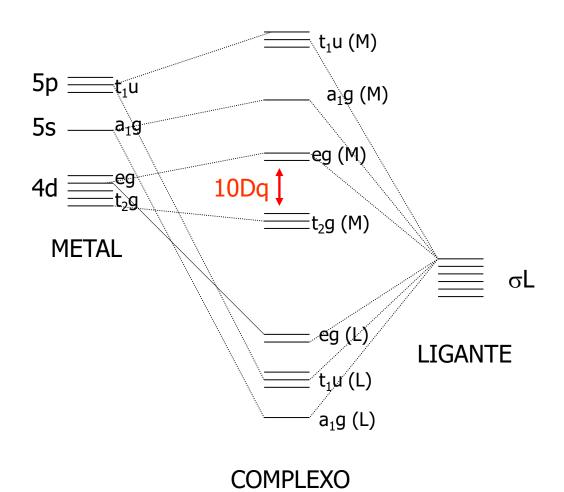
Química Inorgânica II


Prof. Sofia Nikolaou

Atribuição de espectros eletrônicos

DISCRIMINAR ENTRE DIFERENTES TIPOS DE TRANSIÇÕES ELETRÔNICAS

- Transições d-d, ou de campo ligante ou centradas no metal
- Transições $\pi\pi^*$ intra-ligantes
- Transições de transferência de carga
- Transições de intervalência
- Transições em $\delta\delta^*$ em clusters

1. CAMPO LIGANTE (ligand field) ou d-d ou centrada no metal (MC)

CARACTERÍSTICAS:

- ε baixo pois são proibidas por Laporte
- E típica: ~350 nm 600 nm
- implicam PARÂMETRO NEFELAUXÉTICO:
- ~ medida da deslocalização eletrônica no íon quando este forma um complexo

A deslocalização aumenta em média a separação e⁻ - e⁻, portanto diminui a repulsão!!!

1. CAMPO LIGANTE (ligand field) ou d-d ou centrada no metal (MC)

PARÂMETRO NEFELAUXÉTICO (β):

~ medida da deslocalização eletrônica no íon quando este forma um complexo

A deslocalização aumenta em média a separação e - e -, portanto diminui a repulsão!!!

Como ocorre? Quando os orbitais moleculares OCUPADOS tem grande contribuição dos ligantes permitindo que os elétrons se afastem do núcleo metálico por um determinado intervalo de tempo

REFLETE O GRAU DE COVALÊNCIA DA LIGAÇÃO OU MISTURA ORBITAL COM O LIGANTE!!

 $\beta = B \text{ complexo}$ menor β , menor repulsão, maior deslocalização B íon

1. CAMPO LIGANTE (ligand field) ou d-d ou centrada no metal (MC)

PARÂMETRO NEFELAUXÉTICO (β):

 $\beta = B \text{ complexo}$ menor β , menor repulsão, maior deslocalização B íon

 $F^- < H_2O < NH_3 < CN^- < Cl^- < Br^-$

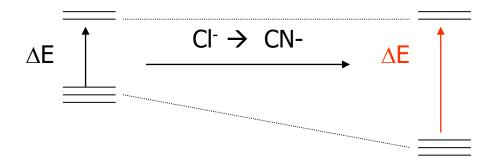
NA PRÁTICA:

- > deslocalização: remoção de densidade eletrônica do centro metálico, < energia dos orbitais de caráter metálico, faz variar a energia da transição
- 2. < ocupação eletrônica, < E dos orbitais, < repulsão intereletrônica
- 3. > ocupação, > E dos orbitais, > repulsão intereletrônica, ocupação de orbitais antiligantes: a ocupação pode ser simulada por doação/remoção de DENSIDADE ELETRÔNICA pelos ligantes!!!

1. CAMPO LIGANTE (ligand field) ou d-d ou centrada no metal (MC)

PARÂMETRO NEFELAUXÉTICO (β):

> ocupação, > E dos orbitais, > repulsão intereletrônica, ocupação de orbitais antiligantes: a ocupação pode ser simulada por doação/remoção de DENSIDADE ELETRÔNICA pelos ligantes!!!


Exemplo: CN^- prevalece caráter π -aceptor

Cl⁻ prevalece caráter σ-doador

 $[Ru(bpy)_2(py)Cl]^+ \lambda máx = 490 nm$

 $[Ru(bpy)_2(py)CN]^+ \lambda máx = 451 nm$

Conclusão: remoção de densidade eletrônica diminui a energia dos orbitais $d\pi$ do metal!

2. INTRA LIGANTE (IL)

- ocorrem entre orbitais moleculares de caráter exclusivamente de ligante
- alta E (geralmente < 300 nm para as $\pi \pi^*$)
- alto ε (totalmente permitidas), π π * ou n π *
- S → S*: transições puras, não tem acoplamento spin-orbita, portanto não envolvem estado tripletos, só por sensibilização, nunca por absorção direta.

3. TRANSIÇÕES DE TRANSFERÊNCIA DE CARGA

Transição eletrônica entre orbitais de natureza DIFERENTE ($M \rightarrow L$ ou $L \rightarrow M$), que promove a transferência TEMPORÁRIA da carga. O evento é assistido pela luz. SIMULA, nesse intervalo de tempo, uma reação redox.

OXIDAÇÃO: $M \rightarrow L$; REDUÇÃO: $L \rightarrow M$

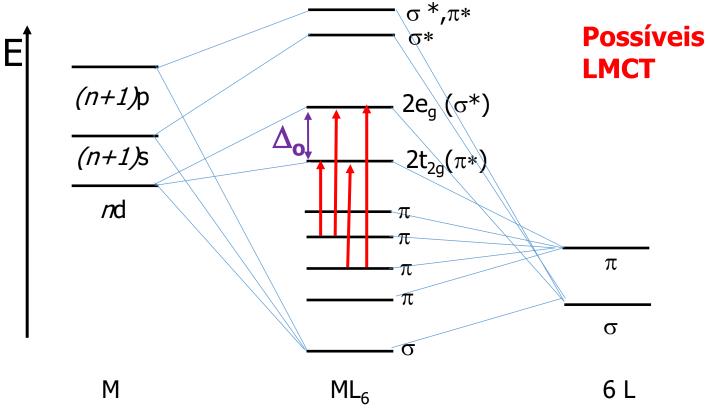
- 3. TRANSIÇÕES DE TRANSFERÊNCIA DE CARGA CARACTERÍSTICAS:
- E → normalmente no visível, dá cor aos compostos de coordenação, porém dependem das características dos ligantes.
- $\epsilon > 1000$ mol dm⁻³ cm⁻¹, pois são totalmente permitidas.
- geralmente apresentam solvatocromismo, pois implicam em separação de carga e, portanto, dependem da polaridade do solvente.

3. TRANSIÇÕES DE TRANSFERÊNCIA DE CARGA METAL-LIGANTE

Primeiro caso: ligante π -aceptor: orbitais d abaixo dos orbitais π^* vazios dos ligantes. $M - L \rightarrow M^+ - L^-$

Ex. [Fe (II)-bpy(bpy)₂] \rightarrow [Fe (III)-bpy-(bpy)₂]* $\lambda = 510 \text{ nm}$ **Possíveis** σ^* σ^* **MLCT** *(n+1)*p π^* (n+1)s e_g^* *n*d π t_{2g} π π σ 10 M 6 L ML_6

- 3. TRANSIÇÕES DE TRANSFERÊNCIA DE CARGA METAL-LIGANTE
- comum para metais com baixo estado de oxidação
- comum para ligantes imínicos como piridina e seus derivados
- comum para ligantes π -aceptores fortes, como CN⁻
- ocorre quando o metal é fácil de oxidar (alta E $d\pi$) e o ligante fácil de reduzir (baixa E π^*)


TRANSIÇÕES DE TRANSFERÊNCIA DE CARGA LIGANTE-METAL

Segundo caso: ligante π -doador orbitais d acima dos orbitais π dos ligantes.

$$L - M \rightarrow L^+ - M^-$$

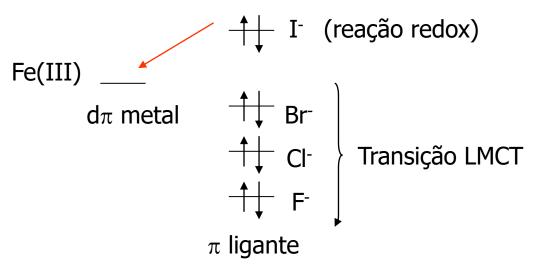
hν

Ex. [Fe (III)-(SCN)₆] \rightarrow [Fe (II)-SCN⁰(SCN)₅]* λ = 470 nm

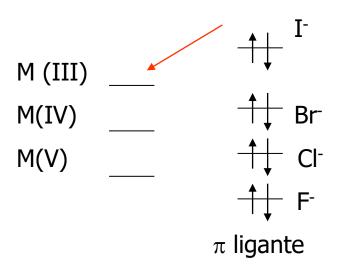
- 3. TRANSIÇÕES DE TRANSFERÊNCIA DE CARGA LIGANTE-METAL
- comum para metais de transição com estado de oxidação alto
- metal fácil de reduzir (baixa E $d\pi$) e o ligante fácil de oxidar (alta E π)

GENERICAMENTE:

M doador: alta densidade eletrônica / baixo estado de oxidação


M aceptor: baixa densidade eletrônica / alto estado de oxidação

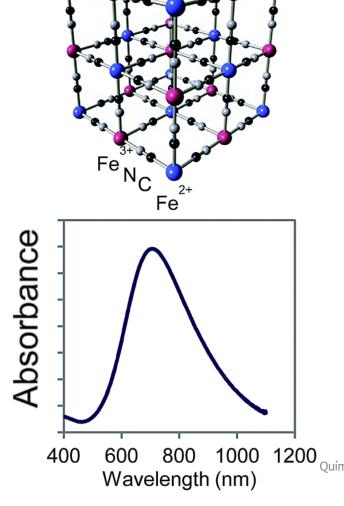
Há situações que simulam as condições acima!!!


GENERICAMENTE:

M doador: alta densidade eletrônica / baixo estado de oxidação

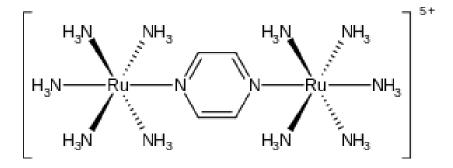
M aceptor: baixa densidade eletrônica / alto estado de oxidação

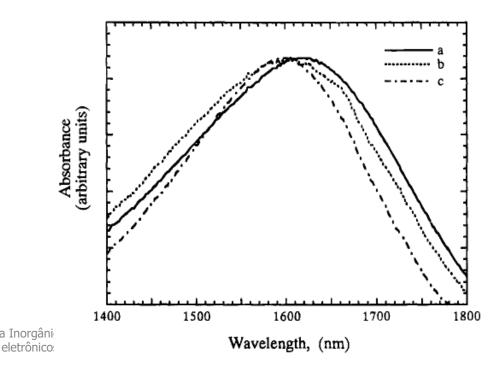
Segundo exemplo: quanto maior o estado de oxidação do metal, maior sua energia de ionização e, alternativamente, maior sua afinidade eletrônica. Isso altera a energia dos orbitais d.

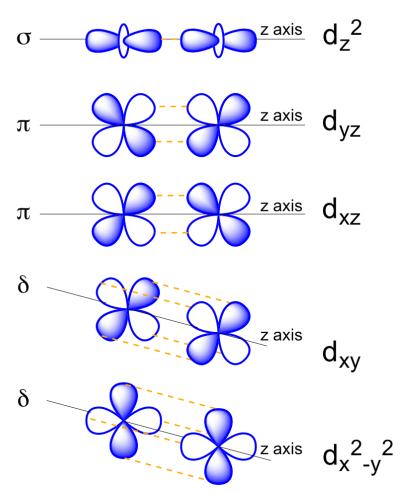


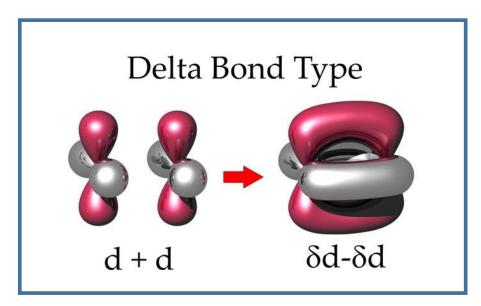
* Só ligantes muito eletronegativos (ricos em densidade eletrônica) estabilizam metais em estado de oxidação altos, pois DOAM densidade eletrônica!!!! Ex. MnO₄-; carga formal +7, carga efetiva 0,7!!!!!!

- 4. Transição de Intervalência (IT) ou transferência de carga centrada no metal (MM)
- ocorre para complexos pelo menos binucleares, de valência mista.
- ocorre entre dois centros metálicos
- geralmente de baixa energia. Por que? Embora os centros metálicos tenham nox diferentes, a transição ocorre entre orbitais de mesma natureza, portanto a diferença de energia é baixa.


Transição de Intervalência (IT), exemplos:

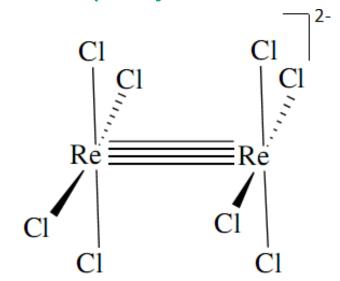

Azul da prússia


íon de Creutz –Taube

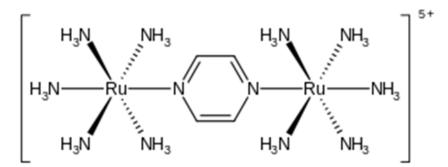

$$(A)_5 Ru(II) - pz - Ru(III)(A)_5$$

- 5. Transição em "clusters"
- termo que significa agregado. Geralmente se refere a transições em compostos onde há ligação metal-metal direta.

Ex. $[Re_2(Cl)_8]$: banda forte em 650 nm; muito intensa para ser d-d, então MM δ - δ *!


NÃO CONFUNDIR d-d COM M-M!!!

COMPLEXO MONONUCLEAR


Transição dd

CLUSTER (LIGAÇÃO METAL-METAL)

Transição δδ*

COMPLEXO LIGADO EM PONTE

Transição de intervalência