### Química Inorgânica II

Prof. Sofia Nikolaou

Termodinâmica: equilíbrio de formação de complexos de coordenação e natureza da afinidade metal - ligante

As reações de formação de complexos usualmente são estudadas em solução. Portanto....

### FATORES IMPORTANTES PARA A FORMAÇÃO DE COMPLEXOS DE COORDENAÇÃO

1) Competição das moléculas de solvente pelos sítios de coordenação (exceto no caso de solventes não coordenantes). Em geral a dissolução de um sal de metal de transição em solvente coordenante gera um complexo. Ex.

DMSO  
FeCl<sub>2</sub> 
$$\rightarrow$$
 [Fe(DMSO)<sub>6</sub>]Cl<sub>2</sub>

- 2) Lembrar que as reações são EQUILÍBRIOS
- 3) TERMODINÂMICA X



Tendência de formação e estabilidade dos complexos

( CINÉTICA



Labilidade e inércia (velocidade de formação e dissociação dos complexos)

SOLVENTES COORDENANTES: água, metanol, DMSO, acetonitrila, tetrahidrofurano, etc; SOLVENTES NÃO COORDENANTES: diclorometano, acetona, clorofórmio; tetracloreto de carbono, etc.

RELEMBRANDO.....Relações termodinâmicas, que são FUNÇÕES DE ESTADO (ou seja, só dependem dos estados inicial e final)

$$\Delta G = \Delta H - T\Delta S = -RTInK_{eq} = -nF\Delta E^{0}$$

Constante de formação (ou estabilidade)

a. Constantes parciais sucessivas K<sub>i</sub>

### Constante de formação (ou estabilidade)

### b. Constante global $\beta_n$

$$Cu^{2+} + 2NH_3 \rightleftharpoons Cu(NH_3)_2^{2+} \beta_2 = K_1 K_2 = \frac{[Cu(NH_3)_2^{2+}]}{[Cu^{2+}][NH_3]^2}$$

$$\frac{[Cu(NH_3)_2^{2+}]}{[Cu(NH_3)^{2+}][NH_3]} \times \frac{[Cu(NH_3)^{2+}]}{[Cu^{2+}][NH_3]}$$

#### Constante global

$$\text{Cu}^{2+} + n \text{NH}_3 \rightleftharpoons \text{Cu}(\text{NH}_3)_n^{2+}$$
 
$$\beta_n = K_1 K_2 ... K_n = \frac{[\text{Cu}(\text{NH}_3)_2^{2+}]}{[\text{Cu}^{2+}][\text{NH}_3]^n} \, .$$

$$\beta_1 = K_1 K_2 ... K_i = \frac{[ML_i]}{[M][L]^i}$$

$$Cu^{2+} + NH_3 \rightleftharpoons Cu(NH_3)^{2+} K_1 = \frac{[Cu(NH_3)^{2+}]}{[Cu^{2+}][NH_3]}$$

 $\operatorname{Cu}(\operatorname{NH}_3)^{2+} + \operatorname{NH}_3 \rightleftharpoons \operatorname{Cu}(\operatorname{NH}_3)_2^{2+}$ 

$$K_2 = \frac{[\text{Cu}(\text{NH}_3)_2^{2+}]}{[\text{Cu}(\text{NH}_3)^{2+}][\text{NH}_3]}$$

 $\operatorname{Cu}(\operatorname{NH}_3)_{n-1}^{2+} + \operatorname{NH}_3 \rightleftharpoons \operatorname{Cu}(\operatorname{NH}_3)_n^{2+}$ 

$$K_n = \frac{[\text{Cu(NH}_3)_n^{2+}]}{[\text{Cu(NH}_3)_{n-1}^{2+}][\text{NH}_3]}$$

onde  $\log K_1 = 4,15$ ;  $\log K_2 = 3,50$ ;  $\log K_3 = 2,89$  e  $\log K_4 = 2,13$ .

$$\beta_4 = K_1 \cdot K_2 \cdot K_3 \cdot K_4 \Rightarrow \log \beta_4 = 4,15 + 3,50 + 2,89 + 2,13 = 12,67$$

#### **ASPECTO IMPORTANTE:**

 A formação de um complexo é um EQUILÍBRIO DE SUBSTITUIÇÃO de moléculas de solvente por ligantes na esfera de coordenação do metal. Portanto:

K<sub>f</sub> gde: ligante que se liga mais fortemente ao metal do que o solvente. Tem mais AFINIDADE pelo centro metálico.

K<sub>f</sub> peq: não significa que o ligante não tenha afinidade pelo metal, apenas que tem MENOS afinidade que o solvente.

$$K_f = \frac{[M(H_2O)_5L]}{[M(H_2O)_6][L]}$$

#### **ASPECTO IMPORTANTE:**

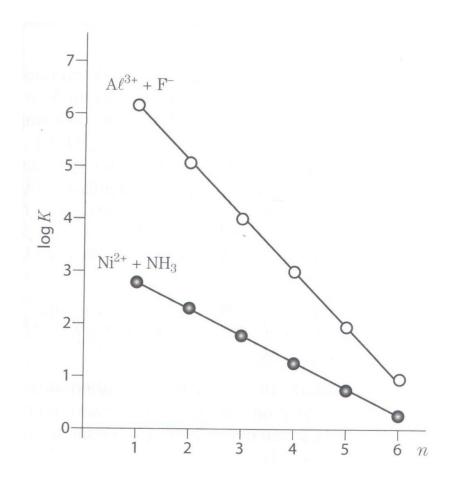
Fatores estatísticos: em geral K<sub>1</sub> > K<sub>2</sub> > K<sub>3</sub> .....

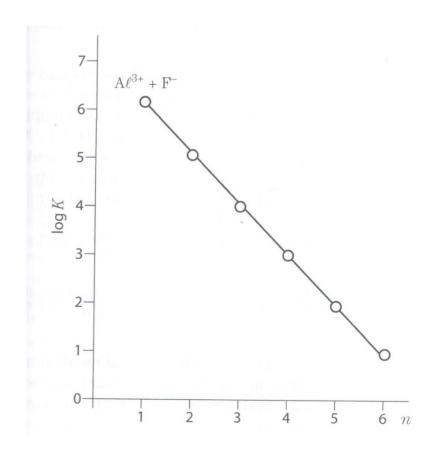
1) 
$$[M(H_2O)_6] + L \iff [M(H_2O)_5(L)] + H_2O K_1$$

2) 
$$[M(H_2O)_5(L)] + L \iff [M(H_2O)_4(L)_2] + H_2O K_2$$

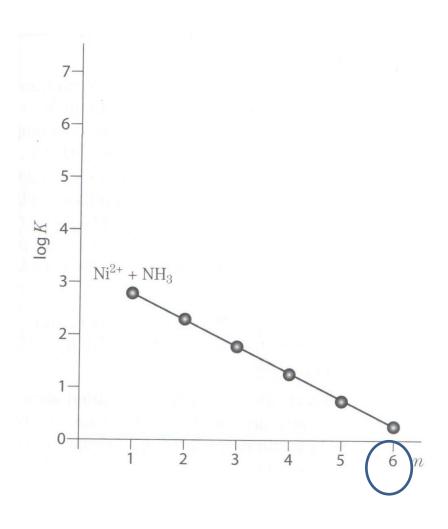
3) 
$$[M(H_2O)_4(L)_2] + L \implies [M(H_2O)_3(L)_3] + H_2O K_3$$

4) 
$$[M(H_2O)_3(L)_3] + L \longrightarrow [M(H_2O)_2(L)_4] + H_2O K_4$$

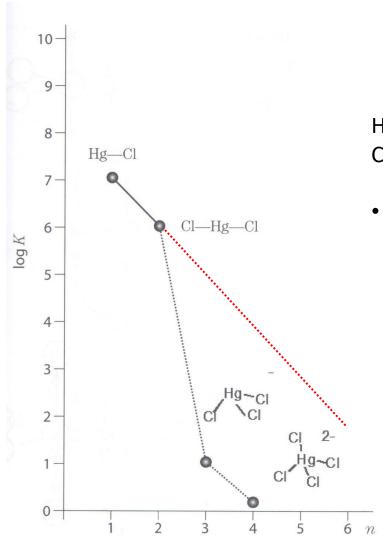

5) 
$$[M(H_2O)_2(L)_4] + L \longrightarrow [M(H_2O)(L)_5] + H_2O K_5$$


6) 
$$[M(H_2O)(L)_5] + L \iff [M(L)_6] + H_2O K_6$$

- A primeira substituição é mais favorável (K1 > K2) por que há mais moléculas de água para serem substituídas na esfera de coordenação do reagente  $[M(H_2O)_6]$
- Por sua vez, o aumento no número de ligantes L na esfera de coordenação dos produtos aumentam a chance da reação inversa


### ASPECTO IMPORTANTE:

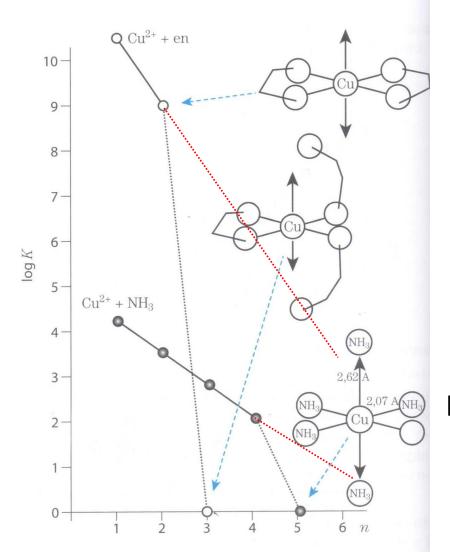
Fatores estatísticos: em geral K<sub>1</sub> > K<sub>2</sub> > K<sub>3</sub> .....






Al<sup>+3</sup>: d<sup>0</sup>; camada cheia, não sofre efeito configuracional

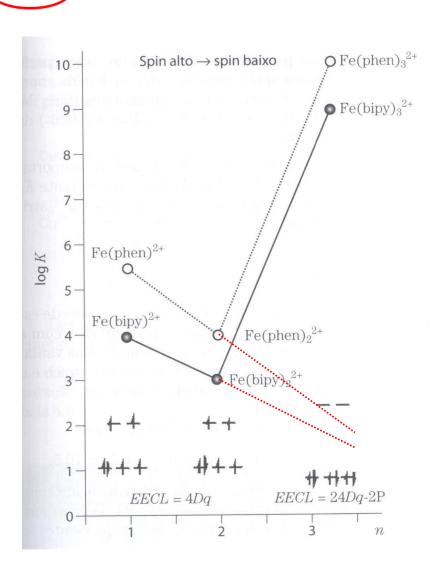



Ni<sup>+2</sup>: d8; Máximo de EECL para geometria Oh em distribuição de spin alto



Hg<sup>+2</sup>: d<sup>10</sup>

Cl⁻: maior

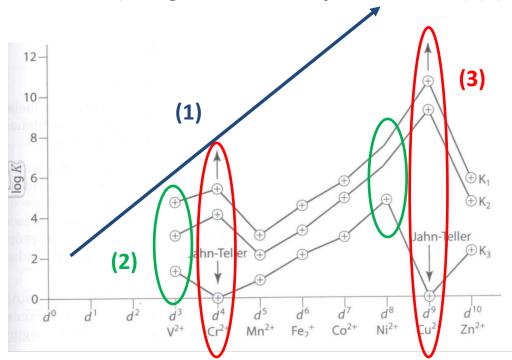

 A repulsão eletrostática no caso da coordenação de três cloretos é maior do que no caso do complexo bis-coordenado, portanto a constante de formação diminui.



Cu<sup>+2</sup>: d<sup>9</sup>

- d<sup>9</sup>: configuração eletrônica com ganho de energia por distorção tetragonal (D<sub>4h</sub> alongado)
- Efeito quelato: além do fator cinético (proximidade dos sítios de coordenação) levar em conta o fator ENTRÓPICO

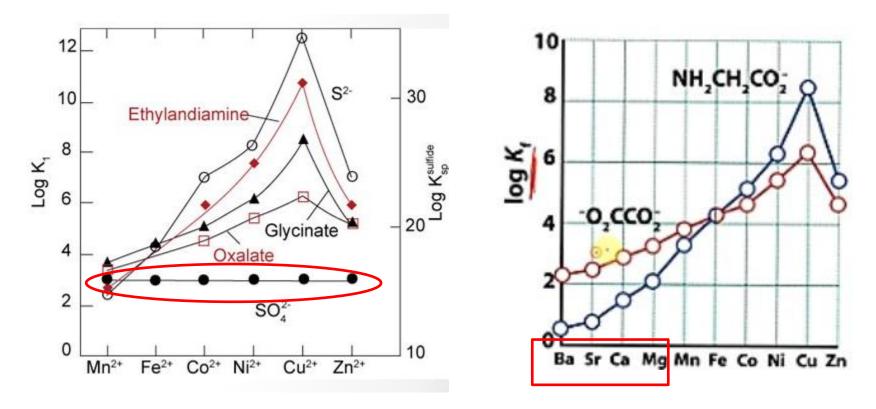
$$[Cu(H_2O)_6]^{+2}$$
 + en  $\longrightarrow$   $[Cu(H_2O)_4(en)]^{+2}$  + 2  $H_2O$   
Duas espécies três espécies  
AUMENTO DA ENTROPIA





#### Fe<sup>+2</sup>: 3d<sup>6</sup>

- EQUILÍBRIO DE SPIN
- d<sup>6</sup> s.a. EECL = 4Dq
- d<sup>6</sup> s.b. EECL = 24Dq P
- Bpy e phen: ligantes de campo intermediário a alto.


**Série de Irving-Willians**: reação de substituição de ligantes aquo em complexos com metais do terceiro período, situação de spin alto e a etilenodiamina, em estado de oxidação +2. Características:

- Série EMPÍRICA
- Parece não depender do ligante de entrada
- Reflete os efeitos de relação carga/raio (1)
- De EECL (energia de estabilização de campo ligante) (2)
- De EEJT (energia de estabilização Jahn Teller) (3)





Série de Irving-Willians: também é considerada como um índice de covalência das ligações de coordenação



- Os valores de "constante de formação" não variam e são baixos com a adição de sulfato (ou seja: não há substituição de ligantes aquo na esfera de coordenação; apenas interação eletrostática com íons sulfato)
- As constantes de formação para metais alcalinos e alcalinos terrosos são baixas. Isso por que estes íons metálicos não tem elétrons d para formar ligação com os ligantes e, em princípio, não contribuem então com nenhum grau de covalência para a interação)