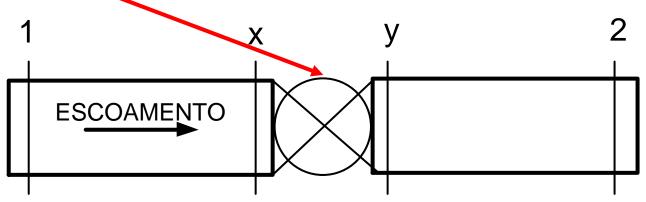

ESCOAMENTO INTERNO - AULA 06

Cálculo da perda de carga singular (perda de energia localizada)


ESCOAMENTO INTERNO - AULA 06

Perdas de carga singulares ou localizadas (secundárias):

- Entradas ou saídas de dutos;
- Expansões e contrações bruscas ou suaves;
- Curvas e cotovelos;
- Tês e outras conexões;
- Válvulas totalmente ou parcialmente abertas;
- Filtros;
- Medidores de vazão e/ou sondas de instrumentação, etc.

Singularidade

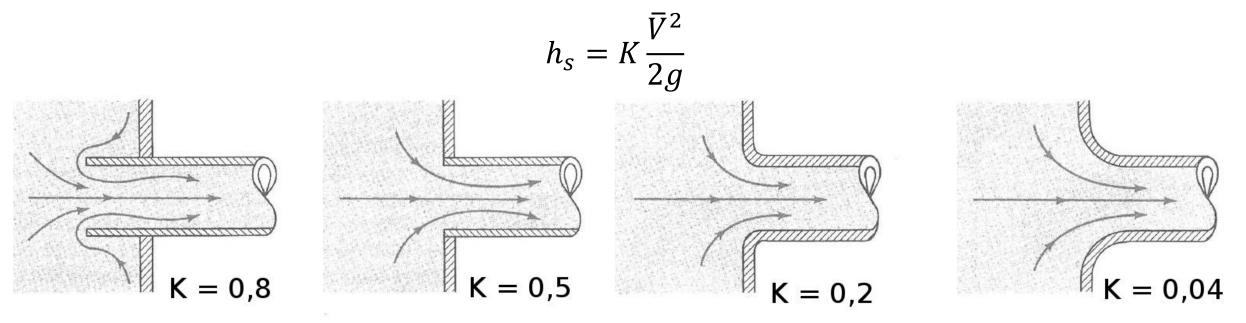
$$h_{S} = H_{\chi} - H_{y}$$

Dificuldade de medir Hx e Hy (grande perturbação do escoamento)

$$h_s = (H_1 - H_2) - h_{d,1-2}$$

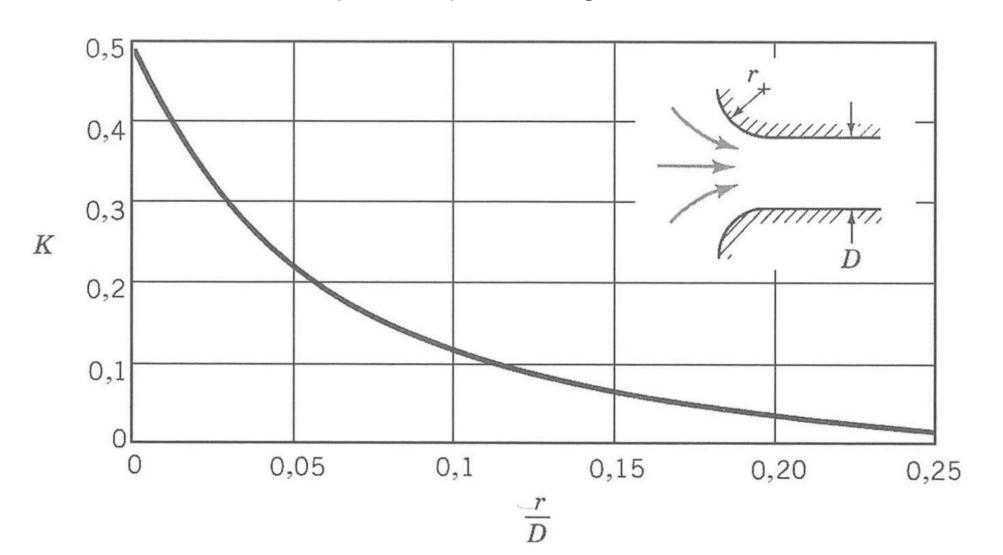
$$h_{s} = K \frac{\overline{V}^{2}}{2g}$$

K= coeficiente de perda de carga singular



$$h_S = K \frac{\overline{V}^2}{2g} \qquad \longrightarrow \qquad h_S = f \frac{L_{eq}}{D} \frac{\overline{V}^2}{2g} \qquad \longrightarrow \qquad K = f \frac{L_{eq}}{D}$$

Sistema de tubulações com muitas singularidades e trechos retos com tubos com diâmetro constante


$$h_L = f \cdot \frac{l}{D} \cdot \frac{\bar{V}^2}{2g} = \sum_{i=0}^{N} h_{d,i} + \sum_{j=0}^{M} h_{s,j} = \frac{f}{D} \left(\sum_{i=0}^{N} L_j + \sum_{i=0}^{N} L_{eq,i} \right) \frac{\bar{V}^2}{2g}$$

Exemplos de perda singular: saída de reservatórios

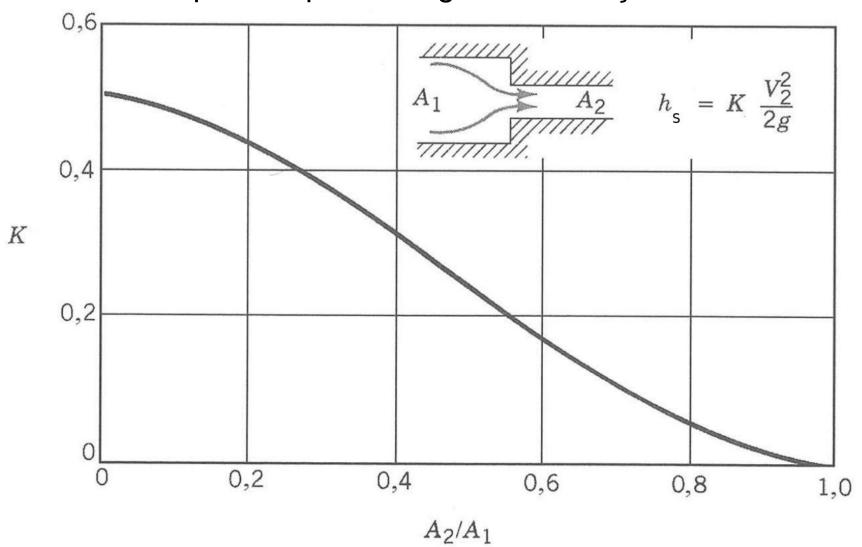
Transição mais suave: redução da perda singular

Exemplos de perda singular: saída de reservatórios

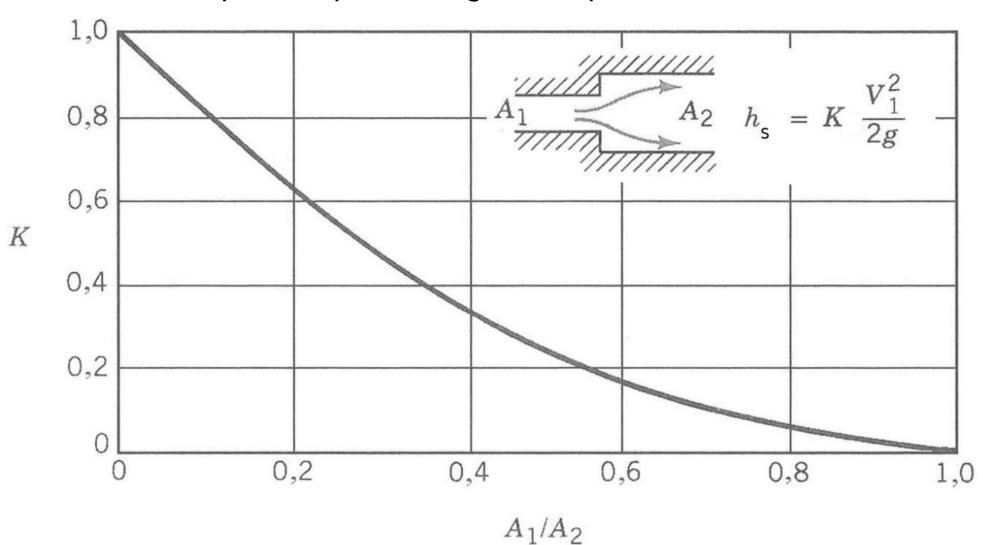
$$h_s = K \frac{\bar{V}^2}{2g}$$

Exemplos de perda singular: saída de reservatórios

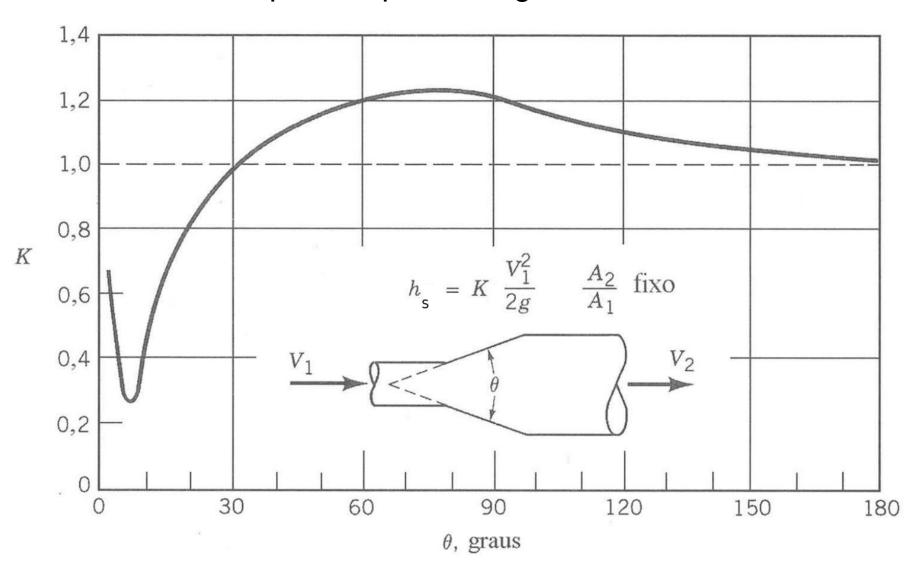
$$h_S = K \frac{\overline{V}^2}{2g}$$

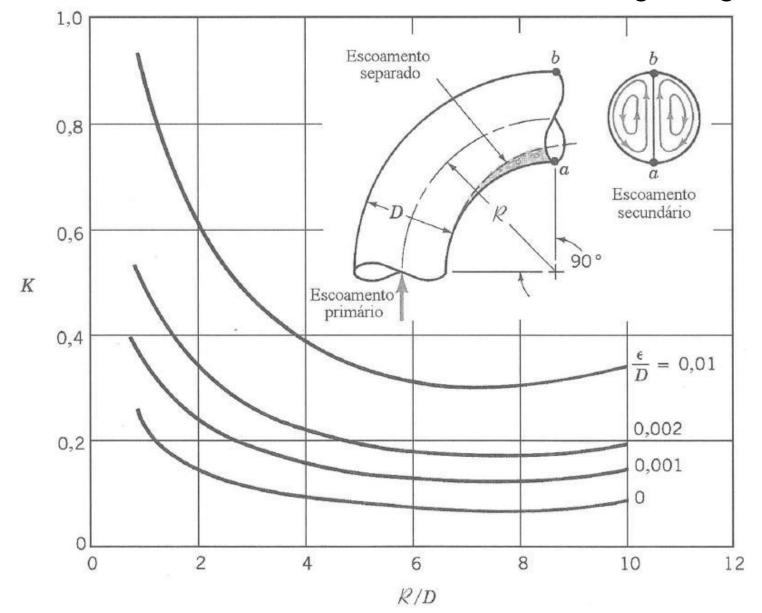

$$K = 1,0$$

$$K = 1,0$$


$$K = 1,0$$

Mudança de transição: não afeta a perda de carga


Exemplos de perda singular: contração brusca



Exemplos de perda singular: expansão brusca

Perda de carga singular Exemplos de perda singular: difusor

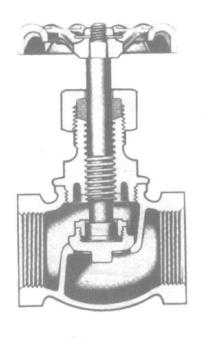
Exemplos de perda singular: curva de 90°

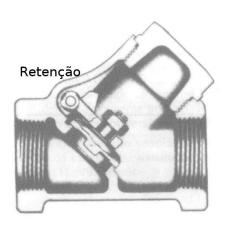

ë

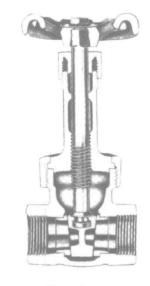
Exemplos de conexões

$$h_s = K \frac{\bar{V}^2}{2g}$$

Exemplos de conexões

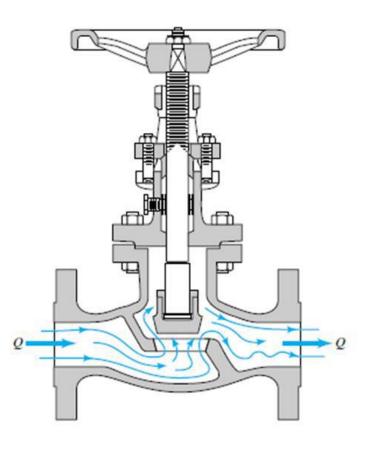

Componente	K	ì
d. União rosqueada	0,08	$V \longrightarrow \longrightarrow$
e. Válvulas*		
Globo, totalmente aberta	10	
Gaveta, totalmente aberta	0,15	
Gaveta, 1/4 fechada	0,26	
Gaveta, 1/2 fechada	2,1	
Gaveta, 3/4 fechada	17	$ar{V}^2$
Retenção, escoamento a favor	2	$h_s = K \frac{\bar{V}^2}{2g}$
Retenção, escoamento contrário	00	2g
Esfera, totalmente aberta	0,05	
Esfera, 1/3 fechada	5,5	
Esfera, 2/3 fechada	210	


Exemplos de conexões

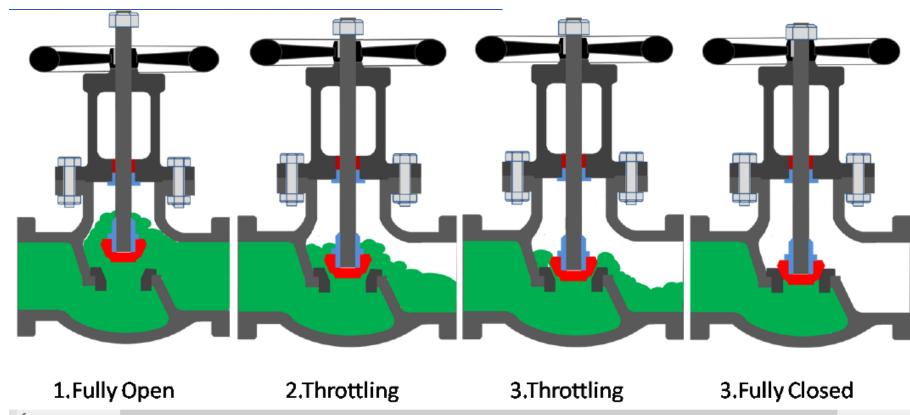

$$h_s = f \frac{L_{eq}}{D} \frac{\overline{V}^2}{2g}$$

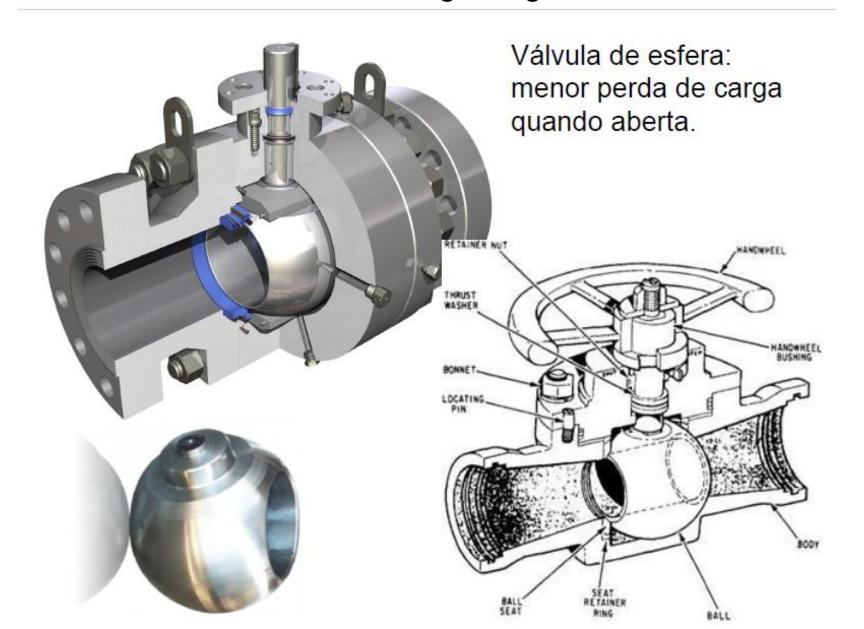
		COTOVELO 90" RAIO LONGO	COTOVELO 90" RAIO MÉDIO	COTOVELO 90° RAIO CURTO	COTOVELO 45°	CURVA 90° 8/D:14	CURVA 90° R/D·1	CURVA 45"	ENTRADA	ENTRADA DE BORDA	REGISTRO DE GAVETA ABERTO	REGISTRO DE GLOBO ABERTO	REGISTRO DE ÁNGULO ABERTO	TÉ PASSAGEM DIRETA	TÉ SAÍDA DE LADO	TE SAÍDA BILATERAL	VÁLVULA DE PÉ E CRIVO	SAÍDA DA CANALIZ	VÁLVULA DE RETENÇÃO TIPO LEVE	VÁLVULA DE RETENÇÃO TIPO PENADO
	METRO D pol	B	B			0	0	0	1	=	Ā				匉	\$	8		(E)	B
13	1/2	0,3	0.4	0,5	0,2	0.2	0,3	0,2	0,2	0,4	1,0	4,9	2,6	0,3	1,0	1,0	3,6	0,4	1,1	1,6
19	3/4	0,4	0,6	0,7	0,3	0,3	0,4	0,2	0,2	0,5	0,1	6,7	3,6	0,4	1.4	1.4	5,6	0,5	1,6	2,4
25	1	0,5	0.7	0,8	0,4	0,3	0,5	0,2	0,3	0.7	0,2	8,2	4,6	0,5	1.7	1,7	7,3	0,7	2,1	3,2
32	1 1/4	0,7	0,9	1,1	0,5	0,4	0,6	0,3	0,4	0,9	0,2	11,3	5,6	0,7	2,3	2,3	10,0	0,9	2,7	4,0
38	1 1/2	0,9	1,1	1,3	0,6	0,5	0,7	0,3	0,5	1,0	0,3	13,4	6,7	0,9	2,8	2,8	11,6	1,0	3,2	4,8
50	2	1,1	1,4	1.7	0,8	0,6	0,9	0,4	0,7	1,5	0,4	17,4	8,5	1,1	3,5	3,5	14,0	1,5	4,2	6.4
63	2 1/2	1,3	1,7	2,0	0,9	0,8	1,0	0,5	0,9	1.9	. 0.4	21,0	10,0	1,3	4,3	4,3	17,0	1,9	5.2	8.1
75	3	1.6	2,1	2,5	1,2	1,0	1,3	0,6	1,1	2,2	0,5	26,0	13,0	1,6	5,2	5,2	20,0	2,2	6,3	9,7
100	4	2,1	2,8	3,4	1,5	1,3	1,6	0,7	1,6	3,2	0,7	34,0	17,0	2,1	6,7	6,7	23,0	3,2	6,4	12,9
125	5	2,7	3,7	4,2	1,9	1,6	2,1	0,9	2,0	4,0	0,9	43,0	21,0	2,7	8,4	8,4	30,0	4,0	10,4	16,1
150	6	3,4	4,3	4,9	2,3	1.9	2,5	1,1	2.5	5,0	1,1	51,0	26,0	3,4	10,0	10,0	39,0	5,0	12,5	19,3
200	8	4,3	5,5	6,4	3,0	2,4	3,3	1,5	3,5	6,0	1,4	67,0	34,0	4,3	13,0	13,0	52,0	6,0	16,0	25,0
250	10	5,5	6,7	7,9	3,8	3,0	4,1	1,8	4,5	7,5	1,7	85,0	43,0	5,5	16,0	16,0	65,0	7,5	20,0	32.0
300	12	6,1	7,9	9,5	4,6	3,6	4,8	2.2	5,5	9,0	2,1	102,0	51,0	6,1	19,0	19,0	78,0	9,0	24,0	38.0
350	14	7,3	9,5	10,5	5,3	4,4	5,4	2,5	6.2	11,0	2,4	120,0	60,0	7,3	22,0	22.0	90,0	11,0	28,0	45,0

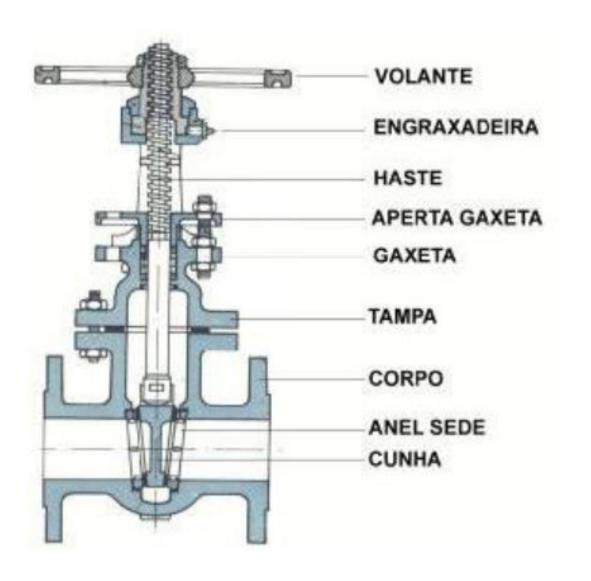
Globo

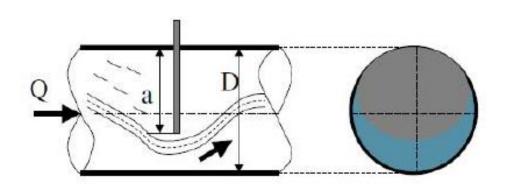


Gaveta

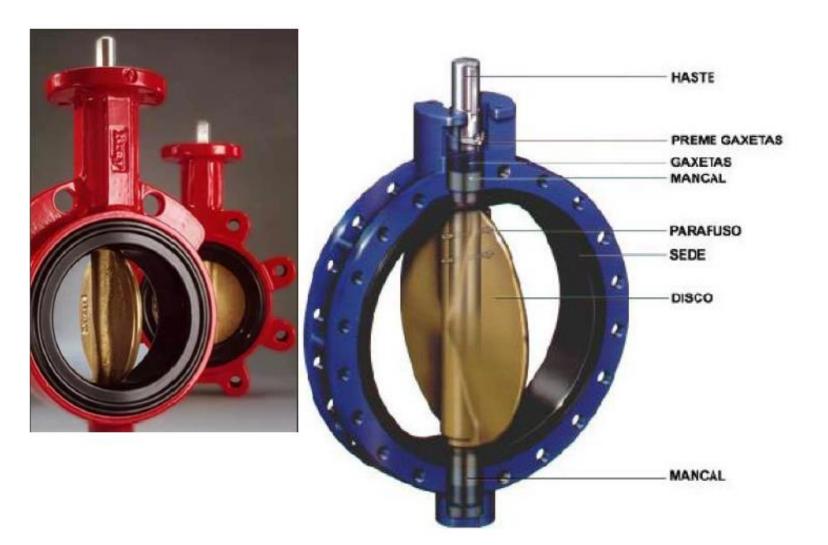


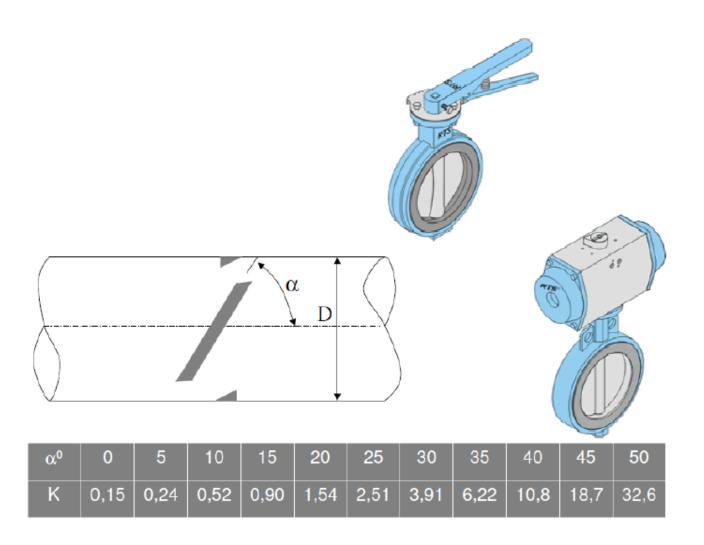

Exemplos de válvulas




Válvula globo: grande perda de carga

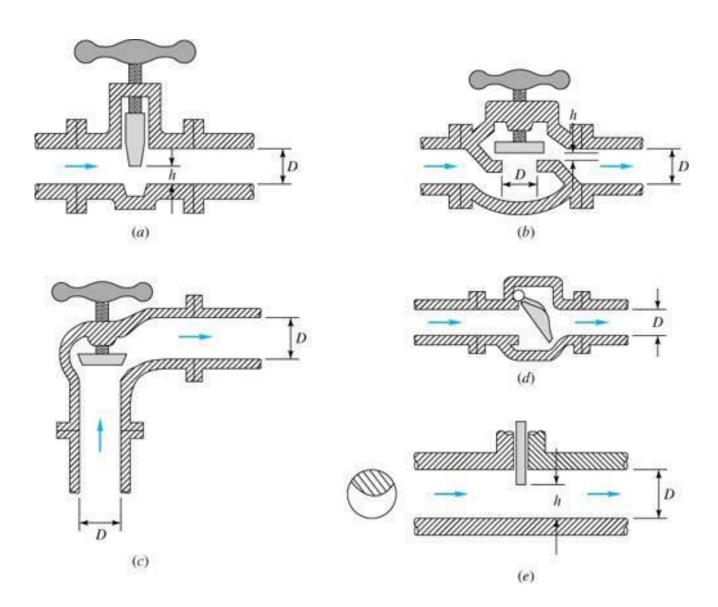
Válvula de gaveta


a/D	0	1/4	3/8	1/2	5/8	3/4	7/8
K	0,15	0,26	0,81	2,06	5,52	17,0	97,8



Válvula de gaveta

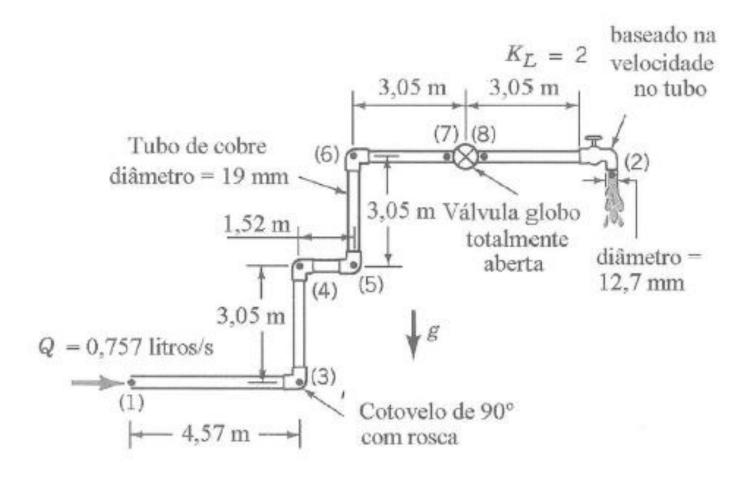
$$h_s = K \frac{\bar{V}^2}{2g}$$



Válvula de gaveta

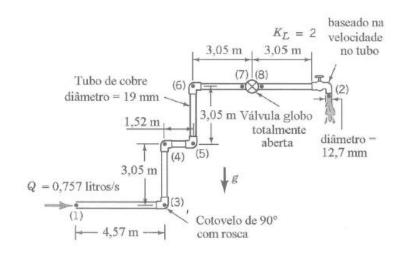
Válvula borboleta

$$h_{s} = K \frac{\overline{V}^{2}}{2g}$$


Outros tipos de válvulas

	Diâmetro nominal, pol (mm)										
		Parat	'usada		Flangeada						
	½ (13)	1 (25)	2 (50)	4 (100)	1 (25)	2 (50)	4 (100)	8 (200)	20 (500)		
Válvulas (totalmente aberta	s):										
Globo	14	8,2	6,9	5.7	13	8,5	6.0	5.8	5,5		
Gaveta	0,3	0,24	0.16	0.11	0.80	0,35	0.16	0.07	0,03		
Retenção basculante	5.1	2,9	2,1	2,0	2.0	2,0	2,0	2.0	2,0		
Em ângulo	9,0	4,7	2,0	1,0	4,5	2,4	2,0	2,0	2,0		
Cotovelos:											
45° normal	0,39	0,32	0,30	0.29							
45° raio longo					0.21	0.20	0.19	0.16	0.14		
90° normal	2,0	1.5	0.95	0,64	0.50	0,39	0.30	0,26	0.21		
90° raio longo	1,0	0,72	0.41	0,23	0.40	0.30	0.19	0,15	0.10		
180° normal	2,0	1,5	0.95	0,64	0.41	0,35	0,30	0,25	0,20		
180° raio longo					0,40	0,30	0,21	0,15	0,10		
Tës:											
Escoamento direto	0.90	0,90	0.90	0,90	0,24	0.19	0.14	0,10	0.07		
Escoamento no ramal	2,4	1,8	1,4	1,1	1,0	0,80	0,64	0,58	0,41		

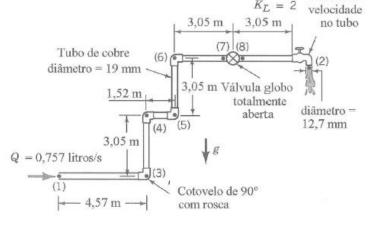
$$h_{s} = K \frac{\overline{V}^{2}}{2g}$$


Agua, a 20°C, escoa do térreo para o segundo andar de um edifício por meio de um tubo estirado de cobre que apresenta diâmetro igual a 19 mm. A vazão da torneira, cujo diâmetro de saída é de 12, 7 mm é de 0,757 L/s. Determine a pressão no ponto (1) considerando todas as perdas (distribuídas e singulares)

Exercício 01

Aplicando a equação da energia entre as seções (1) e (2):

$$\frac{p_1}{\gamma_1} + \alpha_1 \frac{\overline{V_1}^2}{2g} + z_1 + h_{bomba} = \frac{p_2}{\gamma_2} + \alpha_2 \frac{\overline{V_2}^2}{2g} + z_2 + h_{turbina} + h_L$$


Hipóteses:

- Não há bombas e nem turbinas
- Sem variação de propriedades ao longo da tubulação
- Regime permanente
- Sem mudança de regime de escoamento

$$\frac{p_1}{\gamma} = \frac{p_2}{\gamma} + \alpha \left(\frac{\bar{V}_2^2 - \bar{V}_1^2}{2g} \right) + (z_2 - z_1) + h_L$$

Aplicando a conservação de massa entre as seções (1) e (2):

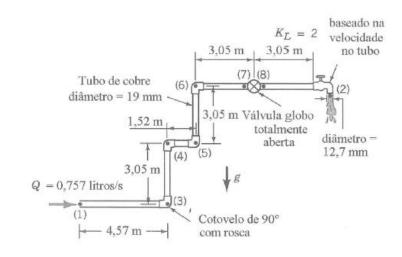
$$\dot{m}_1 = \dot{m}_2 \quad \Longrightarrow \quad \rho_1 \bar{V}_1 A_1 = \rho_2 \bar{V}_2 A_2 \quad \Longrightarrow \quad \bar{V}_1 A_1 = \bar{V}_2 A_2$$

$$\bar{V}_1 \frac{\pi D_1^2}{4} = \bar{V}_2 \frac{\pi D_2^2}{4} \implies \bar{V}_1 = \bar{V}_2 \left(\frac{D_2}{D_1}\right)^2 \implies \bar{V}_1 = \bar{V}_2 \left(\frac{12,7}{19}\right)^2 = 0.447\bar{V}_2$$

Para saber o valor de α : $Re_1 = \frac{V_1 D_1}{v}$

$$\dot{Q}_1 = \bar{V}_1 A_1 \implies \bar{V}_1 = \frac{\dot{Q}_1}{A_1} \implies \bar{V}_1 = \frac{0,757 \times 10^{-3}}{\frac{\pi (19 \times 10^{-3})^2}{4}} = 2,67 \text{ m/s}$$

$$\bar{V}_1 = 0.447\bar{V}_2 \implies 2.67 = 0.447\bar{V}_2 \implies \bar{V}_2 = 5.98 \, m/s$$


Para água a 20°C: ρ = 998,2 kg/m³ e ν =1,004x10⁻⁶ m²/s

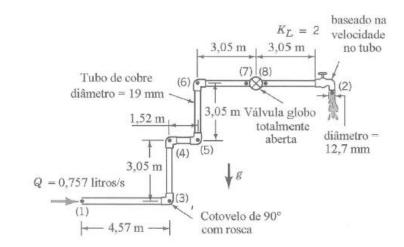
$$Re_1 = \frac{\overline{V}_1 D_1}{v} = \frac{2,67 * 19x10^{-3}}{1,004x10^{-6}} = 5,05x10^4 \text{(turbulento)}$$

$$Re_2 = \frac{\overline{V}_2 D_2}{v} = \frac{5,98 * 12,7x10^{-3}}{1,004x10^{-6}} = 7,56x10^4 \text{(turbulento)}$$

Portanto: $\alpha_1 = \alpha_2 = 2$

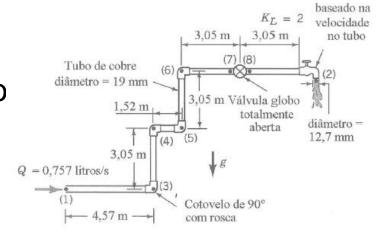
$$\frac{p_1}{\gamma} = \frac{p_2}{\gamma} + \alpha \left(\frac{\bar{V}_2^2 - \bar{V}_1^2}{2g} \right) + (z_2 - z_1) + h_L$$

Logo:


$$p_1 = p_{atm} + \frac{\alpha \rho (\bar{V}_2^2 - \bar{V}_1^2)}{2} + \rho g(z_2 - z_1) + \rho g h_L$$

Para o cálculo das perdas distribuídas e singulares:

$$h_L = f \cdot \frac{l}{D} \cdot \frac{\overline{V}^2}{2g} = \sum_{i=0}^{N} h_{d,i} + \sum_{j=0}^{M} h_{s,j}$$


No caso de perdas distribuídas:

$$\sum_{i=0}^{N} h_{d,i} = \sum_{i=0}^{N} f_i \cdot \frac{l_i}{D_i} \cdot \frac{\bar{V}_i^2}{2g}$$

Como não há variação de diâmetro nos trechos retos e o tubo é do mesmo material:

$$\sum_{i=0}^{N} h_{d,i} = \sum_{i=0}^{N} f_i \cdot \frac{l_i}{D_i} \cdot \frac{\overline{V}_i^2}{2g} = f \cdot \frac{\overline{V}_1^2}{D_1 \cdot 2g} \sum_{i=0}^{N} l_i$$

Para o cálculo do fator de atrito temos:

Tubos de cobre:
$$\varepsilon = 0,0015 \text{ mm}$$
 \Longrightarrow $\frac{\varepsilon}{D} = \frac{0,0015}{19x10^{-3}} = 0,0789$

Pela fórmula de Souza-Cunha-Marques:

$$\frac{1}{\sqrt{f}} = -2,0\log\left[\frac{\varepsilon/D}{3,7} + \frac{5,16}{\text{Re}}\log\left(\frac{\varepsilon/D}{3,7} + \frac{5,09}{\text{Re}^{0,87}}\right)\right]$$

diâmetro = 19 mm

3.05 m Válvula globo

12.7 mm

$$\frac{1}{\sqrt{f}} = -2,0 \log \left[\frac{\varepsilon/D}{3,7} + \frac{5,16}{Re} \log \left(\frac{\varepsilon/D}{3,7} + \frac{5,09}{Re^{0,87}} \right) \right]$$

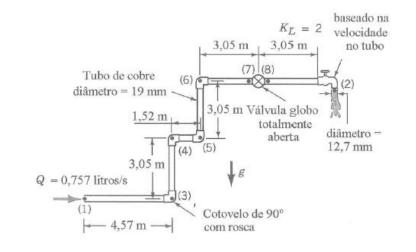
$$\frac{1}{\sqrt{f}} = -2,0 \log \left[\frac{0,0789}{3,7} + \frac{5,16}{5,05 \times 10^4} \log \left(\frac{0,0789}{3,7} + \frac{5,09}{(5,05 \times 10^4)^{0,87}} \right) \right] = 0,0896$$

Logo:

$$\sum_{i=0}^{N} h_{d,i} = 0.0896 \times \frac{(2.67)^2}{19x10^{-3} \times 2 \times 9.8} (4.57 + 1.52 + 3.05 + 3.05 + 3.05 + 3.05)$$

$$\sum_{i=0}^{N} h_{d,i} = 30,27 m$$

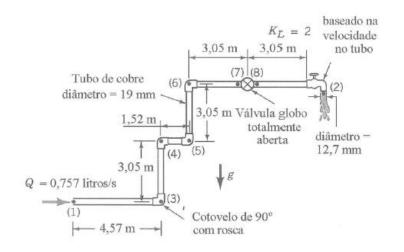
Para o cálculo das perdas singulares:


$$\sum_{j=0}^{M} h_{s,j} = \sum_{j=0}^{M} K_j \frac{\bar{V}_j^2}{2g}$$

As perdas singulares no circuito são:

- 04 cotovelos de 90°(K=1,75)
- 01 válvula globo totalmente aberta (K=11,1)
- 01 contração: K=2

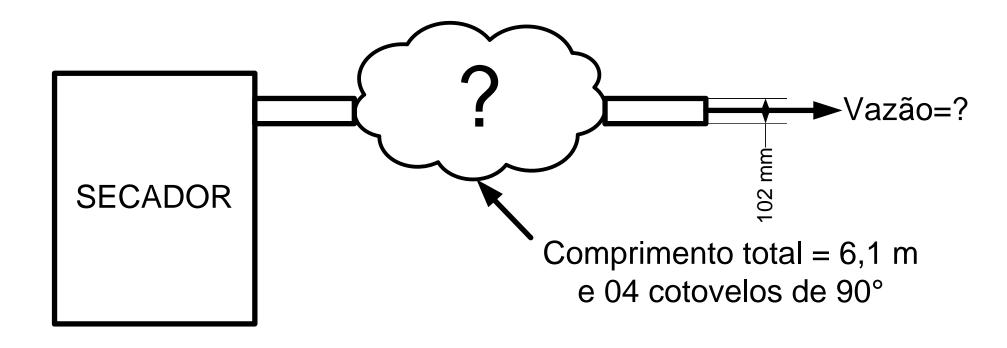
$$\sum_{j=0}^{M} h_{s,j} = \sum_{j=0}^{M} K_j \frac{\bar{V}_j^2}{2g} = \frac{\bar{V}_1^2}{2g} \sum_{j=0}^{M} K_j$$


$$\sum_{i=0}^{M} h_{s,j} = \frac{(2,67)^2}{2 \times 9,8} (4 \times 1,75 + 11,1 + 2) = 7,31 \, m$$

	Diâmetro nominal, pol (mm)											
		Paraf	usada		Flangeada							
	½ (13)	1 (25)	2 (50)	4 (100)	1 (25)	2 (50)	4 (100)	8 (200)	20 (500)			
Válvulas (totalmente aberta	is):											
Globo	14	8,2	6,9	5.7	13	8,5	6.0	5.8	5,5			
Gaveta	0,3	0,24	0.16	0.11	0.80	0,35	0,16	0.07	0,03			
Retenção basculante	5.1	2,9	2,1	2,0	2,0	2,0	2,0	2.0	2,0			
Em ângulo	9,0	4,7	2,0	1,0	4,5	2,4	2,0	2,0	2,0			
Cotovelos:												
45° normal	0,39	0,32	0,30	0,29								
45° raio longo-					0.21	0.20	0.19	0.16	0.14			
90° normal	2,0	1.5	0.95	0,64	0.50	0.39	0.30	0,26	0.21			
90° raio longo	1,0	0,72	0.41	0,23	0.40	0.30	0.19	0,15	0,10			
180° normal	2,0	1,5	0.95	0,64	0.41	0,35	0,30	0,25	0,20			
180° raio longo					0,40	0,30	0,21	0,15	0,10			
Tês:												
Escoamento direto	0.90	0,90	0.90	0,90	0,24	0.19	0.14	0.10	0.07			
Escoamento no ramal	2,4	1,8	1,4	1,1	1.0	0,80	0,64	0,58	0,41			

Portanto:

$$h_L = \sum_{i=0}^{N} h_{d,i} + \sum_{j=0}^{M} h_{s,j} = 30,27 + 7,31 = 37,58 m$$



Assumindo: p_{atm}=101,325 kPa e seção 1 como referência (z₁=0 e z₂=7,10 m)

$$p_1 = p_{atm} + \frac{\alpha \rho (\bar{V}_2^2 - \bar{V}_1^2)}{2} + \rho g(z_2 - z_1) + \rho g h_L$$

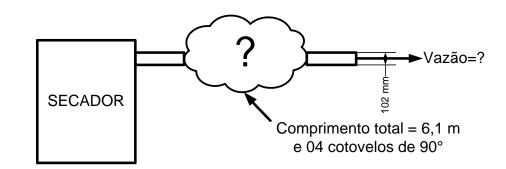
$$p_1 = 101,325x10^3 + \frac{2 \times 998,2 \times ((5,98)^2 - (2,67)^2)}{2} + 998,2 \times 9,8(7,10-0) + 998,2 \times 9,8 \times 37,58$$

$$p_1 = 566.980 Pa = 566,980 kPa$$

O manual do fabricante de um secador de roupa indica que a tubulação de exaustão de gás (diâmetro 102 mm e fabricado de ferro fundido) não pode apresentar comprimento total maior que 6,1 m e quatro curvas de 90°. Determine a vazão de gás nesta tubulação sabendo que a pressão dentro do secador é 50 Pa. Admita que as propriedades do gás podem ser avaliadas como as propriedades do ar a 37°C

Hipóteses:

SECADOR

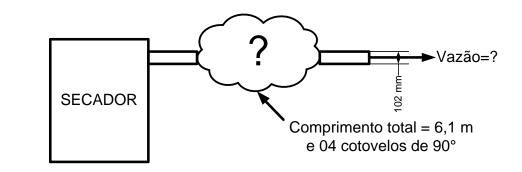

Comprimento total = 6,1 m
e 04 cotovelos de 90°

- Seção 1: saída do secador
- Seção 2: saída da tubulação
- Sem variação de temperatura ao longo da tubulação (sem variação de propriedades)
- Vazão mínima: tubulação de comprimento 6,1 m e 04 cotovelos de 90° (raio normal)
- Regime permanente
- Escoamento turbulento
- Pressão no secador=pressão relativa=50 Pa

Pela equação de conservação de massa:

$$\bar{V}_1 = \bar{V}_2 = \bar{V} \ e \ \alpha_1 = \alpha_2 = \alpha$$

$$\dot{Q} = \bar{V}A = ?$$


Pela equação de conservação de energia:

$$\frac{p_1}{\gamma_1} + \alpha_1 \frac{\bar{V}_1^2}{2g} + z_1 + h_{bomba} = \frac{p_2}{\gamma_2} + \alpha_2 \frac{\bar{V}_2^2}{2g} + z_2 + h_{turbina} + h_L$$

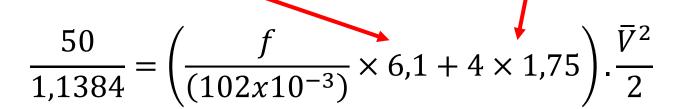
Hipóteses adicionais:

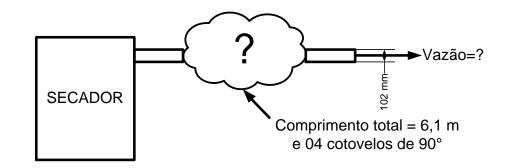
- Não há bombas e nem turbinas
- Variações de cota desprezíveis

$$\frac{p_1}{\gamma} - \frac{p_2}{\gamma} = h_L$$

Para ar a 37°C: ρ =1,1384 kg/m³ e 1,64 x10⁻⁵ m²/s

$$\frac{p_1}{\gamma} - \frac{p_2}{\gamma} = h_L = \sum_{i=0}^{N} h_{d,i} + \sum_{j=0}^{M} h_{s,j}$$

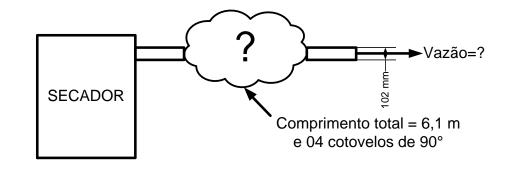

$$\frac{\Delta p}{\rho g} = \sum_{i=0}^{N} f_i \cdot \frac{l_i}{D_i} \cdot \frac{\bar{V}_i^2}{2g} + \sum_{j=0}^{M} K_j \frac{\bar{V}_j^2}{2g} = \left(\frac{f}{D} \sum_{i=0}^{N} l_i + \sum_{j=0}^{M} K_j\right) \cdot \frac{\bar{V}^2}{2g}$$


Comprimento total:

04 cotovelos de 90°

6,1 m

$$(K=1,75)$$



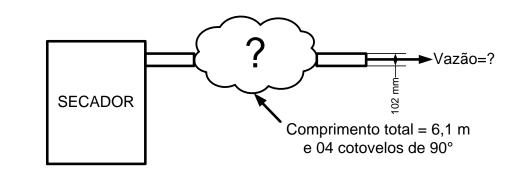
$$43,92 = (29,90f + 3,5)\overline{V}$$

Para ferro fundido:
$$\varepsilon$$
=0,26 mm $\Rightarrow \frac{\varepsilon}{D} = \frac{0,26}{102} = 0,0025$

$$f_{CR} = \left[-2,0\log\left(\frac{\varepsilon/D}{3,7}\right) \right]^{-2}$$

Estimativa inicial: escoamento plenamente rugoso

$$f_{CR} = \left[-2,0 \log \left(\frac{\varepsilon/D}{3,7} \right) \right]^{-2} = \left[-2,0 \log \left(\frac{0,0025}{3,7} \right) \right]^{-2} = 0,0250$$


$$43,92 = (29,90f + 3,5)\overline{V} = (29,90 \times 0,0250 + 3,5)\overline{V} \Rightarrow \overline{V} = 10,34 \text{ m/s}$$

$$Re = \frac{\overline{V}D}{v} = \frac{10,34 \times 102x10^{-3}}{1,64x10^{-5}} = 6,43x10^{4} \text{ (turbulento)}$$

Pela fórmula de Souza-Cunha-Marques:

$$\frac{1}{\sqrt{f}} = -2,0 \log \left[\frac{\varepsilon/D}{3,7} + \frac{5,16}{Re} \log \left(\frac{\varepsilon/D}{3,7} + \frac{5,09}{Re^{0,87}} \right) \right]$$

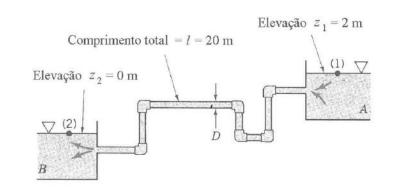
$$\frac{1}{\sqrt{f}} = -2,0\log\left[\frac{\varepsilon/D}{3,7} + \frac{5,16}{Re}\log\left(\frac{\varepsilon/D}{3,7} + \frac{5,09}{Re^{0,87}}\right)\right]$$

$$\frac{1}{\sqrt{f}} = -2.0\log\left[\frac{0.0025}{3.7} + \frac{5.16}{6.43\times10^4}\log\left(\frac{0.0025}{3.7} + \frac{5.09}{6.43\times10^{40.87}}\right)\right] \Rightarrow f = 0.0249$$

i
$$f_i$$
 V(m/s) Re f_{i+1} 0 0,0250 10,34 6,43x10⁴ 0,0249 1 0,0249 10,35 6,34x10⁴ 0,0249

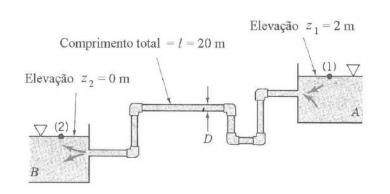
$$\dot{Q} = 10,35 \times \frac{\pi D^2}{4} = 10,35 \times \frac{\pi (102 \times 10^{-3})^2}{4} = 0,085 \ m^3/s$$

Água a 10°C (*v*=1,37x10⁻⁶ m².s) escoa do reservatório A para o reservatório B por meio de uma tubulação de ferro fundido(ε=0,26 mm) que apresenta 20 m de comprimento. A vazão de água é de 0,002 m³/s. O sistema contém uma entrada, uma saída de canto reto e seis cotovelos normais de 90°. Determine o diâmetro da tubulação.


Hipóteses:

- Pressão na seção 1: pressão atmosférica
- Pressão na seção 2: pressão atmosférica
- Sem variação de temperatura ao longo da tubulação (sem variação de propriedades)
- Regime permanente
- Escoamento turbulento

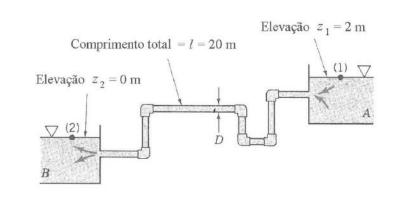
$$\dot{Q} = \bar{V}A = 0.002$$


Sendo A e B reservatórios de superfícies livres:

$$\bar{V}_1 = \bar{V}_2 = 0$$

Aplicando a equação da energia entre as seções (1) e (2):

$$\frac{p_1}{\gamma_1} + \alpha_1 \frac{\bar{V}_1^2}{2g} + z_1 + h_{bomba} = \frac{p_2}{\gamma_2} + \alpha_2 \frac{\bar{V}_2^2}{2g} + z_2 + h_{turbina} + h_L$$



Hipóteses:

- Não há bombas e nem turbinas
- Sem variação de propriedades ao longo da tubulação
- Regime permanente
- Sem mudança de regime de escoamento

$$h_L = z_1 - z_2$$

$$h_L = z_1 - z_2 = \sum_{i=0}^{N} h_{d,i} + \sum_{j=0}^{M} h_{s,j} = \sum_{i=0}^{N} f_i \cdot \frac{l_i}{D_i} \cdot \frac{\overline{V_i}^2}{2g} + \sum_{j=0}^{M} K_j \frac{\overline{V_j}^2}{2g}$$

$$h_L = z_1 - z_2 = \left(\frac{f}{D} \sum_{i=0}^{N} l_i + \sum_{j=0}^{M} K_j\right) \cdot \frac{\bar{V}^2}{2g}$$

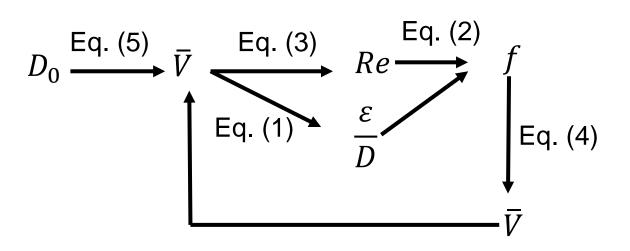
Perdas singulares;

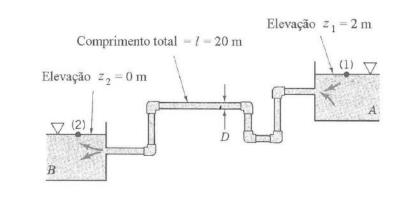
$$2 = \left(\frac{f \times 20}{D} + \sum_{j=0}^{M} K_j\right) \cdot \frac{\overline{V}^2}{2 \times 9.8}$$

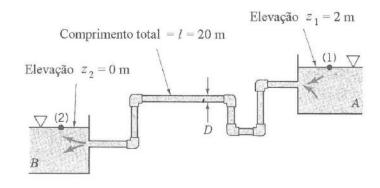
- Entrada de canto reto (K=0,5)
- Saída de canto reto (K=1,0)
- 04 cotovelos de 90° (raio normal) (K=1,75)

$$2 = \left(\frac{f \times 20}{D} + (0.5 + 1.0 + 6 * 1.75)\right) \cdot \frac{\bar{V}^2}{2 \times 9.8} \Rightarrow 39.2 = \left(\frac{f \times 20}{D} + 12\right) \bar{V}^2$$

Para ferro fundido: ε=0,26 mm


$$\frac{\varepsilon}{D} = \frac{0.26}{D} \ (1)$$


$$\frac{1}{\sqrt{f}} = -2.0\log\left[\frac{\varepsilon/D}{3.7} + \frac{5.16}{Re}\log\left(\frac{\varepsilon/D}{3.7} + \frac{5.09}{Re^{0.87}}\right)\right] (2)$$


$$Re = \frac{\overline{V}D}{\nu}$$
 (3)

$$39,2 = \left(\frac{f \times 20}{D} + 12\right) \bar{V}^2 (4)$$

$$\bar{V}\frac{\pi D^2}{4} = 0,002 (5)$$

D	Vi	Re	f	Vi+1	Vi+1-Vi
50	1,02	3,72E+04	0,0307	1,27	0,25
45	1,26	4,13E+04	0,0317	1,23	-0,03
47	1,15	3,95E+04	0,0313	1,24	0,09
46	1,20	4,04E+04	0,0315	1,23	0,03
45,5	1,23	4,09E+04	0,0316	1,23	0,00