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[D] A Brief Introduction to Markov Chains.

“Let X be a finite set. A Markov chain is defined by a matrix
K = (K(x, y), x, y ∈ X ) with K(x, y) ≥ 0 and

∑
y
K(x, y) = 1

for each x. Thus each row is a probability measure so K can
direct a kind of random walk: from x, choose y with probability
K(x, y), and so on. We refer to the outcomes

X0 = x,X1 = y,X2 = z, . . .

as a run of the chain starting at x. From the definitions

P(X1 = y | X0 = x) = K(x, y), P(X2 = z,X1 = y | X0 = x) = K(x, y)K(y, z)

From this,

P(X2 = z | X0 = x) =
∑
y∈X

K(x, y)K(y, z) = K2(x, z).

The n-th power of the matrix has x, y entry Kn(x, y) = P(Xn =
y | X0 = x).”



Aula 8. Optimization Methods III. 2

[D] A Brief Introduction to Markov Chains.

“All of the Markov chains considered here have sta-
tionary distributions π = (π(x), x ∈ X ),

∑
x π(x) = 1

with ∑
x

π(x)K(x, y) = π(y). (1)

Thus π is a left eigenvector of K with eigenvalue 1.
The probabilistic interpretation of (1) is “pick x from
π and take a step from K(x, y); the chance of being
at y is π(y).” Thus π is stationary for the evolution.”
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[D] A Brief Introduction to Markov Chains.

“The fundamental theorem of Markov chains (a simple corollary
of the Perron-Frobenius theorem) says, under a simple connect-
edness condition, π is unique and high powers of K converge to
the rank one matrix with all rows equal to π.

Theorem 1. Let X be a finite set and K(x, y) a Markov chain
indexed by X . If there is n0 so that Kn(x, y) ≥ 0 for all n > n0,
then K has a unique stationary distribution π and, as n→ ∞,

Kn(x, y) → π(y), for each x, y ∈ X .

The probabilistic content of the theorem is that from any start-
ing state x, the n-th step of a run of the Markov chain has
chance close to π(y) of being at y if n is large. In computational
settings, |X| is large, it is easy to move from x to y according
to K(x, y) and it is hard to sample from π directly.”
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[D] A Brief Introduction to Markov Chains.

Markov chain theory:

Given K find their invariant measure π

Markov Chain Monte Carlo theory:

Given π find Markov chain K with invariant measure
is π
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[D] A Brief Introduction to Markov Chains.

Theorem 2. Let K be irreducible and aperiodic
Markov chain. Let the measure π satisfy

π(x)K(x, y) = π(y)K(y, x), for any x ̸= y ∈ X .
Then, the chain is called reversible and the measure
π is invariant.
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[D] A Brief Introduction to Markov Chains. Convergence.

“A basic problem of Markov chain theory concerns the rate of
convergence in Kn(x, y) → π(y). How long must the chain be run
to be suitably close to π? It is customary to measure distances
between two probabilities by total variation distance

∥Kn
x − π∥TV =

1

2

∑
y

|Kn(x, y)− π(y)| = max
A⊆X

|Kn(x,A)− π(A)|.

This yields the math problem: Given K,π, x and ε > 0, how large
n so

∥Kn
x − π∥TV < ε?

”
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[D] A Brief Introduction to Markov Chains. Convergence.

“Suppose that the Markov chain is reversible: π(x)K(x, y) =
π(y)K(y, x). Let L2(π) be {g : X → R} with inner product
⟨g, h⟩ =

∑
x
g(x)h(x)π(x). Then K operates on L2 by Kg(x) =∑

y
g(y)K(x, y). Reversibility implies ⟨Kg, h⟩ = ⟨g,Kh⟩, so K

is self-adjoint. Now, the spectral theorem says there is an or-
thonormal basis of eigenvectors ψi and eigenvalues βi (so Kψi =
βiψi) for 0 ≤ i ≤ |X | − 1 and 1 = β0 ≥ β1 ≥ · · · ≥ β|X |−1 ≥ −1. By
elementary manipulations

K(x, y) = π(y)

|X |−1∑
i=0

βiψi(x)ψi(y), K
n(x, y) = π(y)

|X |−1∑
i=0

βni ψi(x)ψi(y).

”
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[D] A Brief Introduction to Markov Chains. Convergence.

“Using the Cauchy-Schwartz inequality, we have

4∥Kn
x − π∥2TV =

∑
y

|Kn(x, y)− π(y)|

=
∑
y

|Kn(x, y)− π(y)|√
π(y)

√
π(y)

≤
∑
y

(Kn(x, y)− π(y))2

π(y)
=

|X |−1∑
i=1

β2n
i ψ2

i (x).

This bound is the basic eigenvalue bound used to get rates of
convergence for the examples presented here.” Observe that
the maximal eigenvalue β0 ≡ 1 is missing in the last sum, and
the eigenvector corresponding to β0 can be chosen as identical
ψ0(·) ≡ 1, i.e. ψ0 = (1,1, . . . ,1).
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[D] General state space.

“If (X,B) is a measurable space, a Markov kernel K(x, dy) is a
probability measure K(x, ·) for each x. Iterates of the kernel are
given by, e.g.,

K2(x,A) =

∫
K(z,A)K(x, dz).

A stationary distribution is a probability π(dx) satisfying

π(A) =

∫
K(x,A)π(dx)

under simple conditions Kn(x,A) → π(A) and exactly the same
problems arise.
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[D] Metropolis Algorithm.

Let X be a finite state space and π(x) a probability on X (per-
haps specified only up to an unknown normalizing constant). Let
J(x, y) be a Markov matrix on X with J(x, y) > 0 ↔ J(y, x) > 0.
At the start, J is unrelated to π. The Metropolis algorithm
changes J to a new Markov matrix K(x, y) with stationary dis-
tribution π. It is given by a simple recipe:

K(x, y) =

{
J(x, y), if x ̸= y,A(x, y) ≥ 1

J(x, y)A(x, y), if x ̸= y,A(x, y) < 1
J(x, y) +

∑
z:A(x,z)<1

J(x, z)(1−A(x, z)), if x = y,

where A is the acceptance ratio A(x, y) = π(y)J(y, x)/π(x)J(x, y).
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[D] Metropolis Algorithm.

K(x, y) =

{
J(x, y), if x ̸= y,A(x, y) ≥ 1

J(x, y)A(x, y), if x ̸= y,A(x, y) < 1
J(x, y) +

∑
z:A(x,z)<1

J(x, z)(1−A(x, z)), if x = y,

the acceptance ratio A(x, y) = π(y)J(y, x)/π(x)J(x, y).

The formula has a simple interpretation: from x, choose y with
probability J(x, y); if A(x, y) ≥ 1, move to y; if A(x, y) < 1, flip
a coin with this success probability and move to y if success
occurs; in other cases, stay at x. Note that the normalizing
constant cancels out in all calculations. The new chain satisfies

π(x)K(x, y) = π(y)K(y, x).
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[D] Metropolis Algorithm.

Thus ∑
x

π(x)K(x, y) =
∑
x

π(y)K(y, x) = π(y).

so that π is a left eigenvector with eigenvalue 1. If
the chain K is connected, Theorem 1 is in force:

Kn(x, y) → π(y), as n→ ∞.

After many steps of the chain, the chance of being at
y is approximately π(y), no matter what the starting
state X .
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Metropolis Algorithm.

Summarizing in algorithmic form initialized with the
(arbitrary) value x(0): given x(t)

1. Generate Yt ∼ J(x(t), ·).

2. Take

x(t+1) =

{
Yt with probability ρ(x(t), Yt),
x(t) with probability 1− ρ(x(t), Yt),

where

ρ(x, y) = min{A(x, y),1} = min
{π(y)
π(x)

J(y, x)

J(x, y)
,1

}
.
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[P] Metropolis Algorithm. Remark.

A very important feature of the Metropolis chain is
that it only depends on the ratios π(x)/π(y). Fre-
quently π(x) is only be explicitly known up to a nor-
malizing constant. The optimization chains described
below are examples of this type. The normalizing
constant is not needed to run the Metropolis chain.
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Metropolis Algorithm. Example: symmetric group.

Let X = Sn, the symmetric group on n letters. Define a proba-
bility measure on Sn by

π(σ) =
1

Z
θd(σ,σ0), 0 < θ ≤ 1.

where d(σ, σ0) is a metric on symmetric group defined as a min-
imum number of transpositions required to bring σ to σ0. A
transposition is a permutation which exchanges two elements
and keeps all others fixed; for example (13) is a transposition.
Every permutation can be written as a product of transpositions;
for instance, the permutation g = (125)(34) from above can be
written as g = (12)(25)(34).

The normalizing constant can be calculated explicitly

Z =
∑
σ

θd(σ,σ0) =

n∏
i=1

(
1+ θ(i− 1)

)
.

Note that if θ = 1, π(σ) is the uniform distribution on Sn. For θ <
1, π(σ) is largest at σ0 and falls off from its maximum as σ moves
away from σ0. It serves as a natural non-uniform distribution on
Sn, peaked at a point.
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Metropolis Algorithm. Example: symmetric group.

How can samples be drawn from π(σ), σ ∈ Sn?
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Metropolis Algorithm. Example: symmetric group.

One route is to use the Metropolis algorithm, based on random
transpositions. Thus, from σ, choose a transposition (i, j) uni-
formly at random and consider (i, j)σ = σ∗. If d(σ∗, σ0) ≤ d(σ, σ0)
the chain moves to σ∗. If d(σ∗, σ0) > d(σ, σ0), flip a θ-coin. If
this comes up heads, move to σ∗; else stay at σ. In symbols,

K(σ, σ∗) =


1/
(
n
2

)
, if σ∗ = (i, j)σ, d(σ∗, σ0) < d(σ, σ0)

θ/
(
n
2

)
, if σ∗ = (i, j)σ, d(σ∗, σ0) > d(σ, σ0)

c(1− θ/
(
n
2

)
), if σ∗ = σ, with

c = #{(i, j) : d((i, j)σ, σ0) > d(σ, σ0)
0, otherwise.

Observe that this Markov chain is “easy to run”. The Metropolis
construction guarantees that:

π(σ)K(σ, σ∗) = π(σ∗)K(σ∗, σ)

so that the chain has stationary distribution π.
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Metropolis Algorithm. Example: symmetric group.

When n = 3 and σ0 = id, the transition matrix is

id (12) (13) (23) (123) (132)
id 1− θ θ

3
θ
3

θ
3

0 0
(12) 1

3
2
3
(1− θ) 0 0 θ

3
θ
3

(13) 1
3

0 2
3
(1− θ) 0 θ

3
θ
3

(23) 0 0 2
3
(1− θ) θ

3
θ
3

(123) 0 1
3

1
3

1
3

0 0
(132) 0 1

3
1
3

1
3

0 0

Remember that permutation, say (12) we read as: 1 → 2 and
2 → 1.

The stationary distribution is the left eigenvector proportional
to (1, θ, θ, θ, θ2, θ2).



Aula 8. Optimization Methods III. 19

Metropolis Algorithm. Example: Ising Model.

The Ising model was invented by Wilhelm Lenz and
developed by his student Ernst Ising. It is used for
modeling ferromagnetic and anti-ferromagnetic ma-
terials. The model represents a lattice occupied by
atoms which can each have dipole magnetic moments
(called spins). The model predicts a second order
phase transition occurring at the Curie temperature
for dimensions higher than 1. Phase transition is iden-
tified from ensemble properties and compared with
the theoretical model which has been solved exactly
for zero external field.
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Metropolis Algorithm. Example: Ising Model.

Each atom i ∈ Λ can adopt two states, corresponding
to σi ∈ {−1,1}, where σv represents the spin and the
spin interactions are dependent on the coupling pa-
rameter Jij. The lattice model has periodic boundary
conditions and extends infinitely. The Hamiltonian is
defined as below: let σ ∈ {−1,1}Λ

H(σ) = −
∑
⟨i,j⟩

Jijσiσj − h
∑
i

σi,

where Jij is coupling parameter between neighbors
atoms i and j; h is external field strength.
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Metropolis Algorithm. Example: Ising Model.

The probability measure on {−1,1}Λ is defined as fol-
lows: let σ ∈ {−1,1}Λ, then

πβ,Λ(σ) =
1

Zβ,Λ
e−βH(σ),

where β is inverse temperature, and Zβ,Λ the normal-
ized constant which called partition function.

Zβ,Λ =
∑
σ

e−βH(σ).

The problem: how to sample configurations σ from
distribution πβ,Λ.
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Metropolis Algorithm. Example: Ising Model.

Metropolis Algorithm:

1. Initialize the system randomly with spins, at a given tem-
perature (fixed β);

2. set the value of the external field (in most cases h = 0);

3. make a random flip in the spin of some atom;

4. compute the energy change ∆H arising from this, due to
only the neighboring atoms;

5. ensure that the periodic boundary conditions are in place
to take care of edge effects;

6. if ∆H < 0, accept this configuration and continue this
process;

7. If ∆H > 0, accept this configuration with a probability of
p = e−β∆H, else retain the old configuration.
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