Geometria Analítica

Prof. Dr. Lucas Barboza Sarno da Silva

LISTA DE EXERCÍCIOS

- 1. Prove que $|(\vec{u}, \vec{v}, \vec{w})| \le ||\vec{u}|| ||\vec{v}|| ||\vec{w}||$, quaisquer que sejam os vetores \vec{u}, \vec{v} e \vec{w} . Dê a interpretação geométrica.
- 2. Prove que $(\vec{u} + \vec{v}, \vec{v} + \vec{w}, \vec{w} + \vec{u}) = 2(\vec{u}, \vec{v}, \vec{w})$.
- 3. Verificar se são coplanares:
 - a) $\vec{u} = (3, -1, 2), \vec{v} = (1, 2, 1) \text{ e } \vec{w} = (-2, 3, 4)$
 - b) $\vec{u} = (2, -1, 0), \vec{v} = (3, 1, 2) \text{ e } \vec{w} = (7, -1, 2)$
 - c) A(1,1,1), B(-2,-1,-3), C(0,2,-2) e D(-1,0,-2)
 - d) A(2,1,3), B(3,2,4), C(-1,-1,-1) e D(0,1,1)
- 4. Sejam os vetores $\vec{u} = (1,1,0), \vec{v} = (2,0,1), \vec{w_1} = 3\vec{u} 2\vec{v}, \vec{w_2} = \vec{u} + 3\vec{v}$ e $\vec{w_3} = \vec{i} + \vec{j} 2\vec{k}$. Determinar o volume do paralelepípedo definido por $\vec{w_1}, \vec{w_2}$ e $\vec{w_3}$.
- 5. Calcular o volume do tetraedro ABCD, sendo dados:
 - a) A(1,0,0), B(0,1,0), C(0,0,1) e D(4,2,7)
 - b) A(-1,3,2), B(0,1,-1), C(-2,0,1) e D(1,-2,0). Calcular também a medida da altura traçada do vértice A.
- 6. Determinar os pontos da reta r: $\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z}{-2}$ que têm: a) abscissa 5, b) ordenada 4, c) cota 1.
- 7. O ponto P(2, y, z) pertence à reta determinada por A(3, -1, 4) e B(4, -3, -1). Calcular P.
- 8. Determinar as equações reduzidas da reta, com variável independente x, que passa pelo ponto A(4,0,-3) e tem a direção do vetor $\vec{v} = (2,4,5)$.
- 9. Determinar as equações reduzidas da reta, tendo z como variável independente, que passa pelos pontos $P_1(-1,0,3)$ e $P_2(1,2,7)$.
- 10. Qual deve ser o valor de m para que os pontos A(3, m, 1), B(1,1,-1) e C(-2,10,-4) pertençam à mesma reta?
- 11. Determinar as equações das seguintes retas:
 - a) Reta que passa por A(1, -2, 4) e é paralela ao eixo x.
 - b) Reta que passa por B(3,2,1) e é perpendicular ao plano xOz.
 - c) Reta que passa por A(2,3,4) e é ortogonal ao mesmo tempo aos eixos dos x e dos y.

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena — EEL

12. Determinar o ângulo entre as seguintes retas:

r:
$$\begin{cases} x = -2 - 2t \\ y = 2t \\ z = 3 - 4t \end{cases}$$
 e s: $\frac{x}{4} = \frac{y + 6}{2} = \frac{z - 1}{2}$

13. Quais as equações reduzidas da reta que passa pelo ponto A(-2,1,0) e é paralela à reta $r: \frac{x+1}{1} = \frac{y}{4} = \frac{z}{-1}$?

14. A reta

r:
$$\begin{cases} y = mx + 3 \\ z = x - 1 \end{cases}$$

é ortogonal à reta determinada pelos pontos A(1,0,m) e B(-2,2m,2m). Calcular o valor de m.

15. Calcular o ponto de interseção das retas:

a) r:
$$\begin{cases} y = 3x - 1 \\ z = 2x + 1 \end{cases}$$
 e s:
$$\begin{cases} y = 4x - 2 \\ z = 3x \end{cases}$$

b) r:
$$\begin{cases} y = -5 \\ z = 4x + 1 \end{cases}$$
 e s: $\begin{cases} \frac{x-1}{2} = \frac{z-5}{-3}; y = -5 \end{cases}$

16. O ponto P(9,14,7) divide o segmento P_1P_2 na razão $\frac{2}{3}$. Determine P_2 , sabendo que $P_1(1,4,3)$.