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Electromagnetic 
radiation 

⚡Relativistic fields: the Jefimenko and 
Liénard-Wiechert potentials 
⚡The Feynman-Heaviside formulas 
⚡Simple radiation fields: dipole radiation 
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Exact, formal solution to Maxwell’s equation
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• In our 10th lecture (April 30th) we obtained the formal, exact solution to the wave 
equation,  , in terms of the retarded Green’s function: 

        ,    with    , and : 

        ,    resulting in: 

        ,        where     

• The interpretation is that, if you move a charge density at some position  , the 

potential at the position  will only respond to that change after a time  . 

• For the vector potential, the equation is exactly the same, and so is the solution: 

□ ϕ = ρ/ϵ0

GRet(t, ⃗x ; t′ , ⃗x ′ ) =
1

4π Δx
δ(t′ − t + Δx /cs) Δx = | ⃗x − ⃗x ′ |

ϕ(t, ⃗x ) = ∫ d3x′ ∫ dt′ 
ρ(t′ , ⃗x ′ )

ϵ
GRet(t, ⃗x ; t′ , ⃗x ′ )

ϕ(t, ⃗x ) =
1

4πϵ0 ∫ d3x′ 
ρ(tRet, ⃗x ′ )
| ⃗x − ⃗x ′ |

tRet = t − Δx /c

⃗x ′ 

⃗x Δx /c

⃗A (t, ⃗x ) =
μ0

4π ∫ d3x′ 

⃗J (tRet, ⃗x ′ )
| ⃗x − ⃗x ′ |

x, x′ 
y, y′ 

z, z′ ⃗x

⃗x ′ 

Δx

Δt = Δx /c
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Retarded potentials and fields
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• We can now try to compute the electric and magnetic fields from these retarded solutions for the potentials — even if those expressions may not be very useful. These are 
called the Jefimenko fields.  

• By using the Gauss and Ampère laws we can write: 

        ,    and: 

 

• It is important to notice that we cannot simply evaluate  , since  .  In fact: 

    , 

where  .  

• Therefore, we have that: 

        ,        and 

 

We can now substitute these back into the equations for  and   at the top of the page.

⃗E (t, ⃗x ) =
1

4πϵ0 ∫ d3x′ 
1

Δx [− ⃗∇′ ρ(t′ , ⃗x ′ ) −
1
c2

∂ ⃗J
∂t′ ]

t′ =tRet

⃗B (t, ⃗x ) =
μ0

4π ∫ d3x′ 
1

Δx [ ⃗∇′ × ⃗J ]t′ =tRet

⃗∇′ f (t′ = tRet) ⃗∇′ f (t′ = tRet) ≠ [ ⃗∇′ f ]t′ =tRet

⃗∇′ [ f
t′ =tRet

] = [ ⃗∇′ f ]t′ =tRet
+ [ ∂f

∂t′ 
⃗∇′ (t′ = tRet)]

t′ =tRet

= [ ⃗∇′ f ]t′ =tRet
+ [ ∂f

∂t′ 
⃗∇′ 
1
c

Δx]
t′ =tRet

= [ ⃗∇′ f ]t′ =tRet
+

Δ ̂x
c [ ∂f

∂t′ ]t′ =tRet

Δ ̂x = ( ⃗x − ⃗x ′ )/ | ⃗x − ⃗x ′ |

[ ⃗∇′ ρ]t′ =tRet
= ⃗∇′ [ρ(t′ = tRet)] −

Δ ̂x
c [ ∂ρ

∂t′ ]t′ =tRet

[ ⃗∇′ × ⃗J ]t′ =tRet
= ⃗∇′ × [ ⃗J (t′ = tRet)] −

Δ ̂x
c

× [ ∂ ⃗J
∂t′ ]

t′ =tRet

⃗E ⃗B
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The Jefimenko fields
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• This is the result of making those substitutions, first for the electric field: 

 

                      

                      

where we integrated out the surface term  . 

• Similarly, for the magnetic field we obtain the expression: 

⃗E (t, ⃗x ) =
1

4πϵ0 ∫ d3x′ 
1

Δx
− ⃗∇′ [ρ(t′ = tRet)] +

Δ ̂x
c [ ∂ρ

∂t′ ]t′ =tRet

−
1
c2

∂ ⃗J
∂t′ 

t′ =tRet

=
1

4πϵ0 ∫ d3x′ − ⃗∇′ [ 1
Δx

ρ(t′ = tRet)] + [ ⃗∇′ 
1

Δx ] ρ(t′ = tRet) +
Δ ̂x

c Δx [ ∂ρ
∂t′ ]t′ =tRet

−
1
c2

1
Δx

∂ ⃗J
∂t′ 

t′ =tRet

= 0 +
1

4πϵ0 ∫ d3x′ 
Δ ̂x
Δx2

ρ(t′ = tRet) +
Δ ̂x

c Δx [ ∂ρ
∂t′ ]t′ =tRet

−
1
c2

1
Δx

∂ ⃗J
∂t′ 

t′ =tRet

ρ/Δx

⃗B (t, ⃗x ) =
μ0

4π ∫ d3x′ ⃗J (t′ = tRet) ×
Δ ̂x
Δx2

−
Δ ̂x

c Δx
× [ ∂ ⃗J

∂t′ ]
t′ =tRet
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• Let’s collect the two results again here: 

 

 

• We can now see clearly the structure of these fields: there are the static parts of the solutions, 

 

 

which are just the generalizations of the electrostatic solution from Gauss’s law (i.e., Coulomb’s law), and the magnetostactic 
solution from Ampère’s law (i.e., the Biot-Savart law)!

⃗E (t, ⃗x ) =
1

4πϵ0 ∫ d3x′ 
Δ ̂x
Δx2

ρ(t′ = tRet) +
Δ ̂x

c Δx [ ∂ρ
∂t′ ]t′ =tRet

−
1
c2

1
Δx

∂ ⃗J
∂t′ 

t′ =tRet

⃗B (t, ⃗x ) =
μ0

4π ∫ d3x′ ⃗J (t′ = tRet) ×
Δ ̂x
Δx2

−
Δ ̂x

c Δx
× [ ∂ ⃗J

∂t′ ]
t′ =tRet

⃗E Stat =
1

4πϵ0 ∫ d3x′ ρ(t′ = tRet) ( ⃗x − ⃗x ′ 

| ⃗x − ⃗x ′ |3 )
⃗B Stat =

μ0

4π ∫ d3x′ ⃗J (t′ = tRet) × ( ⃗x − ⃗x ′ 

| ⃗x − ⃗x ′ |3 )

The Jefimenko fields
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• It is interesting to specialize the previous results to point charges,  

        ,        and 

        ,    with  

• Before we proceed, it is important to notice that the Dirac delta-function above carries an implicit dependence on the position 
 also through the retarded time,  since the position (and velocity) of the point charge is evaluated at   .  

• This means that any integral over  of that distribution should take into account the position  where the charge was at the 
retarded time — see the figure.  

• In other words, the zero of the argument of the delta function is the solution of: 

        . 

• Let’s express the argument of the Dirac delta-function using  , so: 

        . 

• Changing variables in the DIrac delta function from   to  yields: 

 

                                                                       

ρ(t′ , ⃗x ′ ) = qδ[ ⃗x ′ − ⃗x q(t′ )]

⃗J (t′ , ⃗x ′ ) = q ⃗v q(t′ ) δ[ ⃗x ′ − ⃗x q(t′ )] ⃗v q(t′ ) = ⃗·x q(t′ )

⃗x ′ ⃗x q (t′ = t − Δx /c)

d3x′ ⃗x ′ 

⃗x ′ − ⃗x q (t − | ⃗x ′ − ⃗x | /c) = 0

Δ ⃗x = ⃗x − ⃗x ′ 

⃗x ′ − ⃗x q (t − | ⃗x ′ − ⃗x | /c) = ⃗x − Δ ⃗x − ⃗x q (t − Δx /c) = 0

⃗x ′ Δ ⃗x

δ [ ⃗x ′ − ⃗x q (t − | ⃗x ′ − ⃗x | /c)] = δ [ ⃗x − Δ ⃗x − ⃗x q (t − Δx /c)] ×
1

⃗∇Δx[ ⃗x − Δ ⃗x − ⃗x q (t − Δx /c)]

= δ [ ⃗x − Δ ⃗x − ⃗x q (t − Δx /c)] ×
1

1 − ⃗v q(tRet) ⋅ Δ ̂x /c

Point charges: Feynman-Heaviside fields

⃗x q(t′ )

ct

x

Δx

Δx
ct − Δx

x′ 

Another way to see how this 
factor appears is to realize 
that  , 

so: 
t′ = t − | ⃗x − ⃗x q(t′ ) | /c

dt
dt′ 

= κ = 1 − Δ ̂x ⋅ ⃗v q /c
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• The bottom line is that an integral of a DIrac delta function including the retarded time leads to an extra factor of 

 

• That’s basically it for the complication introduced for point charges due to the retardation. We can now write the electric and magnetic fields as: 

 

 

• With some careful manipulations of these derivatives, these expressions can be cast into the form: 

 

 

• The beauty of these expressions is the fact that you can see now see clearly the radiative part of the electric field, which does not fall with  , and 

is sourced by an acceleration term,  . [There is a corresponding radiative term for the magnetic field, but it is harder to see it independently.]

1
κ

=
1

1 − ⃗v q(tRet) ⋅ Δ ̂x /c

⃗E (t, ⃗x ) =
q

4πϵ0 [ Δ ̂x
κΔx2 ]

Ret
+

∂
c ∂t [ Δ ̂x

κΔx ]
Ret

−
∂

c2∂t [
⃗v q

κ Δx ]
Ret

⃗B (t, ⃗x ) =
μ0 q
4π [

⃗v q × Δ ̂x
κΔx2 ]

Ret

+
∂

c ∂t [
⃗v q × Δ ̂x
κΔx ]

Ret

⃗E (t, ⃗x ) =
q

4πϵ0 {[ Δ ̂x
Δx2 ]

Ret
+ ΔxRet

∂
c ∂t [ Δ ̂x

Δx2 ]
Ret

−
∂2

c2∂t2 [Δ ̂x]Ret}
⃗B (t, ⃗x ) =

μ0 q
4π [

⃗v q × Δ ̂x
κ2Δx2 ]

Ret

+
1

ΔxRet

∂
c ∂t [

⃗v q × Δ ̂x
κ ]

Ret

1/Δx2

∂2 /∂t2(…)

Point charges: Feynman-Heaviside fields

⃗x q(t′ )

ct

x

Δx

Δx
ct − Δx

x′ 
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• The same calculation that we performed above for the fields can be made for the potentials, and 
the results for the electric potential and vector potential are: 

        ,     

where     ,    and 

 

• These are the Liénard-Wiechert potentials, from which it is trivial to get the non-relativistic limits.  

• It is also useful to write the Liénard-Wiechert 4-vector potential, which can be written in an 
elegant and manifestly covariant form as : 

                     (for details , see Jackson, Ch. 14.1)

ϕ(t, ⃗x ) =
q

4πϵ0 [ 1
Δx

1
κ ]

Ret
=

q
4πϵ0

1

Δx − ⃗β q ⋅ Δ ⃗x
Ret

⃗β q = ⃗v q /c

⃗A (t, ⃗x ) =
q μ0

4π

⃗v q

Δx − ⃗β q ⋅ Δ ⃗x
Ret

Aμ(x) =
q μ0 c

4π [
Uμ

q

Uq , α Δxα ]
Ret

Point charges: Liénard-Wiechert potentials

⃗x q(t′ )

ct

x

Δx

Δx
ct − Δx

x′ 



ELECTRODYNAMICS I / IFUSP / LECTURE 15 9

• Let’s now compute some actual radiation fields from moving charges. 

• The first, simplest case is known as electric dipole radiation: we basically “shake" a charge up and down, and obtain 
electromagnetic radiation. So, in the expression: 

        ,           , 

we use the charge and current density distributions: 

    ,    and 

    ,    with the two related by the continuity equation: 

 

• So, e.g., the vector potential becomes: 

 

                     

• Therefore, our integral is now only in terms of expressions involving  .

ϕ(t, ⃗x ) =
1

4πϵ0 ∫ d3x′ 
ρ(tRet, ⃗x ′ )

Δx
tRet = t − Δx /c

ρ(t′ , ⃗x ′ ) = ∑
ω

ρω( ⃗x ′ ) e−iωt′ 

⃗J (t′ , ⃗x ′ ) = ∑
ω

⃗J ω( ⃗x ′ ) e−iωt′ 

∂ρ
∂t

+ ⃗∇ ⋅ ⃗J = 0 ⇒ − iωρω + ⃗∇ ⋅ ⃗J ω = 0

⃗A (t, ⃗x ) = ∑
ω

μ0

4π ∫ d3x′ 
⃗J ω( ⃗x ′ )
Δx

e−iω(t − Δx /c)

= ∑
ω

μ0

4π
e−iωt ∫ d3x′ 

⃗J ω( ⃗x ′ )
Δx

eiωΔx/c

Δx = | ⃗x ′ − ⃗x |

x, x′ 
y, y′ 

z, z′ ⃗x

⃗x ′ 

Δx

Δt = Δx /c

Electromagnetic radiation
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Near, intermediate and far zones
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• Integrals such as this as very hard to compute exactly, but they are ideally suited for approximation 
schemes. The basic idea is to look at the “hard" part of the integrand, assuming that our sources are 
near the origin: 

        ,        where    . 

• We can imagine three “regions" of decreasing difficulty (here I write ): 

Near zone:                      

Intermediate zone:     

Radiaton zone:             

• The main approximation that we can do is to assume that we are in the radiation (or “far" zone), such 
that  , and  . In that case we can write: 

 

         

        

eikΔx

Δx
k = ω/c = 2π /λ

| ⃗x | = r

d ≪ r , r ≪ λ

d ≪ r , r ∼ λ

d ≪ r , r ≫ λ

kx ≫ 1 x′ ≪ x

Δx = | ⃗x − ⃗x ′ | = r 1 − (x′ /r)2 − 2(x′ /r) ̂x ⋅ ̂x′ 

≃ r (1 +
1
2

x′ 2

r2
−

x′ 

r
̂x ⋅ ̂x′ + …)

≃ r − x′ ( ̂x ⋅ ̂x′ ) + …

d

λ

Δx ∼ r
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• This means that we can now write each Fourier component of the fields as  , in the radiation 

zone, as: 

        ,        where         [Notice this import definition!] 

• Notice that the factor in the exponential  can vary quite rapidly, while the small term in the denominator is 
sub-dominant. Therefore, in the radiation zone we can further approximate the integral above to: 

        ,    and the same for the potential: 

 

• We will in fact see this type of solution again when we deal with the theory of scattering and diffraction of light. 

• But for now we arrive at our main result here, which is that in the radiation zone the potentials are just the Fourier 
transforms of the sources: 

        ,    and 

⃗A = ∑
ω

⃗A ω e−iωt

⃗A ω ≃
μ0

4π
eikr ∫ d3x′ 

e−i ⃗k ⋅ ⃗x ′ 

r − ̂x ⋅ ⃗x ′ 
⃗J ω( ⃗x ′ ) ⃗k ≡ k ̂x

e−i ⃗k ⋅ ⃗x ′ 

⃗A ω ≃
μ0

4π
eikr

r ∫ d3x′ e−i ⃗k ⋅ ⃗x ′ ⃗J ω( ⃗x ′ )

ϕω ≃
1

4πϵ0

eikr

r ∫ d3x′ e−i ⃗k ⋅ ⃗x ′ ρω( ⃗x ′ )

⃗A ω ≃
μ0

4π
eikr

r
˜ ⃗J ω( ⃗x ′ )

ϕω ≃
1

4πϵ0

eikr

r
ρ̃ω( ⃗x ′ )

d

λ

Δx ∼ x

Near, intermediate and far zones
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• Now we can go even further, and simplify this expression even more. Let’s assume that the phase in 
the Fourier integral is always small, i.e., that 

       

i.e., that the typical dimensions of the source are smaller than the wavelengths of the radiation, 
 . 

This will happen if we move the source slowly: e.g., for a frequency of   we get 
a wavelength of thousands of kilometers. For light on the GHz scale, the wavelengths are still of 
the order of cm — much larger than the sizes of the atoms/molecules that radiate that light! 

In other words, this is a damn good approximation! 

• In that case, we have that the radiation is well described by: 

        ,    and 

 

• Let’s look at all these terms now, and see what we get for each of these four terms.

⃗k ⋅ ⃗x ′ =
ω
c

x′ ̂x ⋅ ̂x′ →
ω d
c

cos θ ≪ 1

λ = 2πc/ω

103 s−1 = 103 Hz

⃗A ω ≃
μ0

4π
eikr

r ∫ d3x′ (1 − i ⃗k ⋅ ⃗x ′ + …) ⃗J ω( ⃗x ′ )

ϕω ≃
1

4πϵ0

eikr

r ∫ d3x′ (1 − i ⃗k ⋅ ⃗x ′ + …) ρω( ⃗x ′ )

d

λ

Δx ∼ x

Solutions in the radiation (far) zone
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• The very first term in the electric potential is the simple integral: 

 

But this is simply the total charge, which for any source must be constant, !  

This solution therefore belongs to the realm of electrostatics — it is simply the potential ~   for a “point" 
charge as seen from “far away”! 

• Now let’s look at the first term in the vector potential: 

 

We can rewrite this integral by means of partial integrations, as: 

 

           

 

• So, this term corresponds to an electric dipole   , which oscillates with a period  !

ϕω ≃
1

4πϵ0

eikr

r ∫ d3x′ ρω( ⃗x ′ ) =
1

4πϵ0

eikr

r
Qω

ω = k = 0

Q /r

⃗A ω ≃
μ0

4π
eikr

r ∫ d3x′ ⃗J ω( ⃗x ′ )

Aω, i ≃
μ0

4π
eikr

r ∫ d3x′ Jω, i ( ⃗x ′ ) =
μ0

4π
eikr

r ∫ d3x′ [∂′ i (x′ j Jω ,i) − x′ j (∂′ iJω ,i)]

=
μ0

4π
eikr

r [∫ d2S′ i (x′ j Jω, i) − ∫ d3x′ x′ j (iωρω)]
⇒ ⃗A ω =

μ0

4π
eikr

r
(−iω) ∫ d3x′ ⃗x ′ ρω( ⃗x ′ ) = −

μ0

4π
eikr

r
iω ⃗p ω

⃗p ω T = 2π /ω

d

λ

Δx ∼ x

Solutions in the radiation (far) zone
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Dipole radiation
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• The first non-vanishing term in the electric potential is in fact the counterpart in  for the same oscillating dipole 
that we have just found for the vector potential: 

 

 

• These first non-vanishing terms for   and    are called electric dipole radiation potentials: 

        ,    and 

 

They correspond to the simplest possible situation: a neutral pair of charge that moves oscillates around a 
center. 

• The next order term in the vector potential is called magnetic dipole radiation: 

 

 

Magnetic dipole radiation can be pictured as a loop with a current that oscillates clockwise/counterclockwise.

ϕ

ϕω ≃
1

4πϵ0

eikr

r ∫ d3x′ (−i ⃗k ⋅ ⃗x ′ ) ρω( ⃗x ′ ) =
c2μ0

4π
eikr

r (−i
ω
c

̂x) ⋅ ⃗p ω

⇒ ϕω = c ̂x ⋅ ⃗A ω

ϕ ⃗A

⃗A E−dip
ω = −

μ0

4π
eikr

r
iω ⃗p ω

ϕE−dip
ω = c ̂x ⋅ ⃗A ω

⃗A ω ≃ ⃗A E−dip
ω +

μ0

4π
eikr

r ∫ d3x′ (−i ⃗k ⋅ ⃗x ′ ) ⃗J ω( ⃗x ′ )

⇒ AM−dip
ω , i = − i

μ0

4π
eikr

r
kj ∫ d3x′ x′ j Jω , i

d

λ

Δx ∼ x

time

time
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Radiation potentials and radiation fields
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• Let’s now compute the actual electric and magnetic fields generated by these radiation potentials For this we will use the following 
notation: 

        ,    and 

 

where   is the vacuum impedance. 

• Obviously, the “monopole" term of the electric potential is not included in the relation above, since it just gives us the electrostatic 

field,  . 

• The electric dipole radiation fields follow from a simple calculation from the formulae above: 

        ,    from which we obtain: 

        ,    and 

⃗Hω =
1
μ0

⃗∇ × ⃗A ω

⃗E ω =
i
ω

μ0

ϵ0

⃗∇ × ⃗Hω =
i
ω

Z0
⃗∇ × ⃗Hω

Z0

⃗E = Q /(4πϵ0) ⃗r /r3

⃗H E−dip
ω =

1
μ0

⃗∇ × ⃗A E−dip
ω =

1
μ0

⃗∇ × [−
μ0

4π
eikr

r
iω ⃗p ω]

⃗H E−dip
ω =

k2 c
4π

eikr

r (1 +
i

kr ) ̂x × ⃗p ω

⃗E E−dip
ω =

1
4πϵ0

eikr

r [(3 ̂x ( ̂x ⋅ ⃗p ω) − ⃗p ω) 1 − ikr
r2

− k2 ̂x × ( ̂x × ⃗p ω)]
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Radiation potentials and radiation fields
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• But let’s remember that we have been assuming that we are in the radiation zone, i.e., 

 ,  . Therefore, coming back to our definition  , we obtain that: 

        ,    and 

        ,    i.e., 

 

• So, it is quite amazing that the orthogonality of the magnetic and electric radiation fields 
arise naturally from the equations! In fact, with these results we can already write the 
Poynting vector corresponding to this dipole radiation: 

 

• The radiated power over some surface is: 

    

r ≫ λ kr ≫ 1 ⃗k = (ω/c) ̂x

⃗H E−dip
ω ≃

k c
4π

eikr

r
⃗k × ⃗p ω

⃗E E−dip
ω ≃ −

1
4πϵ0

eikr

r
⃗k × ( ⃗k × ⃗p ω)

⃗E E−dip
ω = −

Z0

k
⃗H E−dip
ω × ⃗k

⃗S E−dip
ω = ⃗E E−dip

ω × ⃗H E−dip
ω = Z0 | ⃗H E−dip

ω |2 ̂k

Pω = ∫ d ⃗A ⋅ ⃗S E−dip
ω ⇒ ⟨Pω⟩t =

Z0 k4 c2

32π2
p2

ω sin2 θ

⃗p ω

⃗k

⃗E ⃗H

⃗S

θ

(See Mathematica notebook)



• Radiation from accelerated charges — fully relativistic calculation 

• Spherical wave solutions, partial waves and the spherical Bessel functions 

• Multipole expansion for freely propagating electromagnetic fields 

• Jackson, Ch. 9

Next class:
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