Optimization Methods I. Newton-Raphson and others. Exercises.

Anatoli Iambartsev IME-USP

Newton-Raphson I-dim. Finding a root.

Consider the Newton method (sometimes called also tangent method) in one-dimensional case in order to solve the equation $g(\theta)=0$. Suppose that g is differentiable. Let $\bar{\theta}$ be a root of the equation. By Taylor's expansion obtain

$$0 = g(\overline{\theta}) = g(\theta_n + (\overline{\theta} - \theta_n)) = g(\theta_n) + (\overline{\theta} - \theta_n)g'(\xi),$$

$$0 \cong g(\theta_n) + (\overline{\theta} - \theta_n)g'(\theta_n)$$

$$0 \cong \frac{g(\theta_n)}{g'(\theta_n)} + (\overline{\theta} - \theta_n) \Longrightarrow \overline{\theta} = \theta_n - \frac{g(\theta_n)}{g'(\theta_n)}$$

$$\Longrightarrow \theta_{n+1} = \theta_n - \frac{g(\theta_n)}{g'(\theta_n)}.$$

Newton-Raphson I-dim. Finding a root.

$$heta_{n+1} = heta_n - rac{g(heta_n)}{g'(heta_n)}$$

Newton-Raphson I-dim. Finding a minimum.

In order to find the minimum of a function $f(\theta)$ the N-R method use Taylor's expansion of a second order:

$$f(\theta_n + p) \cong f(\theta_n) + pf'(\theta_n) + rac{1}{2}p^2f''(\theta_n) =: m(p) o \min_p rac{\partial m(p)}{\partial p} = f'(\theta_n) + pf''(\theta_n) = 0.$$

Thus

$$p=-rac{f'(heta_n)}{f''(heta_n)}$$
 and $heta_{n+1}= heta_n-rac{f'(heta_n)}{f''(heta_n)}.$

Newton-Raphson I-dim. Finding a root and minimum.

$$\begin{array}{lll} g(\theta) = \mathbf{0} & \text{VZ} & f(\theta) \rightarrow \min \\ \theta_{n+1} = \theta_n - \frac{g(\theta_n)}{g'(\theta_n)} & \theta_{n+1} = \theta_n - \frac{f'(\theta_n)}{f''(\theta_n)} \end{array}$$

Optimization problems:

- (i) To find an extreme points of a function $h(\theta)$ in a domain $\theta \in \Theta$.
- (ii) To find a solution (solutions) of an equation $g(\theta) = 0$ in a domain $\theta \in \Theta$.

Two type of problem can be considered as equivalent:

- $(i) \rightarrow (ii)$ Reformulate the problem (ii) in the form of (i) by choosing $h(\theta) = g^2(\theta)$.
- $(ii) \rightarrow (i)$ Reformulate the problem (i) in the form of (ii) by choosing $g(\theta) = \frac{dh(\theta)}{d\theta}$.

Example. Newton-Raphson I-dim. Finding a root.

Consider the case $g(\theta) = \theta^2$: for some a > 0 consider equation $\theta^2 - a = 0$. Let us apply the recurrent formula

$$heta_{n+1} = heta_n - rac{g(heta_n)}{g'(heta_n)}.$$

Thus

$$heta_{n+1} = heta_n - rac{ heta_n^2 - a}{2 heta_n} = rac{1}{2} \Big(heta_n + rac{a}{ heta_n} \Big).$$

(Heron's formula)

One says that a calculator uses the Heron's formula in order to compute a square root of a number.

Example. Newton-Raphson I-dim. Finding a square root.

The iteration formula

$$heta_{n+1} = rac{1}{2} \Big(heta_n + rac{a}{ heta_n} \Big).$$

does not used in calculators according https://www.quora.com/How-do-computers-compute-the-square-root-of-something

"On modern computer hardware, it is much cheaper to perform a multiplication operation than a division operation... So one typical trick is this: Instead of computing the square root, compute the reciprocal of the square root. That is, instead of \sqrt{n} , compute $1/\sqrt{n}$. It turns out that this is a far easier number to compute, and if you need the square root, multiply this number by n and you are done."

Example. Newton-Raphson I-dim. Finding a square root.

Consider equation $g(\theta)=1/\theta^2$: for some a>0 consider equation $1/\theta^2-a=0$. Let us apply the recurrent formula

$$heta_{n+1} = heta_n - rac{g(heta_n)}{g'(heta_n)}.$$

Thus

$$\theta_{n+1} = \theta_n - \frac{\frac{1}{\theta_n^2} - a}{-\frac{2}{\theta_n^3}} = \frac{1}{2} \Big(3\theta_n - a\theta_n^3 \Big).$$

Newton-Raphson I-dim. Convergence conditions.

Consider an iteration formula $\theta_{n+1} = \phi(\theta_n)$. Let again $\bar{\theta}$ be a root $g(\bar{\theta}) = 0$, and suppose that g is a differentiable function, thus

$$\theta_{n+1} - \overline{\theta} = \phi(\theta_n) - \phi(\overline{\theta}) = (\theta_n - \overline{\theta})\phi'(\xi),$$

where ξ is between $\bar{\theta}$ and θ_n .

If $|\phi'(\theta)| \leqslant q < 1$ for all $\theta \in \mathbb{R}$, then $|\theta_n - \overline{\theta}|$ decrease as at least geometrical sequence with progression coefficient q < 1. If $|\phi'(\overline{\theta})| > 1$, then $|\phi'(\theta)| > 1$ at some neighborhood of $\overline{\theta}$ and iterations will not converge. If $|\phi'(\overline{\theta})| < 1$ and $|\phi'(\theta)| > 1$ out of some neighborhood of $\overline{\theta}$, then we need to start near the point $\overline{\theta}$ in order to achieve a convergence.

Note: (i) lessen q faster convergence, (ii) near $\bar{\theta}$ the convergence is determined by $\phi'(\bar{\theta})$ and it is faster if $\phi'(\bar{\theta}) = 0$.

Successive approximation method. The first step of the method substitutes the equation $g(\theta) = 0$ by an equivalent version $\theta = \phi(\theta)$. The second step is the iteration scheme: (1) $\theta = \theta_0$; (2) then $\theta_{n+1} = \phi(\theta_n), n = 0, 1, \ldots$

Note, $|\phi'(\theta)| < 1$ on the pictures.

Successive approximation method. Condition for convergence.

If $|\phi'(\theta)| > 1$ then the method can diverge, see on the following picture:

Successive approximation method. Criteria for convergence.

Let $\phi(\theta)$ defined and differentiable on the interval [a,b] with values on [a,b]. If there exists q>0, such that $|\phi'(\theta)|\leqslant q<1$ for all $\theta\in[a,b]$, then

- 1. iteration process $\theta_{i+1} = \phi(\theta_i)$ converges independently of the initial choice $\theta_0 \in [a, b]$;
- 2. the limiting value $\xi = \lim_{n\to\infty} \theta_n$ is the unique root of the equation $\theta = \phi(\theta)$ on the interval [a,b].

Successive approximation method. Example.

Consider the equation g(x)=0, with $g(x)=x^3-x-1$. Note that the equation has a root on the interval [1,2], because g(1)=-1<0 and g(2)=5>0. The equivalent equation is $x=x^3-1$, with $\phi(x)=x^3-1$. Observe that $\phi'(x)=3x^2>3$ for any $x\in[1,2]$. Thus the process will diverge.

Another equivalent equation is $x = \sqrt[3]{x+1}$, and $\phi'(x) = \frac{1}{3\sqrt[3]{(x+1)^2}} < \frac{1}{4}$ for any $x \in [1,2]$. The process converges very fast.

The likelihood associated with the mixture model

$$0.25N(\mu_1, 1) + 0.75N(\mu_2, 1)$$

is bimodal. For a simulated sample of 400 observations from this mixture with $\mu_1=0, \mu_2=2.5$, it is produced (minus likelihood) by

- > set.seed(1)
- > da=c(rnorm(100),2.5+rnorm(300))
- > like=function(mu)-sum(log((.25*dnorm(da-mu[1])+
 .75*dnorm(da-mu[2]))))

By "contour" and "image" the log-likelihood function "like" is computed.

- > mu1=seq(-2,5,by=0.05) #alpha grid for image
- > mu2=seq(-2,5,by=0.05) #beta grid for image
- > post=matrix(ncol=length(mu1),nrow=length(mu2))
- > for (i in 1:length(mu1)){ for (j in 1:length(mu2))
- > { post[i,j]=-like(c(mu1[i],mu2[j])) } }
- > image(mu1,mu2,post,xlab="mu1",ylab="mu2")
- > contour(mu1,mu2,post,add=T)

Using "nlm" the models are obtained within a few iterations, depending on the starting points, and the intermediate values of the Newton-Raphson sequence can be plotted by

```
> sta=c(1,1)
> mmu=sta
> for (i in 1:(nlm(like,sta)$it)) {
> mmu=rbind(mmu,nlm(like,sta,iterlim=i)$est)
> }
> lines(mmu,pch=19,lwd=2)
```



```
> nlm(like,sta)
$minimum
[1] 695.8622
$estimate
[1] 0.1740339 2.5178156
$gradient
[1] 5.684342e-07 -1.219130e-06
$code
[1] 1
$iterations
[1] 8
Mensagens de aviso perdidas:
In nlm(like, sta): NA/Inf substituido pelo máximo valor positivo
```

```
> optim(c(1,1), like, method = "BFGS")
$par
[1] 0.174035 2.517817
$value
[1] 695.8622
$counts
function gradient
31 9
$convergence
[1] 0
$message
NULL
```

```
[RC] Example 5.2. Newton-Raphson 2-dim in R:
"optim" function.
n=as.numeric(optim(c(1,1), like, method = "BFGS")$count[1])
sta=c(1,1)
mmu=sta
for (i in 1:n) {
mmu=rbind(mmu,optim(c(1,1), like, method = "BFGS",
control=list(maxit=i))$par)}
lines(mmu,pch=19,lwd=2,col="blue")
```


Newton-Raphson for system of equations.

Consider the system of equations, for $\theta \in \mathbb{R}^d$

$$\Phi(\theta) = 0$$
, where $\Phi : \mathbb{R}^d \to \mathbb{R}^d$.

The method is derived from the equation

$$\Phi(\theta_n) + \Phi'(\theta_n)(\theta_{n+1} - \theta_n) = 0,$$

and

$$\theta_{n+1} = \theta_n - (\Phi'(\theta_n))^{-1}\Phi(\theta_n).$$

Newton-Raphson for system of equations. Bidimensional case.

Consider the system of equations, for $\theta = (\theta_1, \theta_2) \in \mathbb{R}^2$

$$\Phi(\theta) = \begin{pmatrix} \Phi_1(\theta) \\ \Phi_2(\theta) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ where } \Phi : \mathbb{R}^2 \to \mathbb{R}^2,$$

the iteration formula is

$${\theta_1^{(n+1)}\choose\theta_2^{(n+1)}}={\theta_1^{(n)}\choose\theta_2^{(n)}}-{\left(\begin{array}{cc}\frac{\partial\Phi_1(\theta)}{\partial\theta_1}&\frac{\partial\Phi_1(\theta)}{\partial\theta_2}\\\frac{\partial\Phi_2(\theta)}{\partial\theta_1}&\frac{\partial\Phi_2(\theta)}{\partial\theta_2}\end{array}\right)}^{-1}_{\theta=\theta^{(n)}}{\left(\begin{array}{cc}\Phi_1(\theta^{(n)})\\\Phi_2(\theta^{(n)})\end{array}\right)}.$$

Newton-Raphson for system of equations. Bidimensional case. Example.

Find the minimum $f(x) = x_1^2 + 2x_1x_2 + 3x_2^2 + 4x_1$. Make the first step of Newton-Raphson method.

After differentiation we have

$$\binom{\frac{\partial f}{\partial x_1}}{\frac{\partial f}{\partial x_2}} = \binom{2x_1 + 2x_2 + 4}{2x_1 + 6x_2} = \binom{0}{0}.$$

Initial $x^{(0)} = (0,0)^T$. Thus

$$\binom{x_1^{(1)}}{x_2^{(1)}} = \binom{0}{0} - \binom{2}{2} \binom{2}{6}^{-1} \binom{4}{0} = -\binom{\frac{3}{4} - \frac{1}{4}}{-\frac{1}{4} \cdot \frac{1}{4}} \binom{4}{0} = \binom{3}{-1}.$$