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[RC] Example 5.16.

A classic example of the EM algorithm is a genetics
problem [DLR] where observations (x1, 2, x3,x4) are
gathered from the multinomial distribution

1 61 1 0
(21,32, 23, 2a) ~ M(ni = + 7,7 (1= 0), (1 = 0), )

with n = x1 + 2o + 23 + 4. Thus the observed likeli-
hood

L(O | x1, 0, x3,24) ox (2 4 0)T0% (1 — §)%12,
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[RC] Example 5.16.

Estimation is easier if the x1 cell is split into two cells,
SO we create the augmented model

1 61 1 7
(Z17Z2733273337334) ~ M( 5 — _( _9)72(1 _9)72)7

with 1 = z1 4+ 2. Thus the complete likelihood
L0 | z1, 22,22, 23,%a) X g=TTe(1 — g)%2TTs,
Note that

0
0+ 2

Zo | xy ~ B(xl, 1.

0+ 2) and [EQ(ZQ | 5131) =
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[RC] Example 5.16.

The expected complete log-likelihood function is
Eg,((Z2 + xa) 109 0 + (w2 + x3) log(1 — 0))

P 90
_ (90 oot M) 109 6 + (z2 + 23) log(1 — 6),

which can easily be maximized in 6, leading to the
EM step

01 = {;f;o +w4}/{29f20 + z2 423+ 334}-
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[RC] Example 5.16.

A Monte Carlo EM solution would replace the expectation 6pz1/(2+
0p) with the empirical average

m

_ 1
Zm = — zz 9
m

1=1

where the z; are simulated from a binomial distribution B(x1,00/(2+
00)), or, equivalently, by

mZzm, ~ B(mzi1,00/(2 4+ 60)).
The MCEM step would then be

= E —|—£[,‘4 ~
0 = n — 0,

Zm + x2 + 3 + 24
when m grows to infinity.

This example is merely a formal illustration of the Monte Carlo
EM algorithm and its convergence properties since EM can be
applied.
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[RC] Example 5.17. The next example, however, details a sit-
uation in which the E-step is too complicated to be implemented
and where the Monte Carlo EM algorithm provides a realistic (if
not straightforward) alternative.

A simple random effect logit model processed in Booth and

Hobert (1999) represents observations y;;(i = 1,...,n,7 = 1,...,m)

as distributed conditionally on one covariate z;; as a logit model
exp(Bzi; + u;)

1 4 exp(Bzi; + wi)’

where u; ~ N(0,02) is an unobserved random effect. The vec-

tor of random effects (Uy,...,U,) therefore corresponds to the
missing data Z. When considering Q(0' | ,x,y), with 8 = (8,0)

QU 0.xy) = Y wkE(B;+Uil|B0xy)

%,J

=) E(log(1 + exp(8'zi; + UD) | B,0,%,y)
i

—E:[E(UZ-2 | B,a,x,y)/Q(a’)2 —nlogo’,

P(yi; = 1| zij,ui, B) =
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[RC] Example 5.17. When considering Q(¢' | 6,x,y), with
0= (B,0)
QU 0,x,y) = Zyijﬁ(ﬁ'fﬁz’j + Ui | B,0,x,y)
i,J
— Z [E(|09(1 + exp(B'zi; + Us)) | B, 0, %, Y)
2%

_Z[E(Ui2 | B,a,x,y)/Q(a’)2 —nlogo’,

it is impossible to compute the expectations in U;. Were those
available, the M-step would then be almost straightforward since
maximizing Q(0' | 0,x,y) in ¢’ leads to

1
N2 2
- — E(U; , 0, X,
(o) n§_ (U2 1 8,0,%,)
maximizing Q(0' | 0,x,y) in 8’ produces the fixed-point equation
exp(8'zi; + U;) )
i Lii — xZ[E , 0,X,
Zyj J Z J <1+eXD(5’xij—|—Uz-) B,0,X,y
1,7 1,
which is not particularly easy to solve in S.
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[RC] Example 5.17.

The alternative to EM is therefore to simulate the U;'s condi-
tional on B, 0,x,y in order to replace the expectations above with
Monte Carlo approximations. While a direct simulation from

exp{zj YijWi — UZ-Q/QUQ}
Hj(l + exp(Bxi; + Ui))

is feasible ([BH] Booth and Hobert, 1999), it requires some
preliminary tuning better avoided at this stage, and it is thus
easier to implement an MCMC version of the simulation of the
u;'S toward the approximations of both expectations.

W(ui | 570-7X7y) X
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[FZ] First Exercise.

“Suppose that the lifetime of litebulbs follows an ex-
ponential distribution with unknown mean 6. A total
of M + N litebulbs are tested in two independent ex-
periments. In the first experiment, with N bulbs, the
exact lifetime y1,...,yny are recorded. In the second
experiment, the experimenter enters the laboratory at
some time t > 0, and all she registers is that some
of the M litebulbs are still burning, while the others
have expired. Thus, the results from the second ex-
periment are right- or left-censored, and the available
data are indicators E1, ..., Ey"

[ 1, if the bulb 7 is still burning,
1 0, iflight is out.
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[FZ] First Exercise.
The observed data from both the experiments combined denote

y:(yla"'ayNaEla"'aEM)
and the unobserved data is
== (Xl,...,XM).

The complete log-likelihood is

Oy, X) = IOg(Hexno( yz/G)Hexp( X/0)>

=1

M
= —N(n6+7/9) Zlne+X@/9)

which is linear in the unobserved X,;. But

t 40, if £, =1,

E(Xi|Y):ﬂ:(Xi|Ei):{ g_lteL(—t% if £; =0
—exp(— ? ¢ )
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[FZ] First Exercise.

The E-step consists of replacing X; by its expected value E(X; |
y) using the current value 6;. Denote Z = Zf\il Z;. Thus

M
Q0| 0,) =Ee(0;y, X) = —N(Ing +7/0) Z N6+ E(X; | E:)/9)
=1

_ 1l B B texp(—t/6:) ))
=~V 420 (NG + 20+ 00 + (1 = 2) (00— 12T )
The M-step yields

Or1 = F(6;) = argmeaXQ(HIGt)

1 _
- N+M(Ny+z<t+et>+<M—z>(et—

texp(—t/6:)
1— exp(—t/@t)))
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[FZ] First Exercise.

“The self-consistency equation 6 = F(6) has no ex-
plicit solution unless Z = M (i.e., all litebulds in the
second experiment are still on at time t); in this case,
we obtain the well-known solution
Ny + Mt

N .

0 =

1
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[FZ] Second Exercise.

“Contrary to litebulbs, lifetime of havybulbs follow a
uniform distribution in the interval (0,0], where 6 is
unknown. Suppose the same experiments are per-
formed as in the first exercise, and again the second
experimenter registers only that Z out of M havybulbs
are still burning at time ¢, while M — Z have expired.

... We know that for (hypothetical) complete data,
the MLE would be max{Ynaz, Xmaz}, Where Yz is
the largest of the observed lifetimes, and X,,.: IS the
largest of the unobserved lifetimes.”
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[FZ] Second Exercise.

“Assume for simplicity that Z > 1, so that we are sure that 6 > ¢.
Then

lt+0), ifE =1,
HX [ B = { 9 if B; =0,
Thus, following the ‘“rule” (substitute the X; by its expectation
in maximum likelihood estimator) we obtain

1
9t—|—1 = F(@t) = max{Ymax, E(t -|— Qt)}

“Starting with some 6y > 0, iterations will converge to the so-
lution § = max{Ymaz,t}, and this conclusion may be obtained
easily by noticing that the self-consistency equation 8§ = F(0) is
solved by 8.

The main advantage of this solution is its simplicity. Its main
disadvantage is that it is wrong.”
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[FZ] Second Exercise.

The joint likelihood function for the observed data is
¢ M—-2Z ¢ A
L) = 61 009( ) (1— )
(9) [¥yu.00) () max(t, 0) max(t, 0)
Note that if Z = 0, then
¢ M
L) =6 N1y (6 ( ) ,
(©) [¥,0r.00) (6) max(t, 0)

“which is decreasing for 6 > Ymaz, and therefore the
maximum likelihood estimator is 0 = Y,uz.
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[FZ] Second Exercise. The joint likelihood function for the
observed data is

L(6) = 6 N1y, ) (6) (%)M_Z(l ;)Z.

max(t, 6) B max(t, 6)
Note that if Z > 1, then 6 > t, and

L(O) = 6 Vi, )(0) (é)M_Z(l‘gf

= M 71 (00T (g )7,

For 6 > t the function - W+M) (9 — ¢t)Z has a unique maximum

. A_ N+M . . . =
in 6 = N+M_Zt and is monotonically decreasing for 8 > 6. Thus

summarizing the results the likelihood function estimator is

g — { 0, if 0> Yo and Z > 1, (0 = max{Yiaz, t})

Yraz, otherwise.
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[FZ] Second Exercise.

“Why is the solution given by the EM algorithm wrong?
The answer is simple: the EM algorithm in not ap-

plicable because the log-likelihood function does not

exist for all 8 > 0, which means that its expected

value is not defined.”
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[FZ] Second Exercise.

“Indeed, assume that one heavybulb has survived time t, and let
X, be its (unobserved) lifetime. The unconditioned distribution
of X,, is U[0,60]. In E-step we need to find Q(6 | 6;). The
conditional expectation of X,, is calculated conditioning on the
event X,, >t and using 6; as a parameter, thus X,,|Y has uniform
Ult, 0:] distribution. Now, for all § < 6; the unconditioned density
of X,

0, elsewhere.
takes value 0 with positive probability, and hence Q(0 | 8;) does
not exist for 0 < 6;. This could be seen from the observed data
likelihood function, but in the rush of applying the EM algorithm,
it is easy to skip this check.”

o) :{ 1/, if0<xz<0,
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[H] About Second Exercise of [FZ].

Let the EM algorithm start at some 6 > max{Ymaz,t}. In [H] it
is shown that ‘the EM algorithm in this example converges to
0o — in other words, it never goes anywhere once initialized!”

_J —(N+M)loge, if 6> 6o,
Q(H‘OO)_{—OO, if 0 <6< 6o.
“Since Q60 | o) is strictly decreasing on [, o) and strictly less
than Q(6o | 6o) on (0,6p), setting 6; equal to the maximizer

of Q(0 | 6p) gives 01 = Op. By induction, this EM algorithm is
forever stuck at the initial value.”
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