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1 
 Frequency Response 

and Bode Plots 
 
 

1.1 Preliminaries 
The steady-state sinusoidal frequency-response of a circuit is described by the phasor transfer 
function ( )H j .  A Bode plot is a graph of the magnitude (in dB) or phase of the transfer 
function versus frequency.  Of course we can easily program the transfer function into a 
computer to make such plots, and for very complicated transfer functions this may be our 
only recourse.  But in many cases the key features of the plot can be quickly sketched by 
hand using some simple rules that identify the impact of the poles and zeroes in shaping the 
frequency response.  The advantage of this approach is the insight it provides on how the 
circuit elements influence the frequency response.  This is especially important in the design 
of frequency-selective circuits.  We will first consider how to generate Bode plots for simple 
poles, and then discuss how to handle the general second-order response.  Before doing this, 
however, it may be helpful to review some properties of transfer functions, the decibel scale, 
and properties of the log function. 

Poles, Zeroes, and Stability 

The s-domain transfer function is always a rational polynomial function of the form 
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As we have seen already, the polynomials in the numerator and denominator are factored to 
find the poles and zeroes; these are the values of s that make the numerator or denominator 
zero.  If we write the zeroes as 1 2 3, ,z z z etc., and similarly write the poles as 1 2 3, ,p p p  , 
then ( )H s  can be written in factored form as 
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The pole and zero locations can be real or complex.  When the roots are real they are called 
simple poles or simple zeros.  When the roots are complex they always occur in pairs that are 
complex conjugates of each other.   

Another important observation is that stable networks must always have poles and zeroes 
in the left-half of the complex s-plane, such that the real parts of the poles/zeroes will be 
negative. As an example, lets assume a stable network with simple poles at 1 1p    and  

2 10p   .  The transfer function would then be 
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Thus for stable networks we always will find terms of the form ( )s a  in the denominator, 
where a  is a positive number.  Students sometimes get confused by the use of ( )s p  or 
( )s a  to represent the same pole location; just remember that the poles are the values of s  
that make the denominator zero, i.e. s p  or s a   in this example; clearly these will 
represent the same pole if p a  , and will represent a stable pole if Re{ } 0a   or 
Re{ } 0p  . 

When there are multiple roots at the same location the denominator will contain factors of 
the form ( )rs a , where r  is an integer that tells us how many times the root is repeated. For 
example, a critically-damped second-order response would have 2r  . 

 When the stable network includes a complex-conjugate pole pair, we can represent the 
pole locations as s j     where   and   are both positive real numbers. The transfer 
function will then have a factor of the form 
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and thus all the coefficients in the denominator are positive, even though the roots in fact 
have negative real parts.    For reasons which will become clear later it is more convenient to 
write the second-order polynomial in the “standard form” 

 2 22 n ns s    (1.5) 

where n  is called the corner frequency or break point, and   is called the damping factor.  
Comparing (1.4) and (1.5) we can relate the corner frequency and damping factor to the poles 
using 

 2 2 2 2/ /n n              (1.6) 

Decibel Scale and Log Functions 

Logarithmic scales are useful when plotting functions that vary over many orders of 
magnitude.  This is certainly the case with electrical signals; for example, the signal received 
by your cell phone is often more than 12 orders of magnitude lower in power than the signal 
transmitted from the base station! In a filter circuit, the magnitude of the transfer function in 
the passband may be several orders of magnitude larger than it is in the stop band. We are 
also interested in the frequency response of circuits over a wide range of frequencies, so it 
makes sense to use a logarithmic scale for frequencies as well as signal intensity.   Electrical 
engineers use the base-ten logarithm function and denote that as “log”, reserving “ln” for the 
natural log function (base e ), such that 

 10log log ln logex x x x   (1.7) 
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This notation is not universal; some computer math programs (such as Mathematica) use 
Log[x] for the natural log.  In order to compute the base-ten log in Mathematica, you have to 
specify the base by writing Log[10, x]. Fortunately all log functions share the following 
useful properties regardless of base 
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The “bel” scale (after inventor Alexander Graham Bell) is defined as the log-base-ten of 
the ratio of two signal “intensities” (quantities relating to the power or energy associated with 
the signal).    In circuits work we are often interested in the output-to-input power ratio, 

/out inP P , but the bel scale can be used to compare any two like quantities (for example, the 
ratio of signal power to carrier in an AM signal, or the ratio of signal power to noise power in 
a certain bandwidth).   Since there are 10 “decibels” per bel the power ratio in dB is defined 
as 

 1010log (power ratio in dB)out

in

P

P
 (1.9) 

Each time the power increases by a factor of ten, the power ratio in dB increases linearly by 
10dB.  Since power is related to the square of voltage or current, the dB scale for those 
quantities becomes (assuming identical source and load impedances1) 
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In most cases our transfer function is a voltage or current ratio, so we will use 20log ( )H j  
to compute the magnitude in dB.  Some important dB conversions to remember are 
summarized below: 

 
|H| |H|dB 
1  20log 1 0 dB  
2   20log 2 10log 2 3 dB 

2  20log 2 6 dB  
4  20log 4 12 dB  
5  20log 5 14 dB  

10  20log 10 20 dB  
 
A logarithmic scale like the dB scale prove to be a great advantage when dealing with circuit 
transfer functions, which are always of the form of a rational polynomial function as in (1.2). 

Two related terms we will use in our discussion of frequency response plots are “decade” 
and “octave”.    A decade change in frequency is a factor of ten.  So, for example, 1 kHz is a 
decade above 100 Hz and a decade below 10 kHz.  An “octave” is a factor of two, so 
similarly 1 kHz is an octave above 500 Hz and an octave below 2 kHz.   

                                                 
1 If the source and load impedances are not the same this shows up as an additive constant in (1.10), 

not especially critical for the discussion of this chapter.   
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1.2 Bode Amplitude Plots 

Simple Poles and Zeroes 

Consider the transfer function of a first-order circuit with a simple pole at 1s   .  The AC 
steady-state frequency-response is determined by letting s j  
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 (1.11) 

The magnitude of the transfer function is then given by 

 
1/22( ) 1H j 


     (1.12) 

This function is plotted in Figure 1-1 below for frequencies that are two orders of magnitude 
above and below 1  ;  clearly the response is quite different on either side of this point.  
The asymptotic behavior for 1  and 1  can be found from (1.12) as 
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These asymptotes are just straight 
lines on the dB vs. log  plot.  
For 1  the function is a 
constant, 1H  , or 0 dB.  At the 
other extreme where 1 , the 
transfer function decreases as 

20log  in dB; on a log-
frequency scale this is a straight 
line with a slope of -20 
dB/decade; that is, the transfer 
function decreases by 20dB for 
every factor of ten increase in 
frequency.  This slope is equiv-
alent to -6dB/octave, a helpful 
thing to remember.    

The two straight-line 
asymptotes capture the essential 
features of the plot, meeting at a 
frequency corresponding to the 
pole location.  This is the “break 
point”.  At this point the transfer 
function has a magnitude 

1
( 1) , or   -3 dB

2
H j      

A transfer function with a 
simple zero behaves similarly, as 
shown in Figure 1-2, except that 
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Figure 1-1 – Frequency response for a simple pole at 1s    
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Figure 1-2 – Frequency response for a simple zero at 1s    
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the function turns up at the break point instead of down.  Otherwise the rate of change is the 
same (20 dB per decade above the breakpoint).   

This general behavior can be demonstrated for any simple pole or zero, including repeated 
roots.  For example, let’s take a repeated pole at s a   
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where  r  is an integer representing the number of times the pole is repeated.  The magnitude 
of the frequency response is now 
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In this case the asymptotic behavior for a  and a   can be found from (1.15) 
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Once again the asymptotes are 
just straight lines meeting at 

a  , shown in Figure 1-3  as 
the dashed lines.  In this case 
the slope breaks downward by 
20 dB/decader , or 20dB/decade 
for each time the pole is 
repeated. The dashed lines are 
called the uncorrected or 
“straight-line” Bode plot for the 
transfer function.  Clearly the 
uncorrected plot captures the 
essential behavior of the 
frequency response with a 
minimum of effort.  We can 
always improve the accuracy of 
the sketch by drawing in a 
smoothed or “corrected” version 
that meets the straight-line asymptotes away from the break-point and passes through the true 
value of the transfer function immediately at the break point, which in this case is given by 

  dB( ) 20 log 2 (20 log 3 )dBH ja r a r a r     (1.17) 

This shows that the corrected plot should passes through a point that is 3 dBr below the 
uncorrected curve at the break point, or 3dB for each time the pole is repeated.  The corrected 
Bode plot is shown as the solid line in Figure 1-3. 

Transfer Functions with Multiple Simple Poles and Zeroes 

Suppose we have a transfer function with more than one pole or zero, or a combination of 
simple poles and zeroes. For example: 
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Figure 1-3 – Bode plot for a repeated pole at s a  .  The 
dashed line is a quick estimate called the “uncorrected” Bode 
plot.  The solid line is the “corrected” Bode plot, passing 
through the correct location at the break point.  
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An interesting thing happens when we express the magnitude of this transfer function in dB: 
using the properties of the log function (1.8), we get 

 
1

( ) dB 20log 20log 20logH s A s z
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 (1.19) 

Thus converting to dB breaks the transfer function into a simple sum of the individual factors 
that we have already considered.  The composite response is then just a simple sum of the 
individual responses.  Let’s look at a specific example: 
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This is plotted in Figure 1-4.  In the composite response the transfer function breaks 
downward at the pole location ( 1  ), and then flattens out again when the zero location is 
reached  ( 100  ).  Can you see why?  When the zero is reached, the downward break of the 
first pole is canceled out by the upward break of the zero.  At low frequencies ( 0  ) the 
magnitude of the transfer function is a constant representing a sum of the values (in dB) of 
the low-frequency asymptotes of each individual term: 20dB + 0dB + 40dB = 60dB.  At the 
high frequencies ( s  ) the transfer function in (1.20) approaches the limiting value of 10 
(20 dB). 
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Figure 1-4 – Illustration of how the composite Bode plot of the transfer 
function in (1.20) is a superposition of the individual terms. 

 
From this example some simple rules for generating uncorrected Bode plots begin to 

emerge: when poles are encountered the slope always decreases by 20 dB/decade.  When 
zeroes are encountered the slope always increases by +20 dB/decade.  All we need to do is 
choose a suitable starting point and then start drawing straight lines, changing the slope up or 
down depending on whether we encounter a pole or a zero. 

Often the most difficult part is figuring out where to start the plot, or how to position the 
asymptotes on the vertical scale.  In the previous example the transfer function begins with a 
constant value at low frequencies which makes things easy; we just let 0   in the transfer 
function and take the magnitude of what is left over, 
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Here is a slightly more challenging example: 
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The first thing to notice is that the frequency response will begin on an upward trajectory 
because of the zero at 0s  ; can you see why?  We’ve already found that the slope increases 
after each zero, and since we are always plotting frequency on a log scale we can never 
include the point 0   on the plots.  No matter how we choose the limits the plot must 
always start at a frequency above the first zero, and thus the plot will begin with an upward 
slope of +20 dB/decade.  
When we reach the next 
break-point (associated 
with the pole at 1s   ) 
the slope will decrease by 
20 dB/dec, flattenening the 
response.   The result is a 
high-pass filter response. 
The only question that 
remains is where to 
position the asymptotes on 
the vertical scale; that is, 
where to start drawing 
lines?  For this we need 
some convenient reference 
point to begin the plot.  In 
this case it seems best to 
start at high-frequencies and work backwards, since for 10  the magnitude approaches a 
limiting value of 

  lim 10, or 20 dB
s

H s


  (1.23) 

So now we can draw the Bode plot as shown in Figure 1-5: the curve starts up at a slope of 
+20 dB/decade due to the zero at s=0, and flattens out at a level of 20 dB at the break point.  
These two asymptotes are shown as the dashed lines.  We then sketch in the “corrected” plot 
which passes through a point 3dB below the uncorrected plot at the break point, or 17dB.  

Let’s do one more example of multiple poles and zeroes: 
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First think abut this qualitatively: there is a simple zero at 0s  , a simple pole at 10s   , 
and a double pole at 100s   . Can you start to visualize the shape of the Bode plot?  The 
first part of the plot (for 100  ) the shape should be similar to the previous example, 
starting on a positive slope of +20 dB/decade and flattening out above 10  , but the double 
pole at 100   will cause the slope to break downward again by -40 dB/decade.  So the 
function has a band-pass response shape.  The only difficult part here is how to position the 
asymptotes on the vertical scale.  In this example the techniques we used previously don’t 
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20

0

-10

-20

10

30

17dB

Figure 1-5 – Bode plot for the example of (1.22).  The plot begins 
with an upward slope of 20 dB/decade because of the zero at s=0. 
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work; if we test the low- and 
high-frequency limits by letting 

0s   or s  , the transfer 
function goes to zero, which is 
negative infinity on a dB scale!  
In this situation there are two 
common methods of attack.  
The first (and most 
straightforward) method is just 
to choose a specific frequency, 
preferably far from all the other 
poles and zeroes, and simply 
evaluate the function 
numerically.  The function will 
have to pass through that point, 
correct?   Usually it is best to 
choose the lowest or highest frequency on the plot for this purpose, assuming it is a factor of 
ten below the nearest pole or zero.  For example, at 1   we have 

 
2

10( 1)
( 1)

( 1 10)( 1 100)

j
H j

j j


 
 (1.25) 

This looks nasty, but remember that we can find the magnitude of a complex expression like 
this by evaluating the magnitude of each complex term individually: 
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 (1.26) 

(the exact value computes to -80.04 dB).  As shown in Figure 1-6, we position the first 
dashed-line asymptote at -80dB for 1  , sloping up at +20dB/decade, and from there we 
just follow the basic rules of changing slope for each pole and zero that is encountered. 

The second method for positioning the curve vertically is similar in that we try to evaluate 
the function at some point numerically, but focusing on the asymptotic behavior of each term 
in the transfer function.  At any particular frequency we can split up the transfer function into 
two parts, grouping all the poles and zeros that lie at or below this frequency, and grouping 
all the terms with poles and zeroes that lie above this frequency.  For example, at a frequency 
just above the first pole location 10   we could write   

 3
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41
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or zeros at or or zeros at or 
above =10below =10

10  for 10 10  for 100
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( 10) 10 60dB
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            
 



 
 (1.27) 

This is the level the uncorrected Bode plot should pass through at the first pole location  
10  .  The terms in the first bracket have poles and zeroes at or below 10   so they each 

contribute their high-frequency asymptotic behavior to the uncorrected Bode plot. The terms 
in the second brackets contribute their low-frequency asymptotic behavior to the plot.   We 
can see in Figure 1-6 that the uncorrected bode plot does indeed pass through -60dB at 

2nd-order break
at ω = 100

-40dB/dec
or -12dB/octave

-66 dB
-63 dB

+20 dB/dec
or +6 dB/octave

1st-order break
at ω = 10

See text

( 1) 80dBH j  

Figure 1-6 – Bode plot for the function given in (1.24) 
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10  .    This latter method is how certain software packages generate uncorrected Bode 
plots from complicated transfer functions. 

We can now summarize our findings as a set of rules or guidelines for drawing Bode plots 
involving simple/repeated poles and zeroes:   

 
Rules for Drawing Bode Magnitude Plots with Simple Poles and Zeroes 

■ First determine all the break points (pole and zero locations) and arrange in order of 
increasing frequency.  Choose a frequency range for the plot that encompasses all 
these points, adding an extra decade of frequency above and below this range.  

■ Based on the poels and zeroes, make a quick sketch of the expected shape of the 
Bode plot on a piece of scrap paper.  This will help you find the appropriate vertical 
scales.  For a simple pole or zero of the form ( )s a  the slope of the uncorrected 
Bode plot changes at the break point a  , increasing by 20 dB/decade for a zero, 
and decreasing by 20dB/decade for a pole. For a repeated pole or zero ( )rs a  the 
slope changes by 20r dB/decade, or 20 dB for each time the pole or zero is repeated.  

■ To find a reference level we first consider the behavior of the function for low-
frequencies ( 0  ) or high frequencies (  ).  If the limiting behavior 
approaches a constant value at these extremes that is a good starting point.  
Otherwise, we must evaluate the function numerically at some particular frequency, 
preferably in a region with a constant-value “plateau”.  

■ Once the uncorrected Bode plot is finished, a corrected version can be drawn.  For 
simple/repeated roots the true response passes through a point that is 3r dB below the 
uncorrected curve at the break point, or 3dB for each time the pole is repeated 

 
These rules work well for transfer functions that have poles and zeroes that are well 

separated in frequency (by a factor of 10 or more).  If the poles and zeroes are very close 
together the rules break down and we must evaluate the function numerically. 

Normalized Functions and Time Constants 

Our approach thus far has been to work with transfer function in the pole-zero form (1.2).  
Many books recommend re-normalizing the transfer function first by dividing the numerator 
by all the zeroes, and dividing the denominator by all the poles.  For example, if we had a 
transfer function given by 

 
5( 2)

( )
( 10)( 100)

s
H s

s s




 
 (1.28) 

we could factor out the zeroes from the numerator and the poles in the denominator to give 

 

0.01 (or 40dB)

5(2) (1 / 2)
( )

10(100) (1 /10)(1 /100)

s
H s

s s





 
 (1.29) 

In this procedure all the poles and zeroes have the form (1 / )rs a , from which you can see 
that the low-frequency asymptote for each term is now always 1, or 0 dB.   The break point is 
still at a  , and the same rules apply: the slope goes up by +20dB/decade for each zero, 
and down by 20dB/decade for each pole.   

Is it an advantage to renormalize the function in this way?   Probably not, at least in terms 
of the effort that goes into making a Bode plot by hand.  Factoring out the terms as in (1.29) 
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does tell us that the starting value of the plot will be -40dB at low frequencies, but we could 
get this information just as easily from (1.28) by letting 0s  .  And when there are zeroes at 

0s  , any potential advantage of renormalizing disappears, because we still have to invest 
the same amount of effort (or more) in figuring out where to position the lines vertically. 

However, there are times in circuit analysis when this normalized form does appear 
naturally, so it is important to be familiar with generating Bode plots from both forms.  When 
it appears it us usually written in terms of time constants, like this 

 1

2 3

(1 )
( )

(1 )(1 )

s s
H s

s s


 



 

 (1.30) 

The break points in the Bode 
plot are now at 11 / , 21 / , and 

31 / .  Recall that a simple pole 
of the form 1 / ( )s p  is 
associated with an exponential 
in the time-domain, pte , thus 
simple poles are always related 
to time constants as 1 / p    .  
Some advanced circuit analysis 
techniques focus specifically on 
the rapid estimation of time-
constants in complex circuits, in 
which case it is often easier to 
work with the time constant 
form as in (1.30).  It should be 
clear by now that generating a 
Bode plot for this case is a simple extension of the techniques we have developed earlier. 

Second-Order Response with Complex Roots 

An important remaining issue is the case of complex-conjugate pole pairs, as in (1.4).  For 
this purpose it proves helpful to write the second-order polynomial in the form (1.5),  e.g. 

 
2

2 2
( )

2
n

n n

H s
s s


 


 

 (1.31) 

In this form the quadratic formula gives the pole locations as 

 2 1n ns        (1.32) 

For 1   the 2nd-order response involves two simple (real) poles, and we already know how 
to deal with that situation.   Stable complex-conjugate pole pairs occur when 0 1  , and 
this is case we are most interested in here.  The amplitude-frequency response is given by 

  
1/22 22 2 2 2 2 2

2 2
( ) 4

2
n

n n n
n n

H j
j


      

   


       

 (1.33) 

Figure 1-7 shows the asymptotic behavior of (1.33), well above and well below n , i.e. the 
uncorrected Bode plot.  These asymptotes are given by 

0.1ωn ωn 10ωn

Frequency, ω, [rad/s]

Break point at ω = ωn

M
ag

n
it

u
d

e,
 |

H
|,

 d
B

Slope: -40 dB/dec
-12 dB/octave

2
1020log 

0
lim ( ) 0dB
s

H s




2

2 2
( )

2
n

n n

H s
s s


 


 

Figure 1-7 – Uncorrected Bode amplitude plot for a second-
order response with 0 1  . 
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2dB

0dB
( ) [dB]

20log

n

n

H j
 


  

 





 (1.34) 

Interestingly the asymptotic behavior is the same as it would be for a repeated simple pole at 

n  ; the slope decreases by 40dB/decade at this location.  So the uncorrected Bode plot 
for the complex conjugate 
poles is the same as it would be 
for a simple repeated pole, with 

n   behaving as the break 
point in this case.  For this 
reason n  is called the corner 
frequency for the complex 
second-order response. 

It is when considering the 
corrected Bode plot for the 
complex second-order response 
that things start to get 
interesting.  As shown in 
Figure 1-8, the behavior near 
the break point is a strong 
function of the parameter  , 
which we call the damping 
factor.  For small   the curves are peaked sharply near the corner frequency.  Exactly at the 
corner frequency the curve must pass through the point 

 
1

( ) 20log 2 [dB]
2nH j 


    (1.35) 

Note that this correction may be above the asymptote (positive) or below (negative) 
depending on the value of  the damping factor .   

 

ξ=0.2

ξ=0.1

ξ=0.02

ξ=0.4

1 / 2 0.707  
ξ=1

+2.7 dB

+8 dB

+14 dB

+28 dB

-3 dB
-6 dB

 

 

  ( )nH j /p n   ( )pH j
0.02 +28 dB ~1 +28 dB 

0.05 +20 dB 0.997 +20 dB 

0.1 +14 dB 0.990 +14dB 

0.2 +8 dB 0.959 +8.1 dB 

0.4 +1.9 dB 0.825 +2.7dB 

0.5 0 dB 0.707 +1.3 dB 

0.707 -3 dB 0 0 dB 

1 -6 dB — — 

Figure 1-9 – Behavior near the corner frequency for various values of the damping factor  . 

 
Also note that the peak value is not necessarily centered exactly at the corner frequency;  to 
find the peak location we set the first derivative equal to zero, giving 

 2( ) 0 1 2   (low-pass)p nH j    



    


 (1.36) 

2

2 2
( )

2
n

n n

H s
s s


 


 

ξ=1

ξ=0.02

0.1ωn ωn 10ωn

Frequency, ω, [rad/s]

2

2 2
( )

2
n

n n

H s
s s


 


 

ξ=1

ξ=0.02

0.1ωn ωn 10ωn

Frequency, ω, [rad/s]  
Figure 1-8 – Bode amplitude plot for the general 2nd-order low-
pass response for various values of  . 
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This result tells us that there is a peak or maximum in the response only when 21 2 0  , or 
equivalently for 0 1 / 2  .  In this range the peak amplitude is given by 

  2

2

1
( ) 20log 2 1 [dB]

2 1
pH j  

 
   


 (1.37) 

Figure 1-9 gives a close-up of the region near the corner frequency for various values of 
damping factor. Physically this behavior near the break point is associated with a resonance 
condition in the circuit; we will discuss this later. 

If we instead have a complex pair of zeroes in the transfer function, e.g.  

 
2 2

2

2
( ) n n

n

s s
H s

 


 
  (1.38) 

Then we get the response 
shown in Figure 1-10.  As 
you might expect it is just the 
mirror image of the complex 
pole pair, so all of the main 
conclusions are the same.  
Only the sign of the 
correction near the break 
point changes.  We can still 
use the table in Figure 1-9 if 
we remember to reverse the 
sign (so, for example, the 
curve lies 28dB below the 
asymptotes at the break point 
for 0.02  ). 

Similarly if we add a 
repeated zero at 0s   to the 
general 2nd-order low-pass 
response of Figure 1-8 we get 
a high-pass shape as shown 
in Figure 1-11.  Again the 
general conclusions are 
unchanged.  The only thing 
to note here is that the peak 
location shifts above the 
break point in this case.  We 
can still use the results in the 
table of Figure 1-9, but the 
data in the column for the 
peak frequency should be 
interpreted as /n p   
instead, since the peak 
location is now given by 

 
2

( ) 0 (high-pass)
1 2

n
pH j


  

 


   

 
 (1.39) 

2 2

2

2
( ) n n

n

s s
H s

 


 


ξ=1

ξ=0.02

0.1ωn ωn 10ωn

Frequency, ω, [rad/s]  
Figure 1-10 – Amplitude response with a complex zero pair. 

2

2 2
( )

2 n n

s
H s

s s 


 

ξ=1

ξ=0.02

0.1ωn ωn 10ωn

Frequency, ω, [rad/s]  

Figure 1-11 – Amplitude response for the general 2nd-order high-
pass function for various values of  . 
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For example, the peak location for 0.4   in Figure 1-11 would shift to 
/ 0.825 1.212p n n    .   

What if we had a repeated complex pole pair?  For example, a transfer function that 
involves the square of a term like that in (1.31). You should be able to convince yourself by 
the stage that the asymptotic slope should now change by -80 dB/decade, and that the 
correction factors near the break point are all doubled.  

In terms of generating Bode amplitude plots in the presence of complex pole pairs, our 
procedure is the same as before but can be amended as follows:   
 
Additional Rules for Amplitude Plots with Complex Pole and Zero Pairs 

■ First write the relevant 2nd-order polynomials in the standard form 2 22 n ns s   , 
and extract the corner frequency n  and the damping factor  .  Complex roots are 
associated with 0 1  .  For 1   the roots are real and hence correspond to 
simple poles or zeroes that we already considered. 

■ Sketch the uncorrected Bode plot, which is equivalent to the case of a repeated 
simple pole with a break point at n  .  If the complex roots are in the numerator 
the slope increases by 40dB/decade at the break point.  If the complex roots are in the 
denominator the slope decreases by 40 dB/decade. 

■ Sketch in the corrected Bode plot.  The peak value, peak location, and value of the 
function exactly at the break point can be determined from the table in Figure 1-9 or 
the equations in (1.35)-(1.39). 

 
Let’s conclude with an example that combines many of the details we’ve considered: 

 
5

2 2 6

10 ( 100)
( )

( 10) ( 400 10 )

s s
H s

s s s




  
 (1.40) 

This function has a zero at 
0s   and a zero at 

100s   , a repeated simple 
pole at 10s   , and two 
other poles coming from a 
second-order polynomial.  
By comparing the quadratic 
to the standard form we find 

     
2 6 310 10

2 400 0.2
n n

n

 
 
  

  
 

From the table in Figure 1-9 
we find a correction of 
+8dB at n  .  Where do 
we start the plot? Let’s 
evaluate the function at 

1  , which is a decade below the lowest break point.  This gives: 

  
5

2 6

10 (1)(100)
1 0.1 20dB

(10) (10 )
H j      

5

2 2 6

10 ( 100)
( )

( 10) ( 400 10 )

s s
H s

s s s




  

-12 dB

-40 dB/dec

+20 dB/dec

-17 dB-6 dB

Figure 1-12 –  Example problem integrating many common 
features of Bode plots. 
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This completed plot is shown in Figure 1-12, with dots marking the starting point and the 
values of the functions at the break points using our basic rules: down 6dB for a repeated 
pole, up 3 dB for a simple zero, and up 20log 2  for a complex pole pair. 

Root Locus Plot 

Please remember that a second-
order polynomial doesn’t always 
have complex-conjugate roots, but 
we CAN always put it in the 
standard form 2 22 n ns s   !  
You should make sure that the 
damping factor is in the range of 
0 1   before you start plugging 
it into the formulas in (1.35)-(1.39). 

A helpful way to visualize 
solutions of the second-order 
polynomial for all possible values 
of the damping factor is shown in 
Figure 1-13.  This is called a root-
locus plot.  The arrows show the path of the roots in the complex plane, beginning with 

0  .  At this starting point the complex conjugate roots have no real part, lying on the 
imaginary axis.  As the damping factor is increased the roots travel on a circular arc towards 
the negative real axis.  When   1   the roots converge to a common point on the negative 
real axis, corresponding to a repeated simple pole.  As the damping factor is increased beyond 
that point the roots split along the real axis, one growing and one shrinking. 

1.3 Bode Phase Plots 
The transfer function ( )H j  is a phasor.  Thus far we have concentrated on the magnitude of 
the transfer function, but the phase response is important as well; it tells us how the phase of a 
sinusoidal signal changes as it passes through the network.  As you will see in later 
coursework, phase vs. frequency plots are important for investigating potential instabilities in 
feedback systems.  So it is important to be just as familiar with making Bode phase plots as 
with Bode magnitude plots. 

Before we proceed it may be helpful to summarize some important points for finding the 
phase of complex rational functions.  The key is to remember that any complex number z  
can be written as j zz z e  ,  and when exponentials are multiplied the exponents add.  So 
for a product of two phasor functions the net phase is the sum of individual phases: 

 ( ) ( ) ( ) ( ) ( ) ( )H j F j G j H j F j G j           (1.41) 

Similarly for a rational function we subtract the phases 

 
( )

( ) ( ) ( ) ( )
( )

N j
H j H j N j D j

D j

   


      (1.42) 

Here is a specific example that will encompass many of the situations to be encountered, 

 
 
 

1 1( ) ( ) tan tan
m

n

j z
H j H j m n

z pj p

   


           
   

 (1.43) 
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2 22 n ns   

ξ = 0

jωn0 < ξ < 1

-jωn

ξ > 1 ξ > 1

ξ = 1

ωn = 13

 
Figure 1-13 –  Root-locus in the complex plan for the 
second-order polynomial as a function of damping factor. 
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Phase Plots for a Simple Poles and Zeroes 

Let’s start as before by considering a first-order circuit with a simple pole at 1s   , 

 
1 1

( ) ( )
1 1

H s H j
s j




  
 

 (1.44) 

The phase of the transfer function is given by 

  1( ) tanH j     (1.45) 

The asymptotic behavior for 1  and 1  can be easily found 

 
0 1

( )
90 1

H j






   




 (1.46) 

The transfer function goes 
through a phase change of 

90   for a simple pole.  The 
asymptotes are shown as the 
dotted blue lines in Figure 
1-14, and will serve as our 
basic uncorrected sketch for 
Bode phase plots.  The true 
phase (1.45) is shown as the 
solid line for frequencies within 
two orders of magnitude of the 
break point 1  ;  unlike 
amplitude plots the phase 
approaches the low- and high-
frequency asymptotes more 
slowly, taking approximately 
two decades of frequency above 
or below the break point to 
closely approach the asymptote. 
Exactly at the breakpoint the 
function passes through 

1tan (1) 45    , or halfway 
between the asymptotes. A 
decade below the break point 
the phase passes through 

1tan (0.1) 5.7   , or 6  ; a 
similar correction applies for a 
factor of ten above the break 
point ( 90 6 84      ).   

The behavior for a zero is 
similar; the phase increases by 
90 and passes though the midpoint of 45   at the break point.  We can extend the results for 
simple repeated poles and zeroes as before using the more general function 

 ( ) ( ) ( ) ( )r rH s s a H j j a        (1.47) 

Here the +sign represents a zero and the –sign represents a pole.  The phase is given by 

1
( )

1
H s

s




-45º

-6º

-84º

 
Figure 1-14 – Bode phase plot for a simple pole at 1s    
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Figure 1-15 – Bode phase plot for a repeated zero at s a   
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 1( ) tanH j r
a

       
 

 (1.48) 

In this case the asymptotic behavior and value at the break point are 

 
0

( ) ( ) 45
90

a
H j H ja r

r a







      




 (1.49) 

The phase plot and asymptotes for (1.47) are shown in Figure 1-15.   In general we find that 
the phase of the transfer function changes by 90  for each pole or zero, increasing 90  for a 
zero and decreasing 90  for each pole.  The function passes through the midpoint of each 
phase jump, at half the net phase change or 45  for each pole or zero, and passes through a 
point that is 6  from the asymptote a decade above or below the break.  For repeated roots all 
these values are multiplied by the number of times the root is repeated.  The black dots in 
Figure 1-14 and Figure 1-15 serve as important references for drawing the corrected plot. 

Phase Plots with Multiple Simple Poles and Zeroes 

Our method for making the uncorrected Bode phase plots is simple: first determine the phase 
in the limit of 0  ; that defines our starting point, then add dashed lines of constant phase, 
jumping up 90  for each zero and down 90  for each pole.  We then add the reference points 
at each phase jump and a decade above and below to guide our sketch of the smoothed or 
corrected plot.  As a first example let’s revisit (1.20), given here again for convenience: 

 
10( 100)

( )
( 1)

s
H s

s





 (1.50) 

The Bode phase plot is shown in Figure 1-16. The plot starts at 0  because ( ) 10H j   (a 
real number) as 0  .  Then the uncorrected plot jumps down 90 at 1   for the pole, 
and then back up to 0  at 

100   for the zero.  Now we 
add the reference points.  You 
can see that we have marked 
the mid-points of each phase 
jump at 45 , and the 6  
corrections at 0.1   and 

310  .  The only “new” 
issue here is the reference point 
at 10  .  This is a decade 
above the pole and a decade 
below the zero, so we get a 
double correction of 12 ; that 
is, 6  for the pole and 6  for 
the zero. The two extra dashed 
lines in Figure 1-16 are 
included to help illustrate what is going on, representing the phase curves for the pole and 
zero terms separately.  The key point to remember is that the total phase at any frequency is 
the sum of contributions from all the poles and zeroes. In Figure 1-16, the pole and zero are 
close enough together that their contributions overlap at 10  .  In general, whenever we 
mark a reference point for the corrected plot, we must always consider its proximity to other 
breaks. 

-45º

-6º

-78º

-6º

-45º

Figure 1-16 – Bode phase plot for  (1.50). 
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A few more examples will help illustrate the issues involved.  Consider:  

 
210

( )
( 10)( 100)

s
H s

s s


 
 (1.51) 

 The Bode phase plot for this function is shown in Figure 1-17.  The plot in this case starts at 
90  because ( ) 0.1H j j   (a positive imaginary number) as 0  .  Then the 
uncorrected plot jumps down 
90 at the first pole and down 
another 90  at the next pole. 
The reference points at 1   
and 310   are easy because 
only one pole contributes to 
each.  But the reference points 
at the phase jumps are slightly 
more challenging.  For the first 
jump at 10   you see we 
have marked the crossing 
point at 39 , or 6  below 
45 .  This is because we are a 
decade below the pole break at 

210  .  Similarly at 210   
we show the crossing point at 

39  , or 6  above 45   because we are a decade above the pole break at 10  .   
So far the corrections have all been 6   because we have been dealing with simple poles.  

What if we have a repeated root?  Consider a slight modification to the previous example: 

 
4

2

10
( )

( 10)( 100)

s
H s

s s


 
 (1.52) 

The Bode phase plot for this 
function is shown in Figure 
1-18. It begins much like 
Figure 1-17, but because of 
the repeated root the 
uncorrected plot jumps down 
by 180  at 210  . 
Similarly, all of the reference 
point corrections associated 
with this repeated root are 
doubled, as indicated for the 
points a decade above and 
below the repeated pole.  

The key takeaway from 
this discussion is that we 
should always consider a 
correction to the initial reference points when they involve contributions from multiple poles 
or zeroes.  This is necessary when the poles or zeroes lie within two decades of each other in 
frequency.  Thus we arrive at a simple set of rules for drawing Bode phase-plots with 
multiple simple poles & zeroes: 

210
( )

( 10)( 100)

s
H s

s s


 

+84º

+39º

-39º

-84º

-6° correction due 
to pole at ω=102

+6° correction due 
to pole at ω=10

Figure 1-17 – Bode phase plot for (1.51). 
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10
( )

( 10)( 100)

s
H s

s s


 

+33º

+84º

-84º

-168º

-12° correction due to 
repeated pole at ω=102

+6° correction from 
simple pole at ω=10

-12° correction

Figure 1-18 – Bode phase plot for (1.52). 
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Rules for Drawing Bode Phase Plots with Simple Poles and Zeroes 

■ First determine the phase of the transfer function in the limit of 0  .  That will 
define the asymptotic starting point for the uncorrected plot.  Remember that if the 
transfer function evaluates to a negative real number, the starting phase is 180  . 

■ Sketch the uncorrected phase plot by drawing a sequence of lines of constant phase, 
beginning with the low-frequency asymptote above, and jumping discontinuously up 
or down at each break point, increasing 90  for a zero and decreasing 90  for each 
pole.  For repeated roots the jump is 90  for each time the root is repeated. 

■ For each pole or zero, make an initial mark at the mid-point of each phase jump.  
Then consider whether those points are within a decade or less from a neighboring 
pole or zero.  If so, make the appropriate correction to account for the influence of 
the neighboring pole or zero.  Make similar corrections at points a decade above and 
below each pole location. 

■ Draw in the smoothed or corrected Bode phase plot, passing through the corrected 
reference points and meeting the asymptotes at points that are two decades away 
from the nearest pole or zero. 

Second-Order Response with Complex Roots 

A complex conjugate pair of roots presents an interesting challenge in connection with phase 
plots.  For a complex pole pair as in (1.31) we find 
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 (1.53) 

This is plotted in Figure 1-19, along with the uncorrected plot that we’d expect for a repeated 
pole.  As the damping factor decreases, the slope increases steadily to more closely 
approximate the uncorrected phase plot for small damping factors.  Each curve passes 
through the mid-point of the phase jump.   
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  0.1 n 0.2 n  0.5 n
0.02 -0.2° -0.5° -1.5° 

0.05 -0.6° -1.2° -3.8° 
0.1 -1.2° -2.4° -7.6° 
0.2 -2.3° -4.8° -15° 
0.3 -3.5° -7.1° -22° 
0.4 -4.6° -9.5° -28° 
0.5 -5.8° -12° -34° 

0.707 -8.1° -16° -43° 
1 -11.4° -23° -53° 

Figure 1-19 – Phase plot for a 2nd-order low-pass response as a function of the damping factor.  
Numerical data at three frequencies below the break are tabulated as an aid for sketching the response. 

Superficially it seems relatively easy to deal with complex roots in a phase-plot, because the 
curves all have a qualitatively similar shape for damping factors in the range of 0 1  .  
For small damping factors we simply draw the corrected plot a bit closer to the uncorrected 
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plot.  The challenge is getting the slope right, and how well we do that in a hand sketch is just 
a matter of how hard we want to work at it!  For simple poles and zeroes our method 
consisted of drawing in reference points at the midpoint frequency and a decade above and 
below this point.   For the second-order complex roots we can use the same method, but we 
must choose frequencies that are closer to the break in order to better approximate the slope; 

/ 2n  and 2 n  are practical choices.  The table in Figure 1-19 includes the phase correction 
for three frequencies below the break, / 10n , / 5n , and / 2n .  Clearly the symmetry of 
the problem allows us to also use these corrections at 10 n , 5 n , and 2 n , respectively. 

Let’s finish with an illustrative example that involves complex-roots as well as simple 
poles and zeroes, such as (1.40), repeated here for convenience:   
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 (1.54) 

The Bode plot for this function is shown in Figure 1-20.  For the uncorrected plot the phase 
starts at 90   because of the zero at 0s  , then drops 180  at 10   because of the 
repeated pole.   It jumps 90  at 210   because of the simple zero, and drops again by  
180  at 310   for the complex pole pair.  The damping factor is 0.2  , so from the table 
in Figure 1-19 we find a phase correction of 2.3  a decade away, and 15  an octave away. 
The annotations in Figure 1-20 explain how some of the reference points were calculated.  
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-36º
-6° correction due to 
simple zero at ω=102

-15° from table for ξ=0.2, 
and another -6° due to
simple zero at ω=102

 
Figure 1-20 – Bode phase plot for (1.54) 

Accuracy and Bode Plots 

Looking back at the examples of phase plots in Figure 1-16 though Figure 1-20, you may 
notice that simply drawing the curves through the mid-points of each phase jump would give 
a reasonable good estimate of the actual curve.  So it seems appropriate to ask, is all this 
business about calculating mid-point corrections even necessary?   

In fact this is an important issue because it concerns the broader question of what we are 
trying to accomplish with our investigation of Bode plots.  Nowadays we have the luxury of 
making computer-generated amplitude and phase plots in a fraction of the time it takes to 
draw a hand sketch.  So in many respects, it simply does not make any sense to waste 
valuable time in trying to make a highly accurate hand sketch.  If analytical accuracy is what 
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we’re after, then the computer is a better alternative.  Furthermore, it turns out that in many 
practical applications it is rarely important to know the phase to a tenth of a degree.  Often 
just knowing the phase to the nearest tens place is perfectly fine!  

No, the real reason to persist in learning about Bode plots is the valuable insight it gives in 
connecting the shape of the frequency response to the transfer function.   Knowing how poles 
and zeroes affect the amplitude and phase ultimately allows us to approach circuit analysis 
from a design perspective; that is, how do we design a circuit to give a desired frequency 
response?   In this respect, computer-generated plots are not much help.  They can tell you 
how a circuit will perform, but they can’t tell you how to improve the circuit.    

So if we keep in mind that our main goal in drawing Bode plots is usually to explore 
qualitative behavior of a circuit or transfer function, then the answer to the question is yes:  
we can usually take shortcuts like drawing the curve through the midpoint of the phase-
jumps.  If more accuracy is required, the simple first-order corrections that we have 
developed can be used to adjust the plot accordingly.  If even greater accuracy is required, 
then a computer-generated plot is needed.   
 
 
 


