
Aula 8. Optimization Methods III. Exercises. 0

Optimization Methods III.

The MCMC. Exercises.

Anatoli Iambartsev

IME-USP

Aula 8. Optimization Methods III. Exercises. 1

[RC] A generic Markov chain Monte Carlo algorithm.

The Metropolis-Hastings algorithm associated with the objec-
tive (target) density f and the conditional density q produces a
Markov chain (X(t)) through the following transition kernel:

Algorithm Metropolis-Hastings Given x(t),

1. Generate Yt ∼ q(y | x(t)).

2. Take

X(t+1) =
{

Yt with probability ρ(x(t), Yt),
x(t) with probability 1− ρ(x(t), Yt),

where

ρ(x, y) = min
{
f(y)

f(x)

q(x | y)
q(y | x)

,1
}
.

Aula 8. Optimization Methods III. Exercises. 2

[RC] A generic Markov chain Monte Carlo algorithm.

A generic R implementation is straightforward, assuming a gen-
erator for q(y|x) is available as geneq(x). If x[t] denotes the
value of X(t),

6.3 Basic Metropolis–Hastings algorithms 171

again, we stress the incredible feature of the Metropolis–Hastings algorithm
that, for every given q, we can then construct a Metropolis–Hastings kernel
such that f is its stationary distribution.

6.3.1 A generic Markov chain Monte Carlo algorithm

The Metropolis–Hastings algorithm associated with the objective (target)
density f and the conditional density q produces a Markov chain (X(t))
through the following transition kernel:

Algorithm 4 Metropolis–Hastings
Given x(t),

1. Generate Yt ∼ q(y|x(t)).
2. Take

X(t+1) =

{
Yt with probability ρ(x(t), Yt),

x(t) with probability 1 − ρ(x(t), Yt),

where

ρ(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.

A generic R implementation is straightforward, assuming a generator for
q(y|x) is available as geneq(x). If x[t] denotes the value of X(t),

> y=geneq(x[t])

> if (runif(1)<f(y)*q(y,x[t])/(f(x[t])*q(x[t],y))){

+ x[t+1]=y

+ }else{

+ x[t+1]=x[t]

+ }

since the value y is always accepted when the ratio is larger than one.
The distribution q is called the instrumental (or proposal or candidate)

distribution and the probability ρ(x, y) the Metropolis–Hastings acceptance
probability. It is to be distinguished from the acceptance rate, which is the
average of the acceptance probability over iterations,

ρ = lim
T→∞

1

T

T∑

t=0

ρ(X(t), Yt) =

∫
ρ(x, y)f(x)q(y|x) dydx.

This quantity allows an evaluation of the performance of the algorithm, as
discussed in Section 6.5.

since the value y is always accepted when the ratio is larger than
one.

Aula 8. Optimization Methods III. Exercises. 3

[RC] Example 6.1.

We can use a Metropolis-Hastings algorithm to simulate a beta
distribution, where the target density f is the Beta(2.7,6.3) den-
sity and the candidate q is uniform over [0,1], which means
that it does not depend on the previous value of the chain. A
Metropolis-Hastings sample is then generated with the following
R code:

172 6 Metropolis–Hastings Algorithms

While, at first glance, Algorithm 4 does not seem to differ from Algorithm
2, except for the notation, there are two fundamental differences between the
two algorithms. The first difference is in their use since Algorithm 2 aims at
maximizing a function h(x), while the goal of Algorithm 4 is to explore the
support of the density f according to its probability. The second difference
is in their convergence properties. With the proper choice of a temperature
schedule Tt in Algorithm 2, the simulated annealing algorithm converges to
the maxima of the function h, while the Metropolis–Hastings algorithm is
converging to the distribution f itself. Finally, modifying the proposal q along
iterations may have drastic consequences on the convergence pattern of this
algorithm, as discussed in Section 8.5.

Algorithm 4 satisfies the so-called detailed balance condition,

(6.3) f(x)K(y|x) = f(y)K(x|y) ,

from which we can deduce that f is the stationary distribution of the chain
{X(t)} by integrating each side of the equality in x (see Exercise 6.8).

That Algorithm 4 is naturally associated with f as its stationary distribu-
tion thus comes quite easily as a consequence of the detailed balance condition
for an arbitrary choice of the pair (f, q). In practice, the performance of the
algorithm will obviously strongly depend on this choice of q, but consider
first a straightforward example where Algorithm 4 can be compared with iid
sampling.

Example 6.1. Recall Example 2.7, where we used an Accept–Reject algo-
rithm to simulate a beta distribution. We can just as well use a Metropolis–
Hastings algorithm, where the target density f is the Be(2.7, 6.3) density and the
candidate q is uniform over [0, 1], which means that it does not depend on the
previous value of the chain. A Metropolis–Hastings sample is then generated with
the following R code:

> a=2.7; b=6.3; c=2.669 # initial values

> Nsim=5000

> X=rep(runif(1),Nsim) # initialize the chain

> for (i in 2:Nsim){

+ Y=runif(1)

+ rho=dbeta(Y,a,b)/dbeta(X[i-1],a,b)

+ X[i]=X[i-1] + (Y-X[i-1])*(runif(1)<rho)

+ }

A representation of the sequence (X(t)) by plot does not produce any pattern
in the simulation since the chain explores the same range at different periods. If
we zoom in on the final period, for 4500 ≤ t ≤ 4800, Figure 6.1 exhibits some
characteristic features of Metropolis–Hastings sequences, namely that, for some
intervals of time, the sequence (X(t)) does not change because all corresponding

Aula 8. Optimization Methods III. Exercises. 4

[RC] Example 6.1.

> ks.test(jitter(X),rbeta(5000,a,b))

Two-sample Kolmogorov-Smirnov test

data: jitter(X) and rbeta(5000, a, b)

D = 0.031, p-value = 0.01638

alternative hypothesis: two-sided

jitter() - Add a small amount of noise to a numeric vector:
we need this function because of the presence of repeated values
in the vector X, KS test works well when the samples are from
continuous r.v. what supposes the different values within both
samples, i.e. ks.test do not accept ties..

Aula 8. Optimization Methods III. Exercises. 5

[RC] The independent Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm allows a candidate distribu-
tion q that only depends on the present state of the chain. If we
now require the candidate q to be independent of this present
state of the chain (that is, q(y|x) = g(y)), we do get a special
case of the original algorithm:

Algorithm Metropolis-Hastings Given x(t),

1. Generate Yt ∼ g(y).

2. Take

X(t+1) =

{
Yt with probability min

{
f(Yt)g(x(t))
f(x(t))g(Yt)

,1
}
,

x(t) otherwise.

Aula 8. Optimization Methods III. Exercises. 6

[RC] The independent Metropolis-Hastings algorithm.

This method then appears as a straightforward generalization
of the Accept-Reject method in the sense that the instrumen-
tal distribution is the same density g as in the Accept-Reject
method. Thus, the proposed values Yt are the same, if not the
accepted ones.

Metropolis-Hastings algorithms and Accept-Reject methods (Sec-
tion 2.3), both being generic simulation methods, have sim-
ilarities between them that allow comparison, even though it
is rather rare to consider using a Metropolis-Hastings solution
when an Accept-Reject algorithm is available.

Aula 8. Optimization Methods III. Exercises. 7

[RC] The independent Metropolis-Hastings algorithm.

a. The Accept-Reject sample is iid, while the Metropolis-Hastings
sample is not. Although the Yts are generated independently, the
resulting sample is not iid, if only because the probability of ac-
ceptance of Yt depends on X(t) (except in the trivial case when
f = g).

b. The Metropolis-Hastings sample will involve repeated occur-
rences of the same value since rejection of Yt leads to repetition
of X(t) at time t + 1. This will have an impact on tests like
ks.test that do not accept ties.

c. The Accept-Reject acceptance step requires the calculation
of the upper bound M ≥ supx f(x)/g(x), which is not required
by the Metropolis-Hastings algorithm. This is an appealing fea-
ture of Metropolis-Hastings if computing M is time-consuming
or if the existing M is inaccurate and thus induces a waste of
simulations.

Aula 8. Optimization Methods III. Exercises. 8

[RC] The independent Metropolis-Hastings algo-
rithm. Exercise 6.3.

Compute the acceptance probability ρ(x, y) in the case
q(y|x) = g(y). Deduce that, for a given value x(t), the
Metropolis-Hastings algorithm associated with the same
pair (f, g) as an Accept-Reject algorithm accepts the
proposed value Yt more often than the Accept-Reject
algorithm.

Aula 8. Optimization Methods III. Exercises. 9

6

Metropolis-Hastings Algorithms

Exercise 6.1

A simple R program to simulate this chain is

(C.) Jiazi Tang, 2009

x=1:10^4

x[1]=rnorm(1)

r=0.9

for (i in 2:10^4){

x[i]=r*x[i-1]+rnorm(1) }

hist(x,freq=F,col="wheat2",main="")

curve(dnorm(x,sd=1/sqrt(1-r^2)),add=T,col="tomato"

Exercise 6.3

When q(y|x) = g(y), we have

⇢(x, y) = min

✓
f(y)

f(x)

q(x|y)

q(y|x)
, 1

◆

= min

✓
f(y)

f(x)

g(x)

g(y)
, 1

◆

= min

✓
f(y)

f(x)

g(x)

g(y)
, 1

◆
.

Since the acceptance probability satisfies

f(y)

f(x)

g(x)

g(y)
� f(y)/g(y)

max f(x)/g(x)

it is larger for Metropolis–Hastings than for accept-reject.

Aula 8. Optimization Methods III. Exercises. 10

[RC] The M-H algorithm. Symmetric conditional.

Here we simulate Yt according Yt = X(t) + εt, where
εt is a random perturbation with distribution g inde-
pendent of X(t), for instance a uniform distribution
or a normal distribution, meaning that Yt ∼ U [X(t) −
δ,X(t) + δ] or Yt ∼ N(X(t), τ2) in unidimensional set-
tings. The proposal density q(y | x) is now of the
form g(y − x). The Markov chain associated with
q is a random walk, when the density g is symmet-
ric around zero; that is, satisfying g(−t) = g(t). But,
due to the additional Metropolis-Hastings acceptance
step, the Metropolis-Hastings Markov chain {X(t)} is
not a random walk.

Aula 8. Optimization Methods III. Exercises. 11

[RC] The M-H algorithm. Random walk.

Algorithm Random Walk Metropolis-Hastings

Given x(t),

1. Generate Yt ∼ g(y − x(t)).

2. Take

X(t+1) =

{
Yt with probability min

{
f(Yt)
f(x(t))

,1
}
,

x(t) otherwise.

Aula 8. Optimization Methods III. Exercises. 12

[RC] The M-H algorithm. Random walk.

Example 6.4. The historical example of Hastings
(1970) considers the formal problem of generating
the normal distribution N(0,1) based on a random
walk proposal equal to the uniform distribution on
[−δ, δ]. The probability of acceptance is then

ρ(x(t), yt) = exp

{
(x(t))2 − y2t

2

}
∧ 1.

Aula 8. Optimization Methods III. Exercises. 13
184 6 Metropolis–Hastings Algorithms

Fig. 6.7. Outcomes of random walk Metropolis–Hastings algorithms for Example
6.4. The left panel has a U(−.1, .1) candidate, the middle panel has U(−1, 1), and
the right panel has U(−10, 10). The upper graphs represent the last 500 iterations
of the chains, the middle graphs indicate how the histograms fit the target, and the
lower graphs give the respective autocovariance functions.

programmed in Example 5.2. Indeed, the core of the R code is very similar except
for the increase in temperature, which obviously is not necessary here:

> scale=1

> the=matrix(runif(2,-2,5),ncol=2)

> curlike=hval=like(x)

> Niter=10^4

> for (iter in (1:Niter)){

+ prop=the[iter,]+rnorm(2)*scale

+ if ((max(-prop)>2)||(max(prop)>5)||

+ (log(runif(1))>like(prop)-curlike)) prop=the[iter,]

Aula 8. Optimization Methods III. Exercises. 14

[RC] The M-H algorithm. Random walk.

Figure describes three samples of 5000 points produced by this
method for δ = 0.1,1, and 10 and clearly shows the difference
in the produced chains: Too narrow or too wide a candidate
(that is, a smaller or a larger value of δ) results in higher auto-
covariance and slower convergence. Note the distinct patterns
for δ = 0.1 and δ = 10 in the upper graphs: In the former case,
the Markov chain moves at each iteration but very slowly, while
in the latter it remains constant over long periods of time.

As noted in this formal example, calibrating the scale δ of the
random walk is crucial to achieving a good approximation to the
target distribution in a reasonable number of iterations.

Aula 8. Optimization Methods III. Exercises. 15

References.

[RC] Cristian P. Robert and George Casella. Intro-
ducing Monte Carlo Methods with R. Series “Use R!”.
Springer

[RC1] Cristian P. Robert and George Casella. In-
troducing Monte Carlo Methods with R Solutions to
Odd-Numbered Exercises.

