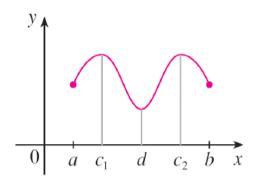


Figura 3- Gráficos referentes ao TVE

As Figuras 4 e 5, mostram que uma função pode não possuir valores extremos, sendo omitida uma das duas hipóteses (continuidade ou intervalo fechado) do Teorema do Valor Extremo.

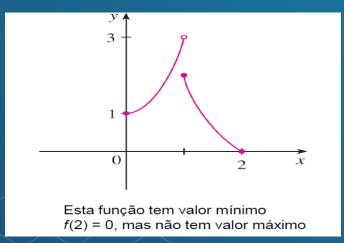


Figura 4 – Condição de existência do TVE

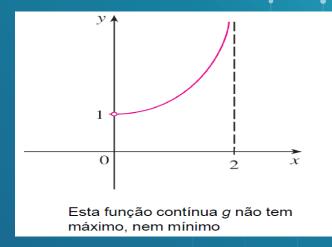
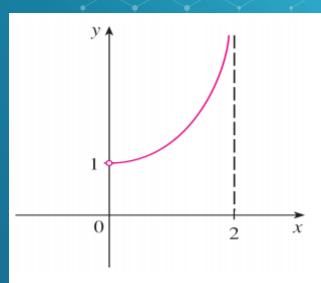


Figura 5 – Condição de existência do TVE

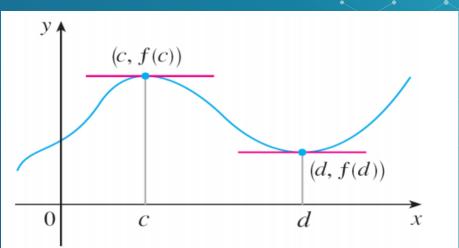
A função g da Figura 6 é contínua no intervalo aberto (0, 2), mas não tem valor máximo e nem mínimo. A imagem é (1, ∞). Essa função assume valores arbitrariamente grandes. Isso não contradiz o TVE, pois o intervalo (0, 2) não é fechado.



Esta função contínua *g* não tem mínimo, nem máximo

O Teorema do Valor Extremo afirma que uma função contínua em um intervalo fechado tem um valor máximo e um mínimo; contudo, não diz como encontrar esses valores extremos. Vamos começar procurando os valores extremos locais.

A Figura 7 mostra o gráfico de uma função f com máximo local em c e mínimo local em d.



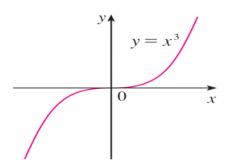
TEOREMA DE FERMAT

Parece que nos pontos de máximo e de mínimo as retas tangentes são horizontais e, portanto, cada uma tem inclinação 0. Sabemos que a derivada é a inclinação da reta tangente; assim, parece que f'(c) = 0 e f'(d) = 0. O teorema a seguir afirma que isso é sempre verdadeiro para as funções diferenciáveis.

Teorema de Fermat Se f tiver um máximo ou mínimo local em c e se f'(c) existir, então f'(c) = 0.

EXEMPLOS SOBRE O TEOREMA DE FERMAJ

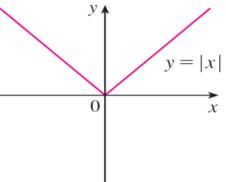
Se $f(x) = x^3$, então $f'(x) = 3x^2$, logo f'(0) = 0. Porém f não tem máximo nem mínimo em 0, como podemos ver em seu gráfico na Figura 11.



Se $f(x) = x^3$, então f'(0) = 0 mas f não tem mínimo ou máximo

EXEMPLOS SOBRE O TEOREMA DE FERMAJ

A função f(x) = |x| em seu valor mínimo (local e absoluto) em 0; contudo, mas o valor não pode ser encontrado por considerar f'(x) = 0, porque f'(0) não existe. (Veja a Figura 10).



Se f(x) = |x|, então f(0) = 0 é um valor mínimo, mas f'(0) não existe

VALORES MÁXIMO E MÍNIMO

O Teorema de Fermat sugere que devemos pelo menos começar procurando por valores extremos de f nos números c onde f'(c) = 0 ou onde f'(c) não existe. Esses números têm um nome especial.

Definição Um **número** crítico de uma função f é um número c no domínio de f tal que a f'(c) = 0 ou f'(c) não existem.

Em termos de números críticos, o Teorema de Fermat pode ser reescrito como a seguir.

Se f tiver um máximo ou mínimo local em c, então c é um número crítico de f.

VALORES MÁXIMO E MÍNIMO

Para encontrarmos um máximo ou um mínimo absoluto de uma função contínua em um intervalo fechado, observamos que ele é local ou acontece em uma extremidade do intervalo. Assim, o seguinte procedimento de três etapas poderá ser seguido.

O Método do Intervalo Fechado Para encontrar os valores máximo e mínimo absolutos de uma função contínua f em um intervalo fechado [a, b]:

- 1. Encontre os valores de f nos números críticos de f em (a, b).
- Encontre os valores de f nas extremidades do intervalo.
- O maior valor entre as etapas 1 e 2 é o valor máximo absoluto, ao passo que o menor desses valores é o valor mínimo absoluto.

TEOREMA DO VALOR MÉDIO

Muitos resultados deste capítulo dependem de um fato central, denominado. Teorema do Valor Médio. Porém, para chegar ao Teorema do Valor Médio precisa primeiro abordar o Teorema de Rolle.

Teorema de Rolle Seja f uma função que satisfaça as seguintes hipóteses:

- 1. f é contínua no intervalo fechado [a, b].
- 2. $f \in derivável no intervalo aberto (a, b)$.
- **3.** f(a) = f(b)

Então, existe um número c em (a, b) tal que f'(c) = 0.

TEOREMA DE ROLLE

Exemplos de funções que satisfazem o Teorema de Rolle. Em cada caso , parece que há pelo menos um ponto (c, f(c)) onde a tangente é horizontal, e, portanto, f'(c) = 0. Neste caso o Teorema de Rolle é válido.

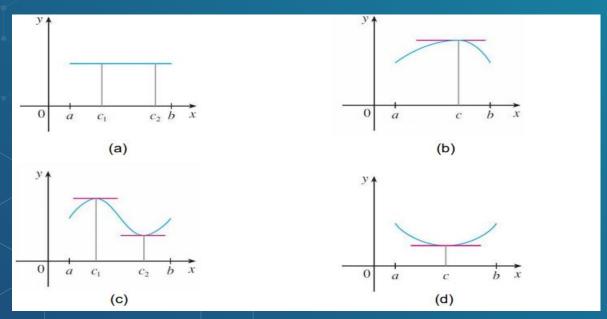


Figura 10 - Gráfico de quatros destas funções

TEOREMA DO VALOR MÉDIO

Muitos dos resultados deste capítulo dependem de um fato central, denominado Teorema do Valor Médio. Porém, para chegar ao Teorema do Valor Médio, primeiro será considerado o Teorema de Rolle.

O Teorema do Valor Médio Seja f uma função que satisfaça as seguintes hipóteses:

- 1. f é contínua no intervalo fechado [a, b].
- **2.** $f \in \text{deriv}$ ável no intervalo aberto (a, b). Então, existe um número $c \in (a, b)$ tal que

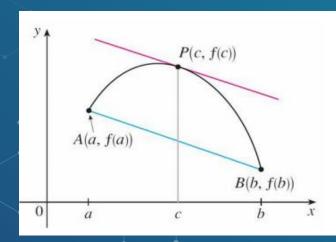
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

ou, de maneira equivalente,

$$f(b) - f(a) = f'(c)(b - a)$$

TEOREMA DO VALOR MÉDIO

O teorema de valor médio pode ser interpretado geometricamente. As Figuras 11 e 12 mostram os pontos A(a, f(a)) e B(b, f(b)) sobre os gráficos de duas funções diferenciáveis.



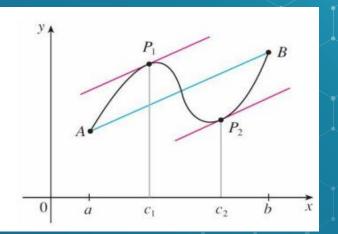


Figura 12

O que a primeira derivada (f') nos traz de informação sobre a função f?

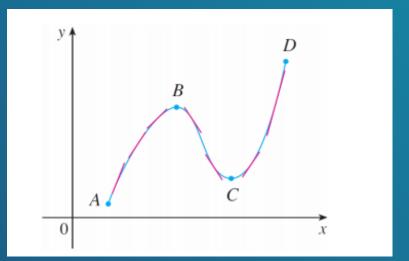


Figura 13 – Gráfico de uma respectiva função

Entre A e B e entre C e D, as retas tangentes têm inclinação positiva e, portanto, f'(x) > 0.

Entre B e C, as retas tangentes têm inclinação negativa e, portanto, f'(x) < 0. De acordo com o gráfico f cresce quando f'(x) é positiva e decresce quando f'(x) é negativa. Para demonstrar que isso é válido, será considerado o Teorema do Valor Médio.

Teste Crescente/Decrescente

- (a) Se f'(x) > 0 em um intervalo, então f é crescente nele.
- (b) Se f'(x) < 0 em um intervalo, então f é decrescente nele.

Teste da Primeira Derivada Suponha que c seja um número crítico de uma função contínua f.

- (a) Se o sinal de f' mudar de positivo para negativo em c, então f tem um máximo local em c.
- (b) Se o sinal de f' mudar de negativo para positivo em c, então f tem um mínimo local em c.
- (c) Se f' não mudar de sinal em c (isto é, se em ambos os lados de c f' for positivo ou negativo), então f não tem máximo ou mínimo locais em c.

O teste da primeira derivada, na parte a, por exemplo, uma vez que o sinal de f'(x) muda de positivo para negativo em c, f é crescente à esquerda de c decrescente à direita de c. A consequência é que f tem um máximo local em c.

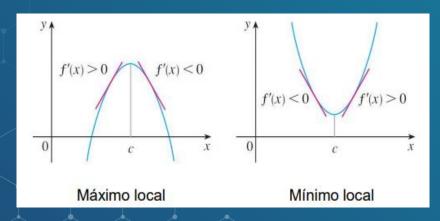


Figura 14 – Gráfico de uma respectiva função

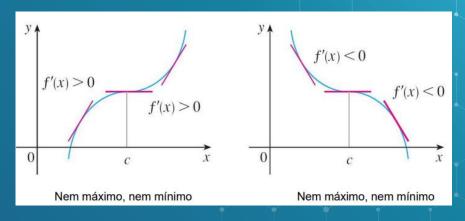


Figura 15 – Gráfico de uma respectiva função

O que a segunda derivada (f") nos traz de informação sobre a função f?

Na Figura, as retas tangentes a essas curvas foram traçadas em vários pontos. Na parte (a), a curva está acima das retas tangentes e f é denominada de côncava para cima em (a, b). Em (b), a curva está abaixo das retas tangentes g sendo denominada de côncava para baixo em (a, b).

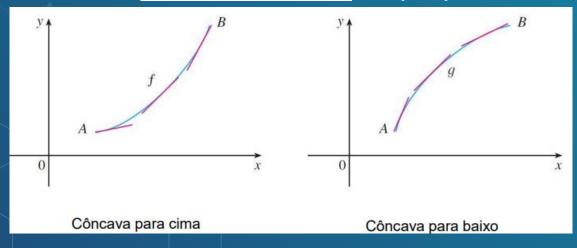
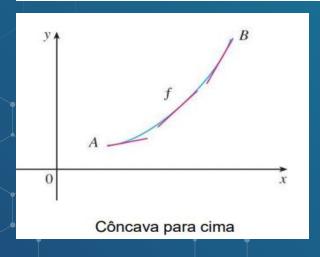


Figura 16 – Gráfico de uma respectiva função

Definição Se o gráfico de f estiver acima de todas as suas tangentes no intervalo I, então f é chamada **côncava para cima** em I. Se o gráfico de f estiver abaixo de todas as suas tangentes em I, então f é chamada **côncava para baixo** em I.



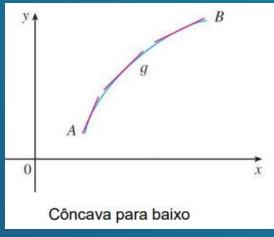


Figura 17 – Gráfico de uma respectiva função

Teste da Concavidade

- (a) Se f''(x) > 0 para todo x em I, então o gráfico de f é côncavo para cima em I.
- (b) Se f''(x) < 0 para todo x em I, então o gráfico de f é côncavo para baixo em I.

Obs.: Este teste já foi abordado no slide 2, está sendo apresentado como parte complementar ao tópico.

PARTE COMPLEMENTAR DA MATÉRIA

VALORES MÁXIMO E MÍNIMO

TEOREMA DE WEIERSTRASS

Se $f:[a,b]\to\mathbb{R}$ é uma função contínua em [a,b], existem $x_1,x_2\in[a,b]$ tais que

$$f(x_1) \le f(x) \le f(x_2)$$

para todo $x \in [a, b]$.

Este teorema nos diz que toda função contínua f, definida em um intervalo fechado e limitado [a,b], assume pelo menos um valor mínimo $(f(x_1))$ e pelo menos um valor máximo $(f(x_2))$, como ilustramos na Figura 18...

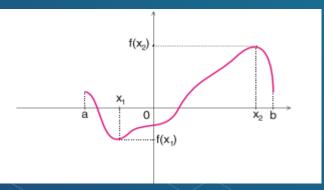


Figura 18– Gráfico de uma respectiva função

Assim, o conjunto $f([a,b]) = \{f(x); x \in [a,b]\}$, imagem de [a,b] por f, está contido no intervalo [m,M], onde $m = f(x_1)$ e $M = f(x_2)$ pertencem a f([a,b]).

TEOREMA DE WEIERSTRASS

Exemplo em que o Teorema Weierstrass não é aplicado.

Consideremos a função contínua $f:(0,1]\to\mathbb{R}$, definida por $f(x)=\frac{1}{x}$ para todo $x\in(0,1]$, cujo gráfico esboçamos na Figura 19.

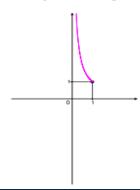


Figura 19- Gráfico de uma respectiva função

Como $f((0,1])=[1,+\infty)$, não existe $x_2\in(0,1]$ tal que $f(x)\leq f(x_2)$ para todo $x\in(0,1]$. Notemos que, apesar de (0,1] ser limitado, ele não é fechado.