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[RC] Example 5.16.

A classic example of the EM algorithm is a genetics
problem [DLR] where observations (x1, x2, x3, x4) are
gathered from the multinomial distribution

(x1, x2, x3, x4) ∼ M
(
n;

1

2
+

θ

4
,
1

4
(1− θ),

1

4
(1− θ),

θ

4

)
with n = x1 + x2 + x3 + x4. Thus the observed likeli-
hood

L(θ | x1, x2, x3, x4) ∝ (2 + θ)x1θx4(1− θ)x2+x3.
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[RC] Example 5.16.

Estimation is easier if the x1 cell is split into two cells,
so we create the augmented model

(z1, z2, x2, x3, x4) ∼ M
(
n;

1

2
,
θ

4
,
1

4
(1− θ),

1

4
(1− θ),

θ

4

)
,

with x1 = z1 + z2. Thus the complete likelihood

Lc(θ | z1, z2, x2, x3, x4) ∝ θz2+x4(1− θ)x2+x3.

Note that

Z2 | x1 ∼ B
(
x1,

θ

θ +2

)
and Eθ(Z2 | x1) =

θ

θ +2
x1.
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[RC] Example 5.16.

The expected complete log-likelihood function is

Eθ0

(
(Z2 + x4) log θ + (x2 + x3) log(1− θ)

)
=

( θ0

θ0 +2
x1 + x4

)
log θ + (x2 + x3) log(1− θ),

which can easily be maximized in θ, leading to the
EM step

θ̂1 =
{ θ0x1

2+ θ0
+ x4

}
/
{ θ0x1

2+ θ0
+ x2 + x3 + x4

}
.
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[RC] Example 5.16.

A Monte Carlo EM solution would replace the expectation θ0x1/(2+
θ0) with the empirical average

z̄m =
1

m

m∑
i=1

zi,

where the zi are simulated from a binomial distribution B(x1, θ0/(2+
θ0)), or, equivalently, by

mz̄m ∼ B(mx1, θ0/(2 + θ0)).

The MCEM step would then be

ˆ̂θ =
z̄m + x4

z̄m + x2 + x3 + x4
→ θ̂,

when m grows to infinity.

This example is merely a formal illustration of the Monte Carlo
EM algorithm and its convergence properties since EM can be
applied.
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[RC] Example 5.17. The next example, however, details a sit-
uation in which the E-step is too complicated to be implemented
and where the Monte Carlo EM algorithm provides a realistic (if
not straightforward) alternative.

A simple random effect logit model processed in Booth and
Hobert (1999) represents observations yij(i = 1, ..., n, j = 1, ...,m)
as distributed conditionally on one covariate xij as a logit model

P (yij = 1 | xij, ui, β) =
exp(βxij + ui)

1 + exp(βxij + ui)
,

where ui ∼ N(0, σ2) is an unobserved random effect. The vec-
tor of random effects (U1, ..., Un) therefore corresponds to the
missing data Z. When considering Q(θ′ | θ,x,y), with θ = (β, σ)

Q(θ′ | θ,x,y) =
∑
i,j

yijE
(
β′xij + Ui | β, σ,x,y

)
−
∑
i,j

E

(
log(1 + exp(β′xij + Ui)) | β, σ,x,y

)
−
∑

i

E

(
U2
i | β, σ,x,y

)
/2(σ′)2 − n logσ′,
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[RC] Example 5.17. When considering Q(θ′ | θ,x,y), with
θ = (β, σ)

Q(θ′ | θ,x,y) =
∑
i,j

yijE
(
β′xij + Ui | β, σ,x,y

)
−
∑
i,j

E

(
log(1 + exp(β′xij + Ui)) | β, σ,x,y

)
−
∑

i

E

(
U2
i | β, σ,x,y

)
/2(σ′)2 − n logσ′,

it is impossible to compute the expectations in Ui. Were those
available, the M-step would then be almost straightforward since
maximizing Q(θ′ | θ,x,y) in σ′ leads to

(σ′)2 =
1

n

∑
i

E

(
U2
i | β, σ,x,y

)
maximizing Q(θ′ | θ,x,y) in β′ produces the fixed-point equation∑

i,j

yijxij =
∑
i,j

xijE

(
exp(β′xij + Ui)

1 + exp(β′xij + Ui)

∣∣∣β, σ,x,y)
which is not particularly easy to solve in β.
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[RC] Example 5.17.

The alternative to EM is therefore to simulate the Ui’s condi-
tional on β, σ,x,y in order to replace the expectations above with
Monte Carlo approximations. While a direct simulation from

π(ui | β, σ,x,y) ∝
exp

{∑
j
yijui − u2

i /2σ
2

}
∏

j

(
1+ exp(βxij + ui)

)
is feasible ([BH] Booth and Hobert, 1999), it requires some
preliminary tuning better avoided at this stage, and it is thus
easier to implement an MCMC version of the simulation of the
ui’s toward the approximations of both expectations.



Aula 7. Optimization Methods II. 8

[FZ] First Exercise.

“Suppose that the lifetime of litebulbs follows an ex-
ponential distribution with unknown mean θ. A total
of M +N litebulbs are tested in two independent ex-
periments. In the first experiment, with N bulbs, the
exact lifetime y1, . . . , yN are recorded. In the second
experiment, the experimenter enters the laboratory at
some time t > 0, and all she registers is that some
of the M litebulbs are still burning, while the others
have expired. Thus, the results from the second ex-
periment are right- or left-censored, and the available
data are indicators E1, . . . , EM”

Ei =

{
1, if the bulb i is still burning,
0, if light is out.
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[FZ] First Exercise.

The observed data from both the experiments combined denote

y = (y1, . . . , yN , E1, . . . , EM)

and the unobserved data is

X = (X1, . . . , XM).

The complete log-likelihood is

ℓc(θ;y, X) = log
( N∏

i=1

exp(−yi/θ)

θ

M∏
i=1

exp(−Xi/θ)

θ

)
= −N

(
ln θ + ȳ/θ

)
−

M∑
i=1

(
ln θ +Xi/θ

)
,

which is linear in the unobserved Xi. But

E(Xi | y) = E(Xi | Ei) =

{
t+ θ, if Ei = 1,

θ − t exp(−t/θ)
1−exp(−t/θ)

, if Ei = 0.
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[FZ] First Exercise.

The E-step consists of replacing Xi by its expected value E(Xi |
y) using the current value θt. Denote Z =

∑M

i=1
Zi. Thus

Q(θ | θt) = Eℓc(θ;y, X) = −N
(
ln θ + ȳ/θ

)
−

M∑
i=1

(
ln θ + E(Xi | Ei)/θ

)
= −(N +M) ln θ −

1

θ

(
Nȳ + Z(t+ θt) + (M − Z)

(
θt −

t exp(−t/θt)

1− exp(−t/θt)

))
.

The M-step yields

θt+1 = F (θt) = argmax
θ

Q(θ | θt)

=
1

N +M

(
Nȳ + Z(t+ θt) + (M − Z)

(
θt −

t exp(−t/θt)

1− exp(−t/θt)

))
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[FZ] First Exercise.

“The self-consistency equation θ = F (θ) has no ex-
plicit solution unless Z = M (i.e., all litebulds in the
second experiment are still on at time t); in this case,
we obtain the well-known solution

θ̂ =
Nȳ +Mt

N
.

”
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[FZ] Second Exercise.

“Contrary to litebulbs, lifetime of havybulbs follow a
uniform distribution in the interval (0, θ], where θ is
unknown. Suppose the same experiments are per-
formed as in the first exercise, and again the second
experimenter registers only that Z out of M havybulbs
are still burning at time t, while M − Z have expired.

... We know that for (hypothetical) complete data,
the MLE would be max{Ymax, Xmax}, where Ymax is
the largest of the observed lifetimes, and Xmax is the
largest of the unobserved lifetimes.”
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[FZ] Second Exercise.

“Assume for simplicity that Z ≥ 1, so that we are sure that θ ≥ t.
Then

E(Xi | Ei) =

{
1
2
(t+ θ), if Ei = 1,

1
2
t, if Ei = 0,

Thus, following the “rule” (substitute the Xi by its expectation
in maximum likelihood estimator) we obtain

θt+1 = F (θt) ≡ max
{
Ymax,

1

2
(t+ θt)

}
.

“Starting with some θ0 > 0, iterations will converge to the so-
lution θ̂ = max{Ymax, t}, and this conclusion may be obtained
easily by noticing that the self-consistency equation θ = F (θ) is
solved by θ̂.

The main advantage of this solution is its simplicity. Its main
disadvantage is that it is wrong.”
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[FZ] Second Exercise.

The joint likelihood function for the observed data is

L(θ) = θ−N
1[Ymax,∞)(θ)

( t

max(t, θ)

)M−Z(
1−

t

max(t, θ)

)Z
.

Note that if Z = 0, then

L(θ) = θ−N
1[Ymax,∞)(θ)

( t

max(t, θ)

)M
,

“which is decreasing for θ ≥ Ymax, and therefore the
maximum likelihood estimator is θ̂ = Ymax.
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[FZ] Second Exercise. The joint likelihood function for the
observed data is

L(θ) = θ−N
1[Ymax,∞)(θ)

(
t

max(t, θ)

)M−Z(
1−

t

max(t, θ)

)Z

.

Note that if Z ≥ 1, then θ ≥ t, and

L(θ) = θ−N
1[Ymax,∞)(θ)

(
t

θ

)M−Z(
1−

t

θ

)Z

= tM−Z
1[Ymax,∞)(θ)θ

−(N+M)(θ − t)Z.

For θ ≥ t the function θ−(N+M)(θ − t)Z has a unique maximum
in θ̄ = N+M

N+M−Z
t and is monotonically decreasing for θ ≥ θ̄. Thus

summarizing the results the likelihood function estimator is

θ̂ =
{

θ̄, if θ̄ > Ymax and Z ≥ 1,
Ymax, otherwise. (θ̂ = max{Ymax, t})
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[FZ] Second Exercise.

“Why is the solution given by the EM algorithm wrong?
The answer is simple: the EM algorithm in not ap-
plicable because the log-likelihood function does not
exist for all θ > 0, which means that its expected
value is not defined.”



Aula 7. Optimization Methods II. 17

[FZ] Second Exercise.

“Indeed, assume that one heavybulb has survived time t, and let
Xm be its (unobserved) lifetime. The unconditioned distribution
of Xm is U [0, θ]. In E-step we need to find Q(θ | θt). The
conditional expectation of Xm is calculated conditioning on the
event Xm > t and using θt as a parameter, thus Xm|Y has uniform
U [t, θt] distribution. Now, for all θ < θt the unconditioned density
of Xm

fθ(x) =
{

1/θ, if 0 ≤ x ≤ θ,
0, elsewhere.

takes value 0 with positive probability, and hence Q(θ | θt) does
not exist for θ < θt. This could be seen from the observed data
likelihood function, but in the rush of applying the EM algorithm,
it is easy to skip this check.”
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[H] About Second Exercise of [FZ].

Let the EM algorithm start at some θ0 > max{Ymax, t}. In [H] it
is shown that “the EM algorithm in this example converges to
θ0 – in other words, it never goes anywhere once initialized!”

Q(θ | θ0) =
{

−(N +M) log θ, if θ ≥ θ0,
−∞, if 0 < θ < θ0.

“Since Q(θ | θ0) is strictly decreasing on [θ0,∞) and strictly less
than Q(θ0 | θ0) on (0, θ0), setting θ1 equal to the maximizer
of Q(θ | θ0) gives θ1 = θ0. By induction, this EM algorithm is
forever stuck at the initial value.”
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