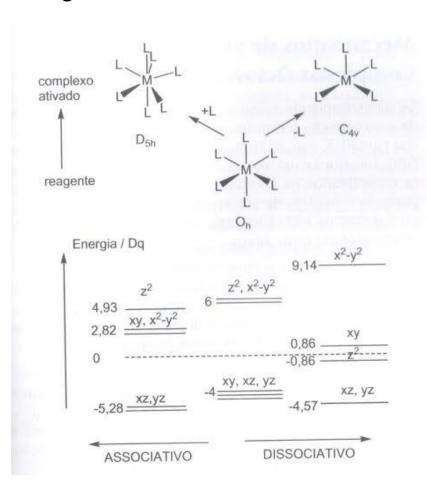

Química Inorgânica II

Prof. Sofia Nikolaou

Cinética e mecanismos de reação em complexos de coordenação

E quando os efeitos de campo ligante agem para estabilizar o *COMPLEXO ATIVADO* e não o reagente?



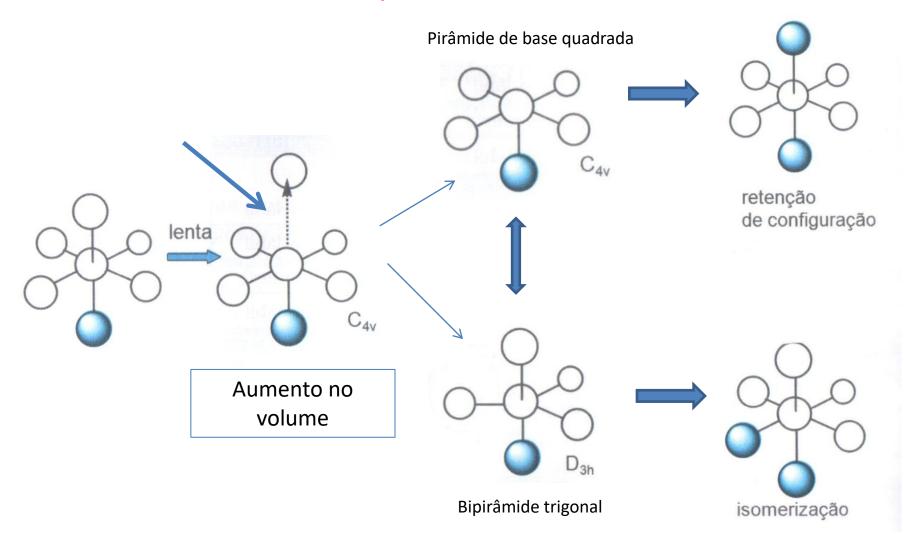
Efeito de estabilização do <C≠>
 Diminui ∆G≠
 Aumenta LABILIDADE

Efeito de estabilização do reagente aumenta ∆G[≠]
Aumenta INÉRCIA

MECANISMO ASSOCIATIVO VS DISSOCIATIVO

- ASSOCIATIVO: ocorre a entrada de um ligante ANTES da saída da molécula de solvente.
 COMPLEXO ATIVADO HEPTACOORDENADO
- DISSOCIATIVO: ocorre a saída de uma molécula de solvente ANTES da coordenação do ligante. COMPLEXO ATIVADO PENTACOORDENADO

BURNESS AUTOMOTICAL IS	abil/inerte dos complexos						
Campo fraco	EECL D _{5h} /Dq	EECL O _h /Dq	EECL C _{4v} /Dq	Caráter relativo			
$d^{0,5,10}$	0	0	0				
$d^{1,6}$	5,28	4	4,57	+ lábil			
$d^{2,7}$	10,56	8	9,14	+ lábil			
$d^{3,8}$	7,74	12	10,0	+ inerte			
$d^{4,9}$	4,93	6	9,13	+ lábil			
Campo forte							
d^4	13,02	16	14,57	+ lábil			
d^5	18,30	20	19,14	+ inerte			
d^6	15,48	24	20,00	+ inerte			
d^7	12,66	18	19,14	+ lábil			


MECANISMOS DE SUBSTITUIÇÃO DE LIGANTES EM COMPLEXOS DE COORDENAÇÃO

MECANISMO DISSOCIATIVO:

- ocorre a saída de um ligante (ou solvente) ANTES da coordenação do ligante de entrada. COMPLEXO ATIVADO PENTACOORDENADO – simetria C₄v
- a) ETAPA DETERMINANTE: SAÍDA DO LIGANTE DA ESFERA DE CORDENAÇÃO; ESSA É A ETAPA LENTA
- b) k_{obs} , ΔH^{\neq} , ΔS^{\neq} NÃO dependem do ligante que entra; dependem apenas do complexo e do ligante que sai.
- c) ocorre um aumento de volume $\Delta V^{\neq} > 0$ (ou $V < C^{\neq} > V_{reagentes}$); portanto diminuição na pressão favorece o mecanismos dissociativo
- d) ocorre a geração de duas espécies (complexo e ligante que saiu): $\Delta S^{\neq} > 0$.

MECANISMOS DE SUBSTITUIÇÃO DE LIGANTES EM COMPLEXOS DE COORDENAÇÃO

MECANISMO DISSOCIATIVO - estereoquímica

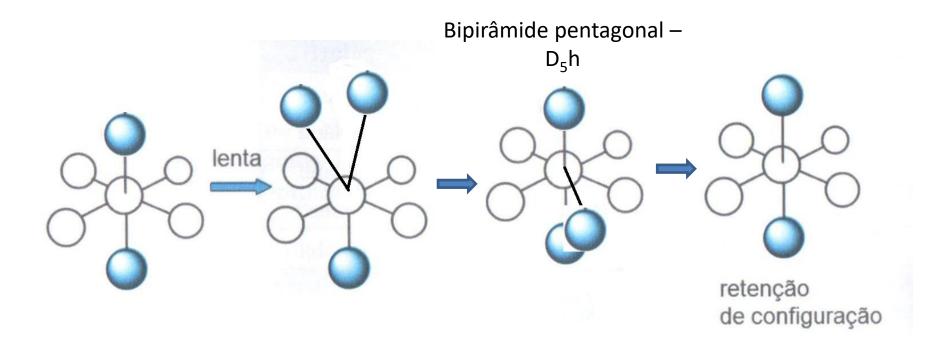
MECANISMO DISSOCIATIVO....

Aumento da entropia

Possibilidade de retenção de configuração ou isomerização:

Se
$$\langle C^{\neq} \rangle = C_4 v \rightarrow retenção de configuração$$

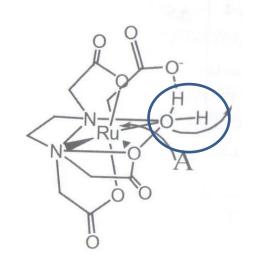
Se
$$\langle C^{\neq} \rangle = D_3 h \rightarrow isomerização$$


Exemplo clássico: reatividade dos complexos da série [Fe(CN)₅L]ⁿ

ligante	k/mol ⁻¹ Ls	S ⁻¹	ΔH [#] /kJmol ⁻¹		ΔS [#] /Jmol ⁻¹ K ⁻¹		Δ V#/cm 3 mol $^{-1}$	
NH ₃	365	Ī	61			8		
piridina	360		65			25		
pirazina	380		64			21		
DMSO	370		64			8		
СО	310		63			12		
CN-	30		76			46		13,5
N-metil pirazínio	550		70			41		

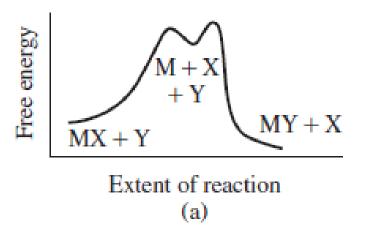
MECANISMO ASSOCIATIVO

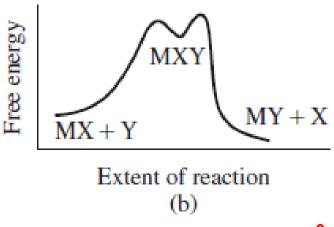
- ocorre a entrada de um ligante ANTES da saída da molécula de solvente. COMPLEXO ATIVADO $HEPTACOORDENADO D_5h$
- a) ETAPA DETERMINANTE: ATAQUE DO LIGANTE NA ESFERA DE CORDENAÇÃO gerando
 <C≠> com NC expandido; ESSA É A ETAPA LENTA
- b) k_{obs} , ΔH^{\neq} , ΔS^{\neq} dependem do ligante de entrada e do complexo.
- c) ocorre uma diminuição de volume ΔV^{\neq} < 0 (ou V<C*> < V_{reagentes}); duas esferas gerando uma; aplicação de pressão no sistema favorece o mecanismo associativo
- d) ocorre a geração de UMA espécie a partir de duas (complexo e ligante que entrou): $\Delta S^{\neq} < 0$.


MECANISMO ASSOCIATIVO - estereoquímica

MECANISMO ASSOCIATIVO....

Diminuição da entropia

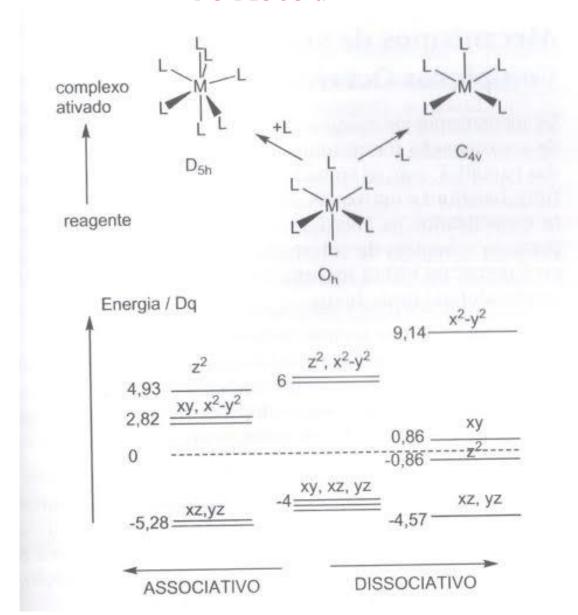

Retenção de configuração



ligante	k/mol ⁻¹ Ls ⁻¹	ΔH#/kJm	iol ⁻¹	∆S#/Jmo	-1 K -1	∆V#/cm³m	ol ⁻¹
CH ₃ CN	30	34		-100			
SC(NMe ₂) ₂	1,54 x 10 ²	25		-107		-12,2	
SCN-	2,70 x 10 ²	37		-75		-9,6	
N ₃ -	2,07 x 10 ³	26		-94		-9,9	
SC(NH ₂) ₂	2,97 x 10 ³	22		-105		-6,8	
pirazina	2,0 x 10 ⁴	23		-83			

MECANISMO DISSOCIATIVO vs ASSOCIATIVO

- DISSOCIATIVO: favorecido pela estabilização de complexo ativado com NC menor, ou seja, quando o complexo apresenta impedimento estérico facilitando a expulsão de um ligante. Ou ainda, ocorre preferencialmente para ligantes com grupos carregados que ficam próximos no espaço e apresentam repulsão eletrostática.
- ASSOCIATIVO: favorecido pela estabilização de complexo ativado com NC maior, ou seja, complexos com pouco impedimento estérico

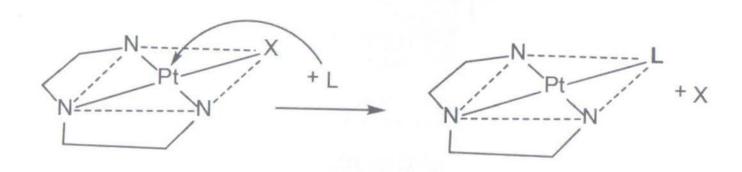


MECANISMO DE INTERCÂMBIO

Intermediário entre o associativo ou dissociativo, ou seja, ligante de ataque entra na esfera de coordenação ao mesmo tempo que o ligante lábil saí da esfera de coordenação

INFLUÊNCIA DA EECL NA LABILIDADE/ INÉRCIA DOS METAIS DE TRANSIÇÃO DO BLOCO d

INFLUÊNCIA DA EECL NA LABILIDADE/ INÉRCIA DOS METAIS DE TRANSIÇÃO DO BLOCO d


Campo fraco	EECL D _{5h} /Dq	EECL O _b /Dq	EECL C _{4r} /Dq	Caráter relativo	
$d^{0,5,10}$	0	0	0		
$d^{1,6}$	5,28	4	4,57	+ lábil	
$d^{2,7}$	10,56	8	9,14	+ lábil	
$d^{3,8}$	7,74	12	10,0	+ inerte	
$d^{4,9}$	4,93	6	9,13	+ lábil	
Campo forte					
d^4	13,02	16	14,57	+ lábil	
d^5	18,30	20	19,14	+ inerte	
d^6	15,48	24	20,00	+ inerte	
d^7	12,66	18	19,14	+ lábil	

O reagente (Oh) é mais estabilizado por EECL ->

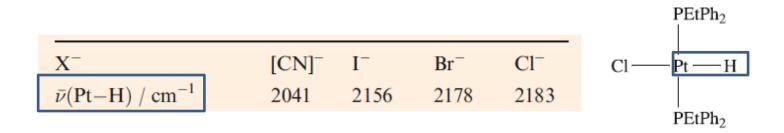
Os complexos ativados, em suas respectivas geometrias, são mais estabilizados por EECL > lábil

Configurações com tendência de sofrer distorção tetragonal → lábil

*predomina o mecanismo associativo, pois não há impedimento estérico no eixo z

Por conta do efeito quelato, os ligante dietilenotriamina estão mais fortemente ligados ao centro metálico, que será mais inerte em relação à sua substituição. Portanto não há dúvidas de que o ligante X é mais lábil e será substituído.

*predomina o mecanismo associativo, pois não há impedimento estérico no eixo z

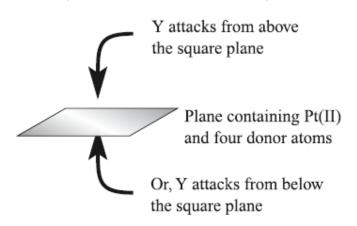

EFEITO TRANS: efeito de natureza CINÉTICA, que promove a labilização de uma espécie química ligada em posição trans. (não confundir com influência *trans*!!!!)

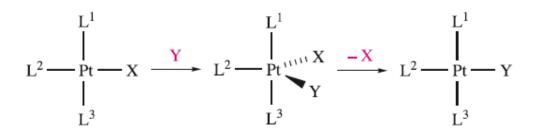
LIGANTES EM TRANS USAM O MESMO ORBITAL DO METAL PARA FAZER LIGAÇÃO QUÍMICA. ENTÃO...

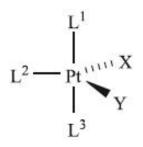
INFLUÊNCIA TRANS:

quando um ligante com interação π , principalmente de retrodoação (ou seja, ligantes π -receptores) faz ligação metal-ligante muito forte e desloca a densidade eletrônica do metal para si, enfraquecendo a ligação deste com o ligante em trans.

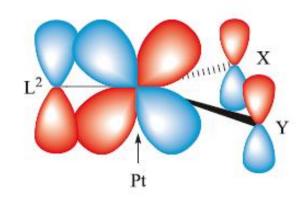
EFEITO DE NATUREZA TERMODINÂMICA QUE OCORRE NO ESTADO FUNDAMENTAL DO COMPLEXO

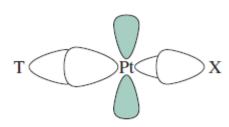



LIGANTES EM TRANS USAM O MESMO ORBITAL DO METAL PARA FAZER LIGAÇÃO QUÍMICA. ENTÃO...

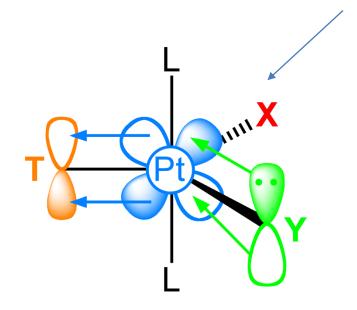

EFEITO TRANS:

Efeito de labilização de um ligante de saída em posição trans a um ligante cuja ligação com o metal é forte. Tem componentes sigma e pi. **A contribuição pi costuma ser mais forte**


EFEITO DE NATUREZA CINÉTICA QUE OCORRE NO ESTADO DE TRANSIÇÃO (OU COMPLEXO ATIVADO) NO CURSO DA REAÇÃO



Trigonal bipyramidal transition state or intermediate



 π -Bonding in the trigonal plane

Resultante de compensação ou competição de densidades eletrônicas no orbital do metal pelos ligantes em trans

FIGURE 12.15 Sigma-Bonding Effect. A strong σ bond between Pt and T weakens the Pt—X bond.

*predomina o mecanismo associativo, pois não há impedimento estérico no eixo z

ORDEM EMPÍRICA DE LABILIDADE:

$$NO_3^- > H_2O > Cl^- > Br^- > l^- > N_3^- > SCN^- > NO > CN^-$$

Quanto mais fraco for o caráter nucleofílico do ligante, mais facilmente ele sai da esfera de coordenação do metal

* Raciocínio geral: espécies mais duras tendem a ser mais lábeis do que as espécies que tendem a fazer ligações com mais caráter covalente

ORDEM EMPÍRICA DE EFEITO TRANS:

$$\begin{array}{c} CN^-,\, C_2H_4,\, CO,\, NO>R_3P,\, SH_2>H^-,\, SC(NH_2)_2>CH_{3^-}>\\ >C_6H_{5^-}>SCN^->NO_{2^-}>I^->Br^->Cl^->Py,\, NH_3>OH^->\\ >H_2O,\, MeOH \end{array}$$

*predomina o mecanismo associativo, pois não há impedimento estérico no eixo z

OC
$$Pt$$
—CI Pt —CI $T_{CO} > T_{NH3}$
 CI $T_{CO} > T_{NH3}$

EFEITO TRANS E INFLUÊNCIA DA ORDEM DE ADIÇÃO DOS REAGENTES

CI Pt CI + CO OC CI Pt CI TCI CI PT NH₃

$$T_{CO} > T_{CI}$$

CI Pt CI + NH₃

$$T_{CO} > T_{CI}$$

CI Pt CI + NH₃

$$T_{CI} > T_{NH3}$$