
PGF5003: Classical Electrodynamics I
Problem Set 4

Professor: Luis Raul Weber Abramo
Monitor: Natalí Soler Matubaro de Santi

(Due to June 1, 2021)

Guidelines: write down the most relevant passages in your calculations, not only the �nal results.
Do not forget to write the mathematical expressions that you are using in order to solve the questions.
We strongly recommended the use of the International System of Units.

1 Question (1 point)
In three dimensions the solution to the wave equation

∇2Ψ− 1

c2

∂2Ψ

∂t2
= −4πf(r, t), (1)

where Ψ(r, t) is the wave function and f(r, t) is a known source distribution, for a point source in space
and time (a light �ash at t′ = 0 and r′ = 0) is a spherical shell disturbance of radius R = ct, namely
the retarded Green function1

G(r, t; r′, t′) =
δ
(
t′ −

[
t− |r−r

′|
c

])
|r− r′|

. (2)

The solutions for fewer dimensions than three can be found by superposition in the super�uous dimen-
sion(s), to eliminate the dependence on such variable(s). For example, a �ashing line source of uniform
amplitude is equivalent to a point source in two dimensions.

a) Starting with the retarded solution to the three-dimensional wave equation

Ψ(r, t) =

∫
d3r′

[f(r′, t′)]ret
|r− r′|

, (3)

where [ ]ret means that the time t′ is to be evaluated at the retarded time t′ = t− |r− r′|/c, show that
the source f(r′, t′) = δ(x′)δ(y′)δ(t′) (which is equivalent to a t = 0 point source at the origin in two
spatial dimensions), produces a two-dimensional wave

Ψ(x, y, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

, (4)

where ρ2 = x2 + y2 and Θ(χ) is the unit step function Θ(χ) =

{
0, χ < 0
1, χ > 0

.

1Just remember that this name is due the fact that this function exhibits the causal behavior associated to a wave
disturbance.
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b) Show that a “sheet” source, equivalent to a point pulsed source at the origin in one space dimension,
produces a one-dimensional wave proportional to

Ψ(x, t) = 2πcΘ(ct− |x|). (5)

1.1 Solution
a) We need to write the retarded solution in 2D. Then, we need �rst the source in retarded time
t′ = t− |r− r′|/c. Taking a �ash line source in the z axis, it becomes

f(r′, t′) = δ(x′)δ(y′)δ(t′)

[f(r′, t′)]ret = δ(x′)δ(y′)δ(t− |r− r′|/c). (6)

Putting it in the retarded solution

Ψ(r, t) =

∫
d3r′

[f(r′, t′)]ret
|r− r′|

=

∫
d3r′

δ(x′)δ(y′)δ(t− |r− r′|/c)
|r− r′|

(7)

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ ∞
−∞

dz′
δ(x′)δ(y′)δ(t−

√
(x− x′)2 + (y − y′)2 + (z − z′)2/c)√

(x− x′)2 + (y − y′)2 + (z − z′)2
(8)

=

∫ ∞
−∞

dz′
δ(t−

√
x2 + y2 + (z − z′)2/c)√
x2 + y2 + (z − z′)2

=

∫ ∞
−∞

dz′
δ(t−

√
ρ2 + (z − z′)2/c)√
ρ2 + (z − z′)2

. (9)

To solve this integral we can use

δ[f(x)] =
∑
i

δ(x− xi)
|df(xi)/dx|

, (10)

where xi are the zeros of f(x). In our case:

x = z′ (11)
f(x) = t−

√
ρ2 + (z − z′)2/c (12)

df

dx
=

d

dz′

[
t−
√
ρ2 + (z − z′)2/c

]
=

1

c

(z − z′)√
ρ2 + (z − z′)2

(13)

f(x) = 0⇒ z′ = z ±
√
c2t2 − ρ2, (14)

in the way that

δ(t−
√
ρ2 + (z − z′)2/c) =

δ
[
z′ −

(
z +

√
c2t2 − ρ2

)]
1
c

√
c2t2−ρ2√

ρ2+(z−z′)2

+
δ
[
z′ −

(
z −

√
c2t2 − ρ2

)]
1
c

√
c2t2−ρ2√

ρ2+(z−z′)2

. (15)

Coming back to Ψ(r, t) we have

Ψ(r, t) =

∫ ∞
−∞

dz′
δ(t−

√
ρ2 + (z − z′)2/c)√
ρ2 + (z − z′)2

(16)

=

∫ ∞
−∞

dz′c

{
δ
[
z′ −

(
z +

√
c2t2 − ρ2

)]
+ δ

[
z′ −

(
z −

√
c2t2 − ρ2

)]}
√
c2t2 − ρ2

(17)

=

{
2c√

c2t2−ρ2
, c2t2 > ρ2

0, otherwise
=

2cΘ(ct− ρ)√
c2t2 − ρ2

�. (18)
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This represents a cylindrical expanding shell.
b) Following the same idea from the previous item, we can write a �ashing sheet source at x = 0

in the retarded time as
f(r′, t′) = δ(x′)δ(t′)

[f(r′, t′)]ret = δ(x′)δ(t− |r− r′|/c). (19)
And, again, taking the three dimensional retarded solution

Ψ(r, t) =

∫
d3r′

[f(r′, t′)]ret
|r− r′|

=

∫
d3r′

δ(x′)δ(t− |r− r′|/c)
|r− r′|

(20)

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ ∞
−∞

dz′
δ(x′)δ(t−

√
(x− x′)2 + (y − y′)2 + (z − z′)2/c)√

(x− x′)2 + (y − y′)2 + (z − z′)2
(21)

=

∫ ∞
−∞

dy′
∫ ∞
−∞

dz′
δ(t−

√
x2 + (y − y′)2 + (z − z′)2/c)√
x2 + (y − y′)2 + (z − z′)2

. (22)

To solve this integral we need to take care that, due to symmetry, we can set the origin of the
observation point anywhere we want. Choosing “smartly” we can set that on y = z = 0. In this
way, we can even change it for polar coordinates such that ρ′ = (y′)2 + (z′)2, obtaining

Ψ(r, t) =

∫ ∞
−∞

dy′
∫ ∞
−∞

dz′
δ(t−

√
x2 + (y′)2 + (z′)2/c)√

x2 + (y − y′)2 + (z − z′)2
(23)

=

∫ 2π

0

dθ

∫ ∞
0

dρ′ρ′
δ(t−

√
x2 + (ρ′)2/c)√
x2 + (ρ′)2

(24)

= 2π

∫ ∞
0

dρ′ρ′
δ(t−

√
x2 + (ρ′)2/c)√
x2 + (ρ′)2

. (25)

Here, guess what, we can use the Delta property again looking the terms:
x = ρ′ (26)

f(x) = t−
√
x2 + (ρ′)2/c (27)

df

dx
=

d

dρ′

[
t−
√
x2 + (ρ′)2/c

]
= −1

c

ρ′√
x2 + (ρ′)2

(28)

f(x) = 0⇒ ρ′ = ±
√
c2t2 − x2. (29)

Putting all this together, we have

δ[t−
√
x2 + (ρ′)2/c] =

δ
[
ρ′ −
√
c2t2 − x2

]
1
c

√
c2t2−x2√
x2+(ρ′)2

+

���
���

���
��

δ
[
ρ′ +
√
c2t2 − x2

]
1
c

√
c2t2−x2√
x2+(ρ′)2

, (30)

because the radial coordinate can only be positive! Therefore,

Ψ(r, t) = 2π

∫ ∞
0

dρ′ρ′
δ(t−

√
x2 + (ρ′)2/c)√
x2 + (ρ′)2

(31)

= 2πc

∫ ∞
0

dρ′ρ′
δ
[
ρ′ −
√
c2t2 − x2

]
√
c2t2 − x2

(32)

=

{
2πc, c2t2 > |x|
0, otherwise

= 2πcΘ(ct− |x|)�. (33)

This represents a plane traveling in the positive x direction and a plane traveling in the negative x
direction, both starting at x = 0.
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2 Question (1 point)
a) Find the �elds (E and B), the charge ρ and the current distribution J corresponding to

V (r, t) = 0,A(r, t) =
−1

4πε0

qt

r2
r̂. (34)

b) Use the gauge function λ = −1
4πε0

qt
r
to transform the potentials and comment the result.

c) Are the potentials of the item (a) in Coulomb gauge? Are they in Lorentz gauge? (Notice that
these gauges are not mutually exclusive).

2.1 Solution
a) Given the potentials, we can �nd the �elds E and B as follows

E = −�
��~∇V 0 − ∂A

∂t
=

1

4πε0

q

r2
r̂ (35)

B = ~∇×A = 0. (36)

By this we can already argument what is this object (“it is a kind of obvious”), but, computing the
charge and distribution, we have

ρ = ε0~∇ · E =
q

4π
~∇ ·
(
r̂

r2

)
= qδ(r) (37)

J =
1

µ0

~∇×B− ε0
∂E

∂t
= 0. (38)

b) Using λ as our gauge function we obtain

V ′ = ��V
0 − ∂λ

∂t
=

1

4πε0

q

r
(39)

A′ = A + ~∇λ =
−1

4πε0

qt

r2
r̂ +

(
−qt
4πε0

)(
r̂

r2

)
= 0. (40)

Thus, the potential λ transforms the potentials of the item (a) into just the potentials for a stationary
point of charge q.

c) To say anything about the chosen gauge for the potentials of the item (a) we need to compute
the following quantities:

~∇ ·A = − qt

4πε0
~∇ ·
(
r̂

r2

)
= −qt

ε0
δ(r), (41)

∇2V = 0, (42)
∂V

∂t
= 0. (43)

As all these quantities are di�erent of Coulomb (~∇·A = 0 and∇2V = −ρ/ε0) and Lorentz (~∇·A =
−µ0ε0

∂V
∂t

), they do not follow any one of these gauges.
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3 Question (2 point)
A very long linear wire has the following current

i(t) = αt, t ≥ 0.

Determine the potentials (scalar and vectorial) and �elds (electric and magnetic) generated at a distance
ρ from the wire. Hint: use the retarded expressions for the potentials.

Figure 1: A long linear wire with current varying with time. It is represented a point of observation
at a distance ρ from the wire.

3.1 Solution
As we have a temporal dependence with the current, we can determine the potentials using the
retarded potentials

Φ(r, t) =
1

4πε0

∫
d3r′

[ρ(r′, t′)]ret
|r− r′|

, (44)

A(r, t) =
µ0

4π

∫
d3r′

[J(r′, t′)]ret
|r− r′|

. (45)

As the exercise does not mention any charge, the wire is electrically neutral, then, ρ = 0 and, as
consequence

Φ(r, t) = 0.

Computing the vector potential we can write

A(r, t) =
µ0

4π

∫
d3r′

[J(r′, t′)]ret
|r− r′|

(46)

=
µ0

4π

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ ∞
−∞

dz′
[i(t′)δ(x′)δ(y′)ẑ]ret√

(x− x′)2 + (y − y′)2 + (z − z′)2
|z=0 (47)

=
µ0

4π

∫ ∞
−∞

dz′
[i(t′)ẑ]ret√

x2 + y2 + (z′)2
=
µ0

4π

∫ ∞
−∞

dz′
[i(t′)ẑ]ret√
ρ2 + (z′)2

, (48)
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where, for simplicity we take z = 0 (and to compute the quantities according to the coordinate ρ).
Here we can consider that the retarded time could be written as

tret ≥ 0⇒ tret = t− R

c
≥ 0 (49)

R =
√
ρ2 + (z′)2 ⇒ |z′| ≤

√
c2t2 − ρ2. (50)

Therefore,

A(r, t) =
µ0

4π

∫ ∞
−∞

dz′
[i(t′)ẑ]ret√
ρ2 + (z′)2

=
µ0

4π

∫ √c2t2−ρ2

−
√
c2t2−ρ2

dz′
α

(
t−
√
ρ2+(z′)2

c

)
√
ρ2 + (z′)2

ẑ (51)

=
µ0α

4π

[∫ √c2t2−ρ2

−
√
c2t2−ρ2

dz′
t√

ρ2 + (z′)2
−
∫ √c2t2−ρ2

−
√
c2t2−ρ2

dz′

c

]
ẑ (52)

=
µ0α

4π

[
2

∫ √c2t2−ρ2

0

dz′
t√

ρ2 + (z′)2
− 2

√
c2t2 − ρ2

c

]
ẑ (53)

=
µ0α

2π

[∫ √c2t2−ρ2

0

dz′
t√

ρ2 + (z′)2
−
√
c2t2 − ρ2

c

]
ẑ (54)

(55)

We can solve the �rst integral performing the change of variables

tan θ =
z′

ρ
⇒ dz′

ρ
= sec2 θdθ (56)

I =

∫
dz′√

ρ2 + (z′)2
=

∫
sec2 θdθ

sec θ
=

∫
dθ sec θ (57)

= ln (sec θ + tan θ) = ln

[√
(z′)2 + ρ2

ρ
+
z′

ρ

]
. (58)

Replacing this result in the above integral we �nally got

A(r, t) =
µ0α

2π

[∫ √c2t2−ρ2

0

dz′
t√

ρ2 + (z′)2
−
√
c2t2 − ρ2

c

]
ẑ (59)

=
µ0α

2π

t
[

ln

(√
(z′)2 + ρ2

ρ
+
z′

ρ

)]z′=√c2t2−ρ2

z′=0

−
√
c2t2 − ρ2

c

 ẑ (60)

=
µ0α

2π

{
t ln

[
ct

ρ
+

√
c2t2 − ρ2

ρ

]
− ln 1−

√
c2t2 − ρ2

c

}
ẑ (61)

=
µ0α

2π

{
t ln

[
ct

ρ
+

√
c2t2 − ρ2

ρ

]
−
√
c2t2 − ρ2

c

}
ẑ. (62)
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And we compute the �elds by de�nition

E = −�
��~∇Φ0 − ∂A

∂t
(63)

=
µ0α

2π

ln

[
ct

ρ
+

√
c2t2 − ρ2

ρ

]
+ t

c
ρ

+ 2c2t

2ρ
√
c2t2−ρ2[

ct
ρ

+

√
c2t2−ρ2
ρ

] − 2c2t

2c
√
c2t2 − ρ2

 ẑ (64)

=
µ0α

2π

ln

[
ct

ρ
+

√
c2t2 − ρ2

ρ

]
+

ct+ c2t2√
c2t2−ρ2[

ct+
√
c2t2 − ρ2

] − ct

c
√
c2t2 − ρ2

 ẑ (65)

=
µ0α

2π

{
ln

[
ct+

√
c2t2 − ρ2

ρ

]
+

��
���

��ct

c
√
c2t2 − ρ2

−
��

���
��ct

c
√
c2t2 − ρ2

}
ẑ (66)

=
µ0α

2π

[
ln

(
ct+

√
c2t2 − ρ2

ρ

)]
ẑ (67)

B = ~∇×A (68)

=

[
1

ρ�
�
�∂Az

∂θ
−

�
�
�∂Aθ

∂z

]
ρ̂+

[
�
�
�∂Aρ

∂z
− ∂Az

∂ρ

]
θ̂ +

[
�

�
�
�∂(ρAθ)

∂ρ
−

�
�
�∂Aρ

∂θ

]
ẑ

ρ
(69)

= −µ0α

2π

t
− ct
ρ2

+
− ρ2√

c2t2−ρ2
−
√
c2t2−ρ2

ρ2[
ct
ρ

+

√
c2t2−ρ2
ρ

] +
ρ

c
√
c2t2 − ρ2

 θ̂ (70)

= −µ0α

2π

t
− ct
ρ2

+
− ρ2√

c2t2−ρ2
−
√
c2t2−ρ2

ρ2[
ct
ρ

+

√
c2t2−ρ2
ρ

] +
ρ

c
√
c2t2 − ρ2

 θ̂ (71)

=
µ0α

2π

[
tρ√

c2t2 − ρ2(ct+
√
c2t2 − ρ2)

+
t

ρ
− ρ

c
√
c2t2 − ρ2

]
θ̂. (72)

At the same time, we could use the matnetic �eld as

B = ~∇×A (73)

=

[
1

ρ�
�
�∂Az

∂θ
−

�
�
�∂Aθ

∂z

]
ρ̂+

[
�
�
�∂Aρ

∂z
− ∂Az

∂ρ

]
θ̂ +

[
�

�
�
�∂(ρAθ)

∂ρ
−

�
�
�∂Aρ

∂θ

]
ẑ

ρ
(74)

= −µ0α

2π

{
−ct2

ρ
√
c2t2 − ρ2

+
ρ

c
√
c2t2 − ρ2

}
θ̂ =

µ0α

2πρc

√
c2t2 − ρ2θ̂. (75)

4 Question (1 point)
a) Show that the mixed form of the electromagnetic �eld tensor is given by

[F µ
ν ] =


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 . (76)
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b) Verify that the equations

∂νF
µν = µ0j

µ (77)
∂σFµν + ∂µFνσ + ∂νFσµ = 0 (78)

are equivalent to the Maxwell equations.

c) Verify that the Lorentz force
dp

dt
= q (E + v ×B) (79)

and the rate at which the electromagnetic �eld imparts energy E to the particles

dE

dt
= F · v = qE · v (80)

may be brought together in the single equation

dpµ

dτ
= qF µ

νu
ν . (81)

4.1 Solution
a) Starting from the covariant form of the electromagnetic �eld tensor we can rising the µ index just
using the Minkowski metric as a simple matrix multiplication

F µ
ν = ηµσFσν (82)

[F µ
ν ] =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 (83)

=


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

�. (84)

b) Taking all the de�nitions as: the electromagnetic contravariant �eld tensor, the current and
the derivative

[F µν ] =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 . (85)

jµ = (cρ,J) (86)

∂µ =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
(87)
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we can start to prove the �rst property taking each one of the components

µ = 0⇒ 1

c

∂0

∂t
+

1

c

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)
= µ0cρ (88)

⇒ ~∇ · E =
ρ

ε0
(89)

µ = 1⇒ −1

c

∂Ex
∂t

+
∂Bz

∂y
− ∂By

∂z
= µ0Jx (90)

µ = 2⇒ −1

c

∂Ey
∂t
− ∂Bz

∂x
+
∂Bx

∂z
= µ0Jy (91)

µ = 3⇒ −1

c

∂Ez
∂t

+
∂By

∂x
− ∂Bx

∂y
= µ0Jz (92)

⇒ −1

c

∂E

∂t
+ ~∇×B = µ0J, (93)

where we have used that c2 = 1/(µ0ε0). Then, expanding the second property, but now taking the
covariant form of the electromagnetic tensor �eld

[Fµν ] =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 (94)

we have for the indexes: (0, 1, 2, 3) = (t, x, y, z)

∂2F01 + ∂0F12 + ∂1F20 = 0⇒ −1

c

∂Ex
∂y

+
1

c

∂Bz

∂t
+

1

c

∂Ey
∂x

= 0 (95)

∂3F01 + ∂0F13 + ∂1F30 = 0⇒ −1

c

∂Ex
∂z
− 1

c

∂By

∂t
+

1

c

∂Ez
∂x

= 0 (96)

∂3F02 + ∂0F23 + ∂2F30 = 0⇒ −1

c

∂Ey
∂z

+
1

c

∂Bx

∂t
+

1

c

∂Ez
∂y

= 0 (97)

⇒ ~∇× E = −∂B
∂t

(98)

∂3F12 + ∂1F23 + ∂2F31 = 0⇒ ∂Bz

∂z
+
∂Bx

∂x
+
∂Bz

∂z
= 0 (99)

⇒ ~∇ ·B = 0. (100)

c) To write this equation we need to take in mind the de�nitions of each quantity, which are:
the 4-momentum, the 4-velocity, the derivative of the 4-momentum with respect to τ and use the
mixed form of the electromagnetic tensor �eld:

pµ =

(
E

c
,p

)
(101)

uµ =
dt

dτ
vµ = γ (c,v) (102)

dpµ

dτ
=
dt

dτ

dpµ

dt
= γ

dpµ

dt
= γ

(
E

c
,
dp

dt

)
. (103)
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Thus, we can open the expression that we want to show that we can write, in the reverse process

dpµ

dτ
= qF µ

νu
ν (104)

= −qγ


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0




c
vx
vy
vz

 (105)

= qγ


(Exvx + Eyvy + Ezvz)/c
Ex +Bzvy −Byvz
Ey −Bzvx +Bxvz
Ez +Byvx −Bxvy

 (106)

dp0

dτ
= γ

dp0

dt
=
γ

c

dE

dt
= qγ

E · v
c
⇒ dE

dt
= F · v = qE · v� (107)

dp

dτ
= γ

dp

dt
= qγ (E + v ×B)⇒ dp

dt
= (E + v ×B)� (108)

5 Question (2 points)
a) Show that under a boost in the x direction the components of the electric �eld intensity E and the
magnetic �eld induction B transform according to

E ′x = Ex
E ′y = γ (Ey − vBz)
E ′z = γ (Ez + vBy)


B′x = Bx

B′y = γ (By + vEz/c
2)

B′z = γ (Bz − vEy/c2)
(109)

b) In a certain inertial frame S, the electric �eld E and the magnetic �eld B are neither parallel
nor perpendicular, at a particular space-time point. Show that in a di�erent inertial system S̄, moving
relative to S with velocity v is given by

v

1 + v2/c2
=

E×B

B2 + E2/c2
, (110)

the �elds Ē and B̄ are parallel at that point. Is there a frame in which the two are perpendicular? Hint:
choose the directions in the inertial frame S so that E points in the z direction and B in the yz plane
with φ angle for z.

5.1 Solution
a) The Lorentz transformation (boost in x) can be represented by

[Λµ′

ν ] =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1

 . (111)

10



In this way, we can write

F µ′ν′ = FαβΛµ′

α Λν′

β = Λµ′

α F
αβΛν′

β (112)
[F µ′ν′ ] = [Λ][Fαβ][ΛT ] (113)

=


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0




γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1



=


0 Ex/c γ(Ey − vBz)/c γ(Ez + vBy)/c

−Ex/c 0 γ(−vEy/c2 +Bz) −γ(vEz/c
2 −By)

γ(−Ey +Bzv)/c γ(vEy/c
2 −Bz) 0 Bx

−γ(Ez +Byv)/c γ(vEz/c
2 +By) −Bx 0

 (114)

what exactly is the relations that we want to prove looking at each component of this result and
comparing to the electromagnetic �eld contracovariant tensor.

b) We can choose the directions in the inertial frame S so that, for instance, E points in the z
direction and B in the yz plane. Then,

E = (0, 0, E), (115)
B = [0, B cosφ,B sinφ] . (116)

Using the relations from the previous item, the �elds in the S̄ frame are

Ē = [0,−γvB sinφ, γ (E + vB cosφ)] , (117)
B̄ =

[
0, γ

(
B cosφ+ vE/c2

)
, γB sinφ

]
. (118)

In this way, saying that they are parallel �elds is equivalent to say that these components satis�es
the fraction

Ex
Bx

=
Ey
By

(119)

−γvB sinφ

γ (B cosφ+ vE/c2)
=
γ (E + vB cosφ)

γB sinφ
(120)

−vB2 sin2 φ = EB cosφ+ vE2/c2 + vB2 cos2 φ+ v2BE cosφ/c2 (121)

0 = vB2 + EB cosφ

(
1 +

v2

c2

)
+
v1

c2
E2 (122)

0 = v
(
B2 + E2/c2

)
+ EB cosφ

(
1 +

v2

c2

)
(123)

v

(1 + v2/c2)
= − EB cosφ

(B2 + E2/c2)
=

−E×B

(B2 + E2/c2)
(124)

E×B = −EB cosφx̂ (125)
v

1 + v2/c2
=

E×B

B2 + E2/c2
�. (126)

Notice that, in both reference frames we have the quantity

E ·B|S = EB sinφ (127)
E ·B|S̄ = −γ2vB sinφ

(
����B cosφ + vE/c2

)
+ γ2B sinφ (E + �����vB cosφ) (128)

= EB sinφ (129)
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is invariant! Therefore, there is no way to exist a reference frame where both �elds are perpendicular
because E ·B 6= 0!

6 Question (1 point)
A uniform charge distribution of proper density ρ0 is at rest in an inertial frame K . Show that and
observer with a velocity v relative to K sees a charge density γρ0 and a current density −γρ0v.

6.1 Solution
We can write the general 4-current vector as

jµ = (cρ,J) .

For a charge with ρ0 in K we have
jµ =

(
cρ0,~0

)
and for an observer in K ′ with v we got

jµ
′
= (cρ′,J′) .

We can do the Lorentz transformation as

jµ
′
= Λµ′

ν j
ν

taking, for simplicity v = (v, 0, 0):

[jµ
′
] =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1



cρ0

0
0
0

 =


γcρ0

−γvρ0

0
0

 . (130)

Therefore, the observer sees
jµ
′
= (γcρ0,−γρ0v)

which means

• Charge density: γρ0

• Current density: −γρ0v .

7 Question (1 point)
Verify that Ohm’s law J = σE can be written as

jµ +
1

c2
uµuνj

ν = σuνF
µν

where σ is the conductivity and uµ is the 4-velocity.
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7.1 Solution
We know that

jµ = (cρ,J)

and that the electromagnetic contravariant tensor �eld is

[F µν ] =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 . (131)

(132)

Taking the rest frame of the electrons we can write the 4-velocity as

uµ =
(
c,~0
)

uµ =
(
−c,~0

)
.

In this way, expanding the expression that we need to prove into the components, we get

µ = 0⇒ j0 +
1

c2
u0uνj

ν = σuνF
0ν ⇒ cρ+

1

c2

(
−c2ρc+ 0

)
⇒ 0 = 0 (133)

µ = i⇒ ji −����uiuνj
ν 0 = σuνF

iν ⇒ ji = σEi (134)
J = σE�. (135)

8 Question (1 point)
An electromagnetic plane wave of frequency ω is traveling in the x direction through the vacuum. It is
polarized in the y direction and the amplitude of the electric �eld is E0.

a)Write down the electric E(r, t) and magnetic �elds B(r, t).

b) This same wave is observed from an inertial system S̄ moving in the x direction with speed v
relative to the original system S. Find the electric and magnetic �elds in S̄ and express them in terms
of the S̄ coordinates: Ē(r̄, t̄) and B̄(r̄, t̄).

c)What is the frequency ω̄ of the wave in S̄? Interpret this results. What is the wavelength λ̄ of the
wave in S̄? From ω̄ and λ̄, determine the speed of the waves in S̄. Is it what you expected? Why?

d) What is the ratio of the intensity in S̄ to the intensity in S? And what about the amplitude,
frequency and intensity of the wave, as v approaches c?

8.1 Solution
a) In a general way, we can write the plane waves, in the reference S as

E(x, y, z, t) = E0e
i(kx−ωt)ŷ (136)

B(x, y, z, t) =
E0

c
ei(kx−ωt)ẑ, (137)
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where we obtain the direction of B using: B0 = x̂× E0/c and ω = kc.

b) Using the equations of the exercise 5 we obtain
Ēx = Ex
Ēy = γ (Ey − vBz)
Ēz = γ (Ez + vBy)


B̄x = Bx

B̄y = γ (By + vEz/c
2)

B̄z = γ (Bz − vEy/c2)
(138)

where here

Ēx = Ēz = B̄x = B̄y = 0 (139)

Ēy = γ
[
E0e

i(kx−ωt) − v

c
E0e

i(kx−ωt)
]

(140)

B̄z = γ
[
E0e

i(kx−ωt) − v

c
E0e

i(kx−ωt)
]
. (141)

In other lines,

Ē = γE0e
i(kx−ωt)

(
1− v

c

)
ŷ (142)

B̄ = γE0e
i(kx−ωt)

(
1− v

c

)
ẑ. (143)

But we still need to change the space and time variables using Lorentz transformations:

x = γ (x̄+ vt̄) (144)

t = γ
(
t̄+

v

c2
x̄
)

(145)

kx− ωt = γ
[
k (x̄+ vt̄)− ω

(
t̄+

v

c2
x̄
)]

(146)

= γ
[(
k − ωv

c2

)
x̄− (ω − kv) t̄

]
(147)

= k̄ω̄ − ω̄t, (148)

where, of course,

k̄ = γ
(
k − ωv

c2

)
= γk

(
1− v

c

)
, (149)

ω̄ = γ (ω − kv) = γω
(

1− v

c

)
. (150)

Finally,

Ē = γE0e
i(k̄x̄−ω̄t̄)

(
1− v

c

)
ŷ (151)

B̄ = γE0e
i(k̄x̄−ω̄t̄)

(
1− v

c

)
ẑ, (152)

with the parameters explained above.
c) As already showed in the previous item, but doing some beauti�cation

ω̄ = γ (ω − kv) = γω
(

1− v

c

)
(153)

= ω

√√√√ (
1− v

c

)2(
1− v

c

) (
1 + v

c

) = ω

√(
1− v

c

)(
1 + v

c

) . (154)
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This is the something like the Doppler shift for light!
The wavelength is computed as following

λ̄ =
2π

k̄
=

2π

γk (1− v/c)
=

λ

γ (1− v/c)
. (155)

In this way, the velocity in this new reference is

v̄ =
λ̄ω̄

2π
=

[
λ

γ(1−v/c)

] [
γω
(
1− v

c

)]
2π

= c. (156)

It is very good to obtain the result, exactly because we hope that light does not change its value
independently of the reference frame!

d) The ratio of the intensities if given by

R =
Ī

I
=

(Ē)2

E2
= γ2

(
1− v

c

)2

=

(
1− v

c

)(
1 + v

c

) . (157)

Taking the limit
lim
v→c

R = 0. (158)

Then, the ratio of the intensity goes to zero in this limit! The same happens to the amplitude and
the frequency.
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