Aula 8. Optimization Methods III. Exercises.

Optimization Methods III.
The MCMC. EXxercises.

Anatoli Ilambartsev
IME-USP

Aula 8. Optimization Methods III. Exercises. 1

[RC] A generic Markov chain Monte Carlo algorithm.

The Metropolis-Hastings algorithm associated with the objec-
tive (target) density f and the conditional density ¢ produces a
Markov chain (X (t)) through the following transition kernel:

Algorithm Metropolis-Hastings Given z(®,
1. Generate Y; ~ q(y | z®).

2. Take

«+D — [Yi with probability p(z,Y)),
z® with probability 1 — p(z®,Y;),

where

fy) ez | y) 1}.

ple,y) = mm{f(:c)q(y D}

Aula 8. Optimization Methods III. Exercises. 2

[RC] A generic Markov chain Monte Carlo algorithm.

A generic R implementation is straightforward, assuming a gen-
erator for q(y|z) is available as geneq(x). If x[t] denotes the
value of X(t),

> y=geneq(x[t])
> if (runif (1) <£(y)*q(y,x[t])/(Ex[t])*qx[t],y))){
+ x[t+1]=y
Yelse{
x[t+1]=x[t]
}

+ + 4+

since the value y is always accepted when the ratio is larger than
one.

Aula 8. Optimization Methods III. Exercises. 3

[RC] Example 6.1.

We can use a Metropolis-Hastings algorithm to simulate a beta
distribution, where the target density f is the Beta(2.7,6.3) den-
sity and the candidate ¢ is uniform over [0,1], which means
that it does not depend on the previous value of the chain. A
Metropolis-Hastings sample is then generated with the following
R code:

> a=2.7; b=6.3; c=2.669 # initial values

> Nsim=5000
> X=rep(runif(1),Nsim) # initialize the chain
> for (i in 2:Nsim){
+ Y=runif (1)
+ rho=dbeta(Y,a,b)/dbeta(X[i-1],a,b)
+ X[i]=X[i-1] + (Y-X[i-1])*(runif (1)<rho)
+ }

Aula 8. Optimization Methods III. Exercises. 4

[RC] Example 6.1.

> ks.test(jitter(X),rbeta(5000,a,b))
Two-sample Kolmogorov-Smirnov test
data: jitter(X) and rbeta(5000, a, b)
D = 0.031, p-value = 0.01638
alternative hypothesis: two-sided

jitter() - Add a small amount of noise to a numeric vector:
we need this function because of the presence of repeated values
in the vector X, KS test works well when the samples are from
continuous r.v. what supposes the different values within both
samples, i.e. ks.test do not accept ties..

Aula 8. Optimization Methods III. Exercises. 5

[RC] The independent Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm allows a candidate distribu-
tion ¢ that only depends on the present state of the chain. If we
now require the candidate g to be independent of this present
state of the chain (that is, q(y|x) = g(y)), we do get a special
case of the original algorithm:

Algorithm Metropolis-Hastings Given z(¥,
1. Generate Y; ~ g(y).

2. Take

. - . f(Y) (m(t))
1) — Y; with probability mln{m, 1},

() otherwise.

Aula 8. Optimization Methods III. Exercises. 6

[RC] The independent Metropolis-Hastings algorithm.

This method then appears as a straightforward generalization
of the Accept-Reject method in the sense that the instrumen-
tal distribution is the same density g as in the Accept-Reject
method. Thus, the proposed values Y; are the same, if not the
accepted ones.

Metropolis-Hastings algorithms and Accept-Reject methods (Sec-
tion 2.3), both being generic simulation methods, have sim-
ilarities between them that allow comparison, even though it
is rather rare to consider using a Metropolis-Hastings solution
when an Accept-Reject algorithm is available.

Aula 8. Optimization Methods III. Exercises. Ve

[RC] The independent Metropolis-Hastings algorithm.

a. The Accept-Reject sample isiid, while the Metropolis-Hastings
sample is not. Although the Y;s are generated independently, the
resulting sample is not iid, if only because the probability of ac-
ceptance of Y; depends on X (t) (except in the trivial case when

f=29).

b. The Metropolis-Hastings sample will involve repeated occur-
rences of the same value since rejection of Y; leads to repetition
of X(¢t) at time t+ 1. This will have an impact on tests like
ks.test that do not accept ties.

c. The Accept-Reject acceptance step requires the calculation
of the upper bound M > sup, f(x)/g(x), which is not required
by the Metropolis-Hastings algorithm. This is an appealing fea-
ture of Metropolis-Hastings if computing M is time-consuming
or if the existing M is inaccurate and thus induces a waste of
simulations.

Aula 8. Optimization Methods III. Exercises. 38

[RC] The independent Metropolis-Hastings algo-
rithm. EXxercise 6.3.

Compute the acceptance probability p(xz,y) in the case
q(y|z) = g(y). Deduce that, for a given value z(®), the
Metropolis-Hastings algorithm associated with the same
pair (f,g) as an Accept-Reject algorithm accepts the
proposed value Y; more often than the Accept-Reject
algorithm.

Aula 8. Optimization Methods III. Exercises.

Exercise 6.3

When q(y|z) = g(y), we have

— i (W) alzly)
plea) = min (75 E5001)
i (10 9(2)
- (f(w) 9(y)’ 1)
i (10 9(2)
Sieron
Since the acceptance probability satisfies
fy) g@) o fy)/9y)
f(x) g(y) — max f(z)/g(z)

it is larger for Metropolis—Hastings than for accept-reject.

Aula 8. Optimization Methods III. Exercises. 10

[RC] The M-H algorithm. Symmetric conditional.

Here we simulate Y; according Y; = X® + ¢,, where
g: IS @ random perturbation with distribution g inde-
pendent of X (¢), for instance a uniform distribution
or a normal distribution, meaning that Y; ~ U[X® —
5, X® 4+ 6] or YV; ~ N(X®_ 72) in unidimensional set-
tings. The proposal density g(y | =) is now of the
form ¢g(y — x). The Markov chain associated with
q IS a random walk, when the density g is symmet-
ric around zero; that is, satisfying g(—t) = ¢g(t). But,
due to the additional Metropolis-Hastings acceptance
step, the Metropolis-Hastings Markov chain {X(¢)} is
not a random walk.

Aula 8. Optimization Methods III. Exercises. 11

[RC] The M-H algorithm. Random walk.
Algorithm Random Walk Metropolis-Hastings

Given z(®,
1. Generate V; ~ g(y — ().

2. Take

(t+1) _) Yo with probability m|n{ff((w(t))), 1}7
z® otherwise.

Aula 8. Optimization Methods III. Exercises. 12

[RC] The M-H algorithm. Random walk.

Example 6.4. The historical example of Hastings
(1970) considers the formal problem of generating
the normal distribution N(0,1) based on a random
walk proposal equal to the uniform distribution on
[—§,58]. The probability of acceptance is then

02 _ 2
p(z y) = exp{(m)2 Ji } A 1.

Aula 8. Optimization Methods III. Exercises. 13

w |
N J -
(=R o=
o) -]
OI 1 '
ol N
w. h
0 | U LU B ok b sb sl @l I ol s ol sl
2000 2200 2400 2000 2200 2400 2000 2200 2400
2 ET -t <+
o o o
0 _] “ 0
o o o
o o N
o o o
B = =
< | Q <
i P [T R | = =
4 2 0 2 4
© _| =) -
o o o
5 J &] & J
€ T4 T T4 € T4
o = J”uml,uﬂlmmu = |I|'HIIHHIh.----
= NS T Tl Tl B Tl = N T
0 10 20 30 0 10 20 30 0 10 20 30

Fig. 6.7. Outcomes of random walk Metropolis—Hastings algorithms for Example
6.4. The left panel has a U(—.1,.1) candidate, the middle panel has U(—1, 1), and
the right panel has ¢ (—10,10). The upper graphs represent the last 500 iterations
of the chains, the middle graphs indicate how the histograms fit the target, and the
lower graphs give the respective autocovariance functions.

Aula 8. Optimization Methods III. Exercises. 14

[RC] The M-H algorithm. Random walk.

Figure describes three samples of 5000 points produced by this
method for § = 0.1,1, and 10 and clearly shows the difference
in the produced chains: Too narrow or too wide a candidate
(that is, a smaller or a larger value of §) results in higher auto-
covariance and slower convergence. Note the distinct patterns
for 6 = 0.1 and 6§ = 10 in the upper graphs: In the former case,
the Markov chain moves at each iteration but very slowly, while
in the latter it remains constant over long periods of time.

As noted in this formal example, calibrating the scale 6 of the
random walk is crucial to achieving a good approximation to the
target distribution in a reasonable number of iterations.

Aula 8. Optimization Methods III. Exercises. 15

References.

[RC] Cristian P. Robert and George Casella. Intro-
ducing Monte Carlo Methods with R. Series “Use R!".
Springer

[RC1] Cristian P. Robert and George Casella. In-
troducing Monte Carlo Methods with R Solutions to
Odd-Numbered Exercises.

