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Newton-Raphson I-dim. Finding a root.

Consider the Newton method (sometimes called also
tangent method) in one-dimensional case in order to
solve the equation g(8) = 0. Suppose that g is differ-
entiable. Let 6 be a root of the equation. By Taylor’s
expansion obtain

0 = g(B) = g(0n + (7~ 04)) = 9(62) + (T 0,)9'(&).
0 2 g(0) + (7~ 0n)g/(6)
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Newton-Raphson I-dim. Finding a root.

9(0n)
9'(0n)

9n+1 - Hn -

g(@n) + (9 - Qn)g,(en)
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Newton-Raphson I-dim. Finding a minimum.

In order to find the minimum of a function f(6) the
N-R method use Taylor's expansion of a second order:

F(Bn+ ) = F(B) + pF'(6) + ~p2"(6) =t m(p) — min

2 p
arn;(p) = f/(en) + pf”(en) = 0.
p
Thus
f'(6n) f'(6n)

and 6,.1 =0, —

_f”<9n) f//(@n)'

p:
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Newton-Raphson I-dim. Finding a root and min-
imum.

g(6) =0 vz f(0) — min
_ (6) _ £'(0,)
07’L+1 - QTL T 'g/—gn) 0?’L+1 - Hn - f”(gn)

Optimization problems:

() To find an extreme points of a function h(6) in a
domain 60 € ©.

(#¢) To find a solution (solutions) of an equation ¢(0) =
O in a domain 60 € ©.

Two type of problem can be considered as equivalent:

(1) — (i) Reformulate the problem (i) in the form of
(i) by choosing h(8) = g2(0).

(i) — (i) Reformulate the problem (i) in the form of
(

i1) by choosing ¢(0) = %29).



Aula 6. Optimization Methods 1. 5

Example. Newton-Raphson I-dim. Finding a
root.

Consider the case g(0) = 62%: for some a > 0 consider
equation §2—a = 0. Let us apply the recurrent formula

Thus

(Heron's formula)

One says that a calculator uses the Heron's formula

in order to compute a square root of a number.
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Example. Newton-Raphson I-dim. Finding a
square root.

The iteration formula

1 a
+1 > en

does not used in calculators according https://www.
quora.com/How-do-computers-compute-the-square-
root-of-something

“On modern computer hardware, it is much cheaper
to perform a multiplication operation than a division
operation... So one typical trick is this: Instead of
computing the square root, compute the reciprocal
of the square root. That is, instead of \/n, compute
1/4/n. It turns out that this is a far easier number to
compute, and if you need the square root, multiply
this number by n and you are done.”
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Example. Newton-Raphson I-dim. Finding a
square root.

Consider equation g(8) = 1/0?: for some a > 0 con-
sider equation 1/92—0, = 0. Let us apply the recurrent
formula

g(0n)

Opi1 = O — 00
+1 g/(en)

Thus
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Newton-Raphson I-dim. Convergence conditions.

Consider an iteration formula 6,.1 = ¢(6,). Let again
6 be a root g(f) = 0, and suppose that g is a differen-
tiable function, thus

Oni1— 0 = p(0n) — ¢(0) = (0n — 0)¢'(£),

where £ is between 0 and 6,,.

If |¢'(0)] < g <1 for all # €R, then |0, — 0| decrease as
at least geometrical sequence with progression coef-
ficient ¢ < 1. If |¢/(8)] > 1, then |¢/(8)] > 1 at some
neighborhood of 6 and iterations will not converge. If
|#'(0)] <1 and |¢'(8)] > 1 out of some neighborhood
of 8, then we need to start near the point 6 in order
to achieve a convergence.

Note: (i) lessen ¢ faster convergence, (ii) near 6 the
convergence is determined by ¢'(f) and it is faster if

¢'(0) = 0
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Successive approximation method. The first step of the
method substitutes the equation g(6) = 0 by an equivalent ver-
sion 8 = ¢(0). The second step is the iteration scheme: (1)
0 = 0o; (2) then 6,,+1 = qb(@n),n =0,1,....

|| M M
0 Ex3 Xy x Xo x 0 X x3E X, Xo 5 4

Note,

¢'(0)] < 1 on the pictures.
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Successive approximation method. Condition for
convergence.

If |¢/(0)| > 1 then the method can diverge, see on the
following picture:
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Successive approximation method. Criteria for
convergence.

Let ¢(0) defined and differentiable on the interval |a, b]
with values on |[a,b]. If there exists ¢ > 0, such that
1#'(0)] < q <1 for all ¢€la,b], then

1. iteration process 6;.1 = ¢(6;) converges indepen-
dently of the initial choice 6 € [a, b];

2. the limiting value & = lim,,_, 6,, is the unique root
of the equation 6 = ¢(0) on the interval [a,b].
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Successive approximation method. Example.

Consider the equation g(z) = 0, with g(z) = 23— 2 — 1.
Note that the equation has a root on the interval
[1,2], because g(1) = -1 <0 and ¢g(2) =5 > 0. The
equivalent equation is z = 23 — 1, with ¢(z) = 3 — 1.
Observe that ¢/(z) = 32?2 > 3 for any z € [1,2]. Thus
the process will diverge.

Another equivalent equationisz = vz + 1, and ¢'(z) =

33/ (2112 (1+1)2 < % for any x € [1,2]. The process converges

very fast.
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“nlm” function.

The likelihood associated with the mixture model

O.25N(,u1, 1) + O.75N(,LL2, 1)

is bimodal. For a simulated sample of 400 observa-
tions from this mixture with u; = O,u> = 2.5, it is
produced (minus likelihood) by

> set.seed(1)
> da=c(rnorm(100),2.54+rnorm(300))

> like=function(mu)-sum(log((.25*dnorm(da-mu[1])+
.75*dnorm(da-mul2]))))
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“nlm” function.

By “contour” and “image’” the log-likelihood function
“like” is computed.

> mul=seq(-2,5,by=0.05) #alpha grid for image

> mu2=seq(-2,5,by=0.05) #beta grid for image

> post=matrix(ncol=length(mul),nrow=length(mu?2))
> for (i in 1:length(mul)){ for (j in 1l:length(mu?2))

> { post[i,j]l=-like(c(mulli],mu2[j])) } }

> image(mul,mu?2,post,xlab="mul"” ,ylab="mu?2")

> contour(mul,mu?2,post,add=T)
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“nlm” function.
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“Nnim” function.

Using “nim"” the models are obtained within a few
iterations, depending on the starting points, and the
intermediate values of the Newton-Raphson sequence
can be plotted by

> sta=c(1,1)

> mmu=sta

> for (i in 1:(nIm(like,sta)$it)) {

>  mmu=rbind(mmu,nim(like,sta,iterlim=i)$est)
- )

> lines(mmu,pch=19,lwd=2)
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“nlm” function.
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“nim” function.

> nim(like,sta)
$minimum

[1] 695.8622

$estimate

[1] 0.1740339 2.5178156
$gradient

[1] 5.684342e-07 -1.219130e-06
$code

[1] 1

$iterations

[1] 8

Mensagens de aviso perdidas:
In nim(like, sta) : NA/Inf substituido pelo maximo valor positivo
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“optim” function.

optim(par, fn, gr = NULL, ...,

method = c(” Nelder-Mead”, "BFGS", "CG",
1 L—BFGS_B”, ”SANN”, [ 2] Brentn )'

lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“optim’” function.

> optim(c(1,1), like, method = "BFGS")
$par

[1] 0.174035 2.517817
$value

[1] 695.8622

$counts

function gradient

319

$convergence

[1] O

$message

NULL
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“optim” function.

n=as.numeric(optim(c(1,1), like, method =" BFGS" )$count[1])
sta=c(1,1)

mmu=sta

for (i in 1:n) {

mmu=rbind(mmu,optim(c(1,1), like, method =" BFGS",
control=list(maxit=i))$par)}

lines(mmu,pch=19,Ilwd=2,col="blue")
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[RC] Example 5.2. Newton-Raphson 2-dim in R:
“optim” function.

) - Q\
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mul
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Newton-Raphson for system of equations.

Consider the system of equations, for 8 € R
®(9) = 0, where ® : R? - R%

The method is derived from the equation
®(0,) + P'(0,)(0p11 — 0,) = 0,

and
Oni1 = 0n — (D'(6,)) T (6,).
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Newton-Raphson for system of equations. Bi-
dimensional case.

Consider the system of equations, for 6 = (01, 60,) € R?
D0 o)
D (9) = ( 1 )> = ( ), where ® : R? — R?,
P () 0
the iteration formula is

n+1 n odb,(0 odb,(0 -1
(95- + )) (Qg- )> ( (’7‘95 ) @92 )> ((|)1<9(n))>
(n+1) (n) 0d,(0 od, (0 b n )
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Newton-Raphson for system of equations. Bi-
dimensional case. Example.

Find the minimum f(z) = 224 2z122+ 3z5+ 4x1. Make
the first step of Newton-Raphson method.

After differentiation we have
of

((9301) B (2:1:1 + 2xo +4) B (O)
87f B 2x1 + 622 - \o/°

Initial 2(0) = (0,0)T. Thus
(1)

C-0-C G-




