

SAA0187 Sistemas Aeronáuticos de Acionamento Componentes de sistemas hidráulicos parte 2 Prof. Dr. Jorge Henrique Bidinotto jhbidi@sc.usp.br

EESC · USP

Sumário

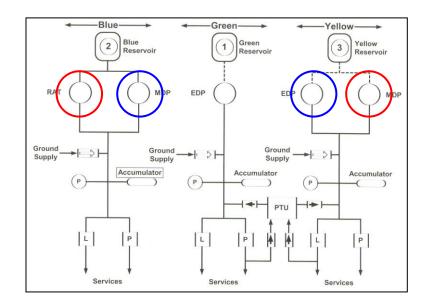
- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

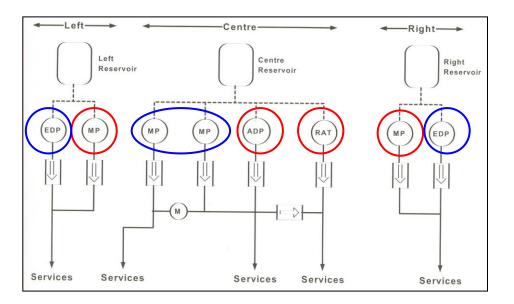
EESC · USP

Sumário

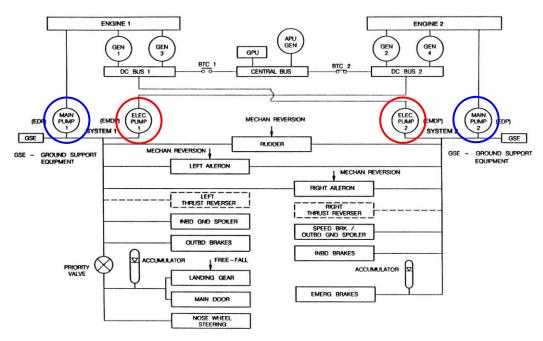
Bombas

- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais




- Convertem a energia mecânica proveniente de diversas fontes em energia hidráulica que será transportada através do fluido hidráulico.
- De modo geral as bombas principais () são acionadas a partir da caixa de engrenagens dos motores do avião ou a partir de motores elétricos.
- As bombas secundárias ou de "backup" ou de emergência (—) são acionadas por motor elétrico, manualmente ou por RAT ("Ram Air Turbine").

• Exemplos de arquiteturas de S.H. de diferentes fabricantes:



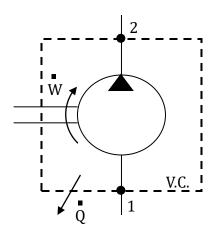
• Exemplos de arquiteturas de S.H. de diferentes fabricantes:

HYDRAULIC SYSTEM BLOCK DIAGRAM

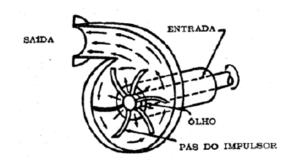
- Fatores que influenciam na escolha de bombas:
 - preço, peso e restrições;
 - pressão de trabalho, faixa de velocidades de rotação;
 - condições de instalação;
 - faixa de temperaturas de funcionamento;
 - natureza dos fluidos hidráulicos a utilizar;
 - pulsação de deslocamento, ruídos;
 - rendimento do sistema;
 - variações do deslocamento útil.

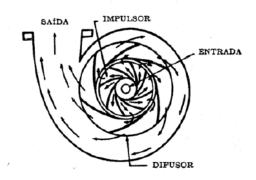
EESC · USP

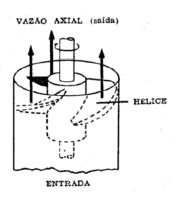
Sumário


- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

• Admitindo-se que a transferência de calor para o meio seja desprezível e que não ocorre variação significativa da energia interna, tem-se:

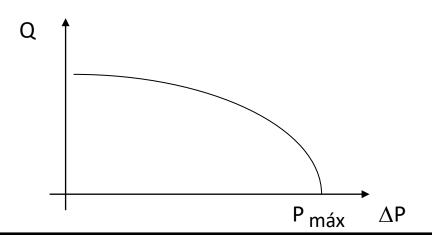

$$\pm \dot{W} = \dot{m} \left(\frac{p_2 - p_1}{\rho} + \frac{v_2^2 - v_1^2}{2} \right)$$




- Hidrodinâmicas: energia mecânica é transferida ao fluido predominantemente na forma de energia cinética. A vazão é contínua, baixa pressão e grandes volumes.
- Uma bomba hidrodinâmica ou de deslocamento não-positivo produz uma vazão continua, mas como não proporciona uma vedação interna positiva contra o deslizamento, sua descarga varia consideravelmente conforme varia a pressão.
- Exemplos:

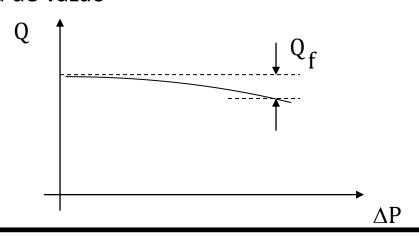
Bomba centrífuga tipo voluta

Bomba centrífuga tipo difusor



Bomba de hélice

• Se a abertura de saída de uma bomba de deslocamento não-positivo fosse bloqueada para impedir vazão, a pressão aumentaria e a descarga volumétrica diminuiria até que a força que resiste a vazão se igualaria a força da bomba que desenvolve a vazão. Embora a ação mecânica da bomba continuasse, o fator de deslizamento permitiria o livramento total da descarga volumétrica de volta ao lado de entrada, de modo que a bomba pararia de produzir vazão.



Hidrostáticas ou de deslocamento positivo

- processo de conversão de energia não é fortemente influenciado por velocidade do fluido, massa específica ou inércia do eixo de acionamento.
- Vazão é pouco influenciada pela resistência oferecida ao escoamento a jusante (estanqueidade entre câmaras de entrada e saída)
- Um aumento da restrição ao escoamento a jusante no sistema hidráulico ⇒ aumento de pressão sem queda de vazão

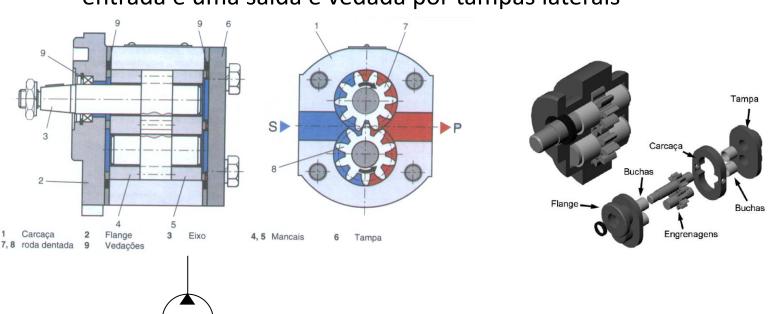
 Devem ser utilizadas em conjunto com limitadores de pressão para evitar danos

- De maneira geral, as máquinas hidrostáticas podem ser classificadas quanto a maneira que o fluido é transportado, ou seja, tipo de deslocamento:
 - Engrenagens, pistões, palhetas e parafusos
- Mais importante do que o tipo de deslocamento é a possibilidade de variação reversível de algum parâmetro geométrico da máquina:
 - Variação da vazão em rotação (ou velocidade) constante máquinas de deslocamento variável

deslocamento fixo	Engrenagens
	Parafusos
	Palhetas
	Pistões
deslocamento variável	Palhetas
	Pistões

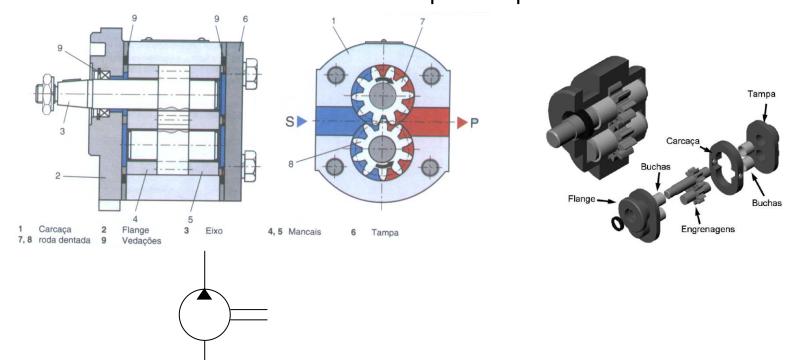
EESC · USP

Sumário



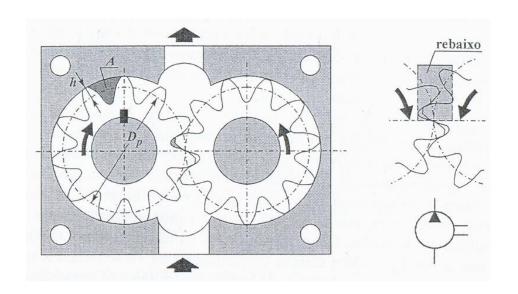
- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

- Engrenagens externas
 - Par de engrenagens iguais montadas em uma carcaça de forma apropriada (estator) com uma entrada e uma saída e vedada por tampas laterais



 As engrenagens giram em sentidos opostos. Apenas uma das duas engrenagens é movimentada por energia elétrica, que pode ser proveniente de um motor elétrico ou das turbinas.

- Engrenagens externas
 - Par de engrenagens iguais montadas em uma carcaça de forma apropriada (estator) com uma entrada e uma saída e vedada por tampas laterais



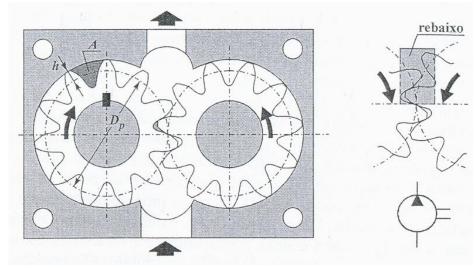
 O movimento das engrenagens cria uma depressão na câmara de entrada, e o fluido é forçado para essa câmara. A porção de fluido que fica entre os dentes é transportada para a câmara de saída, de onde é forçado para o sistema hidráulico pelo engrenamento dos dentes.

- Deslocamento volumétrico
 - Volume de fluido transportado em um curso completo sem perdas volumétricas
- Vazão teórica
 - É a vazão efetivamente descarregada com rendimento volumétrico de 100%

 Área da seção transversal de cada célula de transporte (A) – formada entre dois dentes consecutivos e o estator. Assim, o deslocamento é:

$$V = 2Abz$$

 Área total de deslocamento aproximada como sendo área entre diâmetro primitivo e diâmetro externo da engrenagem


$$Az = \pi D_p h$$

b = largura da engrenagem;

z = número de dentes de cada engrenagem;

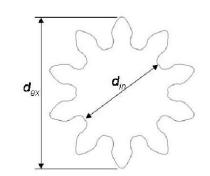
Dp = diâmetro primitivo;

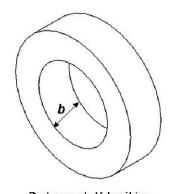
h = altura da cabeça do dente.

A vazão teórica será estimada como sendo:

$$Q_t = Vn$$

$$Q_t = 2(\pi mz)mbn = 2\pi m^2bzn$$


n = rotação do motor acionador


onde m é o módulo da engrenagem, definido como o diâmetro primitivo dividido pelo número de dentes

• Outra aproximação considera que a área do vão entre dois dentes é igual a área de um dente

Como o transporte ocorre nas duas engrenagens, o volume será:

$$V = \left[\left(\frac{\pi d_{ex}^2}{4} \right) - \left(\frac{\pi d_{in}^2}{4} \right) \right] b$$

Deslocamento Volumétrico Considerado

Vantagens:

- Preço relativamente baixo;
- Robustez;
- Bom comportamento em um grande domínio de viscosidades de fluídos hidráulicos;
- Baixa sensibilidade à presença de partículas sólidas presentes no fluído hidráulico;
- A posição de montagem é indiferente;
- Grande faixa de rotações permissíveis;

• Exemplo:

Utilizada no <u>sistema hidráulico principal</u> do T-25, acionada pelo motor da aeronave.

Utilizado para acionar os trens de pouso (nos dois sentidos), como também comandar os flapes.

Características

Pressão de operação	1570 PSI;
	MIL-H-5606 ou Aeroshell Fluid 41;
Capacidade do reservatório03 litros (02 sistema de emergência e 01 sistema normal);	
Capacidade da bomba hidráulica 01 GPM (4/5 litros por minuto);	
Capacidade da bomba manual	16 cm³ por ciclo;

- Engrenagens internas
 - Mesmo princípio de operação das bombas de engrenagens externas: sucção, transporte e descarga do fluido devido ao contínuo engrenamento de desengrenamento de um par de engrenagens.

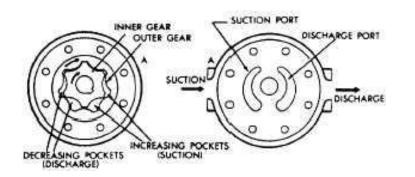
• O volume deslocado pode ser aproximadamente determinado para uma rotação do pinhão:

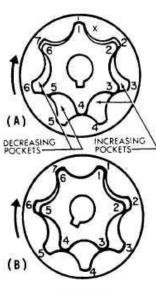
$$V = \pi mzbh$$

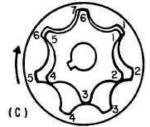
b = largura da engrenagem;

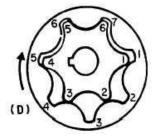
z = número de dentes do pinhão;

h = altura dos dentes,


m = módulo da engrenagem



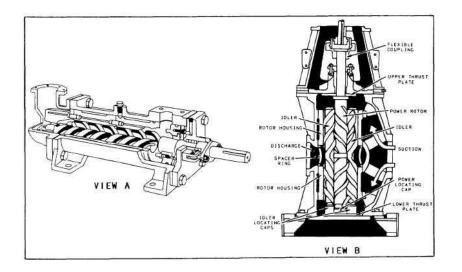



Variações:

- Gerotor
- Mesmo princípio de operação das bombas de engrenagens anteriores: sucção, transporte e descarga do fluido devido ao contínuo engrenamento de desengrenamento de um par de engrenagens. Porém, engrenagem motora e movida não possuem mesmo número de dentes.

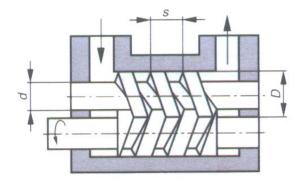
EESC · USP

Sumário


- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

Bombas de deslocamento por parafusos

- Compostas por um ou mais fusos helicoidais (com roscas opostas) montados em uma carcaça. O
 movimento relativo pode ser obtido pelo acionamento de um deles.
- A célula de transporte de fluido é delimitada pela linha de engrenamento formada pelos flancos de um fuso, a depressão do outro e a carcaça. Não ocorre variação do volume desde a conexão na sucção até a saída, implicando em vazão menos pulsada e funcionamento silencioso.



Bombas de deslocamento por parafusos

O volume deslocado por uma bomba de dois fusos pode ser estimado com a expressão:

$$V = \frac{\pi}{4}(D^2 - d^2)s - D^2\left(\frac{\alpha}{2} - \frac{\sin 2\alpha}{2}\right)s$$

$$\alpha = \operatorname{acos}\left[\frac{D+d}{2D}\right]$$

D = diâmetro externo do fuso;

d = diâmetro interno do fuso;

s = passo de rosca do fuso.

EESC · USP

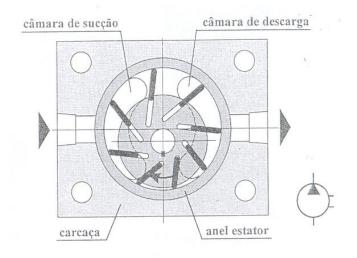
Sumário

- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

 Compostas por um rotor cilíndrico com ranhuras onde se alojam palhetas retangulares móveis, sendo este conjunto montado no interior de um anel estator.

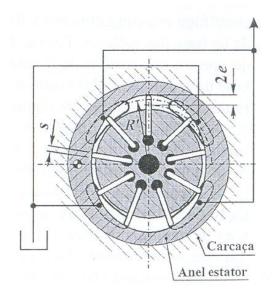
• Com o movimento rotativo as palhetas são projetadas contra a superfície interna do anel.

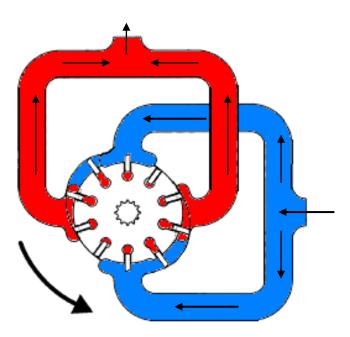
• As laterais de duas palhetas consecutivas, o rotor e o anel formam uma célula de transporte de fluido.


• Diferentemente das bombas de engrenagem e parafusos, o volume das células é variável ao longo do seu deslocamento angular.

• A entrada da bomba está situada na parte em que as câmaras aumentam de tamanho, de modo que a baixa pressão formada por esta expansão puxa o fluido para dentro da bomba.

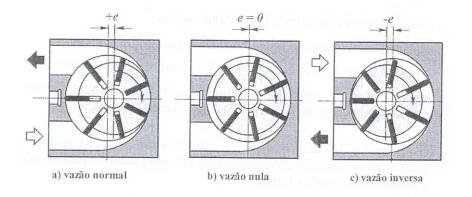
 Na saída, as câmaras diminuem em tamanho, de modo que o óleo retido é forçado para fora da bomba.

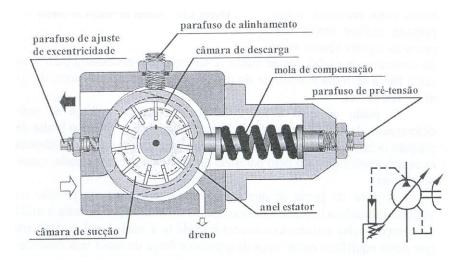




• Configuração anterior – força radial resultante entre região de baixa e alta pressão age sobre o rotor

 Configuração com compensação de forças – duas câmaras de sucção e duas câmaras de descarga diametralmente opostas (estator elíptico).





• A variação de vazão é possível através da variação da excentricidade do rotor.

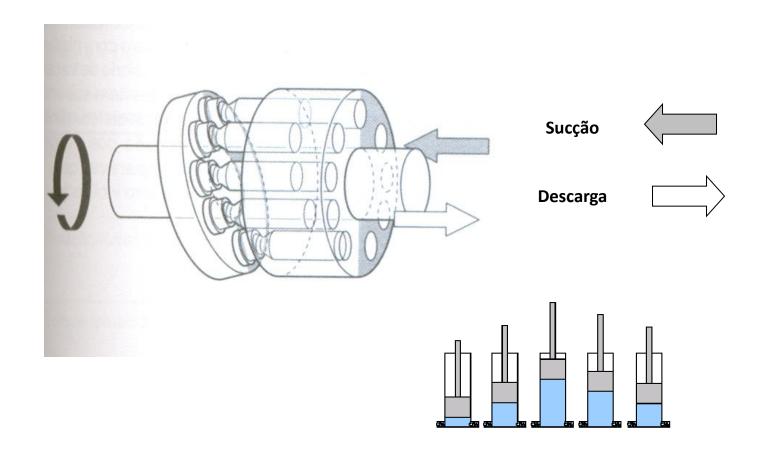
EESC · USP

Sumário

- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

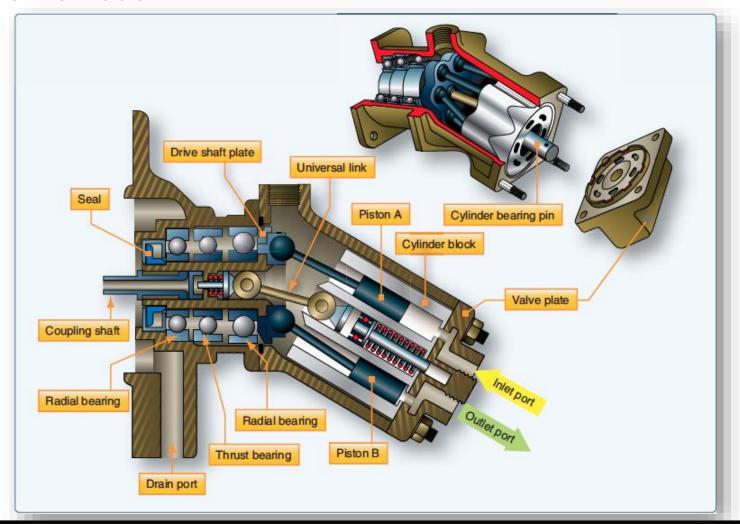
Tipo mais utilizado em aviação de grande porte

• Sistemas hidráulicos que operam em altas pressões (maior que 3000 psi) e exigem elevado rendimento constituem o campo de aplicação de bombas de pistões.

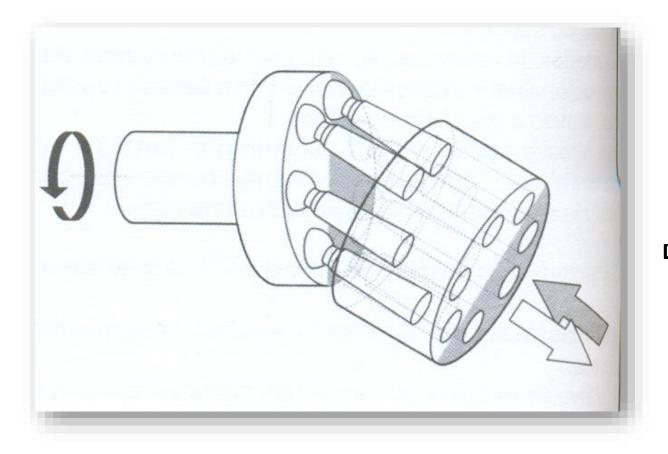

 Folgas no sistema podem ser menores que nos casos construtivos anteriores, implicando em possibilidade de altas pressões com perdas volumétricas reduzidas.

• Característica geométrica principal é a disposição de pistões axiais em bloco cilíndrico. O movimento alternativo é obtido através do movimento rotativo de um plano inclinado.

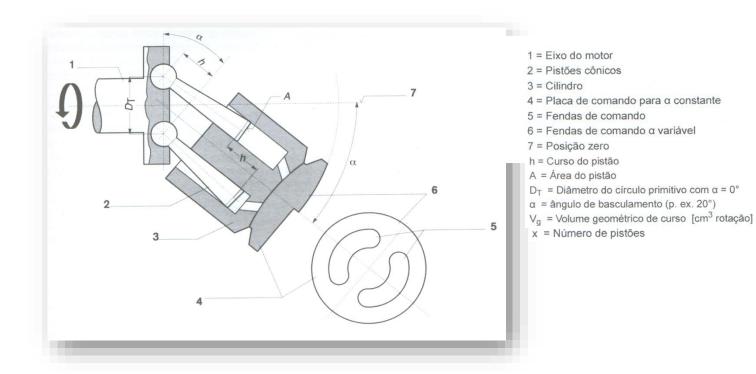
Princípio de funcionamento


• Classificação:

Bombas de eixo inclinado	
Bombas de prato inclinado	Prato fixo Prato rotativo


Bombas de eixo inclinado

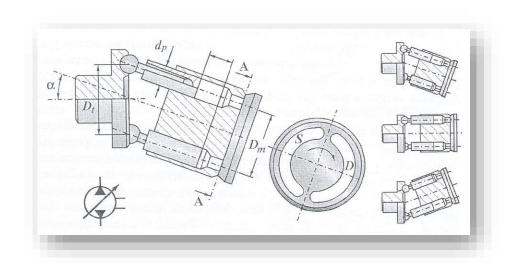
Bombas de eixo inclinado



Bombas de eixo inclinado

Bombas de eixo inclinado

Curso de cada pistão:


$$h = D_t \operatorname{sen} \alpha$$

Volume deslocado (m^3 /rotação):

$$V = xAh$$

$$V = xAD_t \operatorname{sen} \alpha$$

$$A = \frac{\pi d_p^2}{4}$$

Bombas de eixo inclinado

Fundamentos de cálculo (considerando bomba ideal):

$$Q_t = \frac{V \times n}{1000}$$

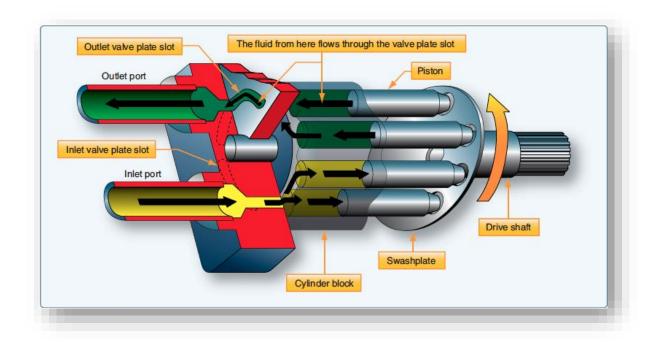
$$n = \text{rotação (min}^{-1})$$

V = volume deslocado

$$n = \frac{Q \times 1000}{V}$$

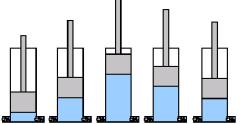
(cm³/rev)

$$T = \frac{V \times \Delta p}{20\pi}$$

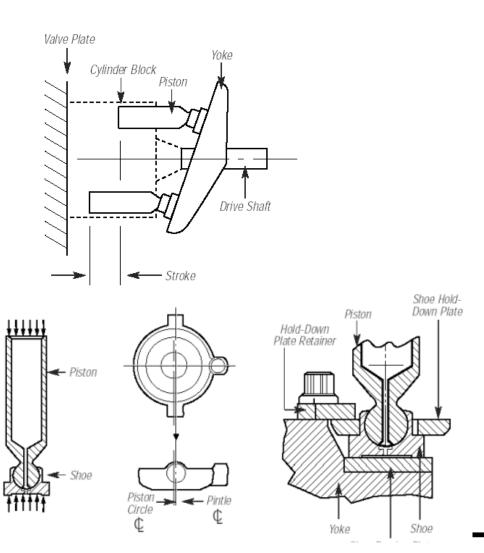

$$\Delta p$$
 = pressão diferencial (bar)

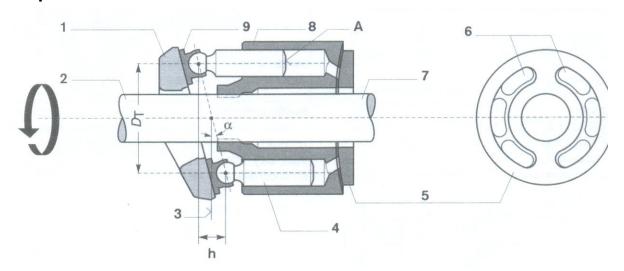
$$P = \frac{2\pi \times T \times n}{60000}$$

• Bombas de prato inclinado


- Bombas de prato inclinado
 - Princípio de funcionamento
 - <u>Prato rotativo</u>: o prato (ou placa de comando ou placa deslizante) gira junto ao eixo de acionamento enquanto o tambor contendo os cilindros e pistões está fixo. O movimento do prato inclinado provoca o comportamento alternativo dos pistões dentro dos cilindros entre o PMI (ponto morto inferior) e PMS, onde, respectivamente, o fluido é conduzido para a bomba e deslocado para o sistema.
 - <u>Prato Fixo</u>: neste caso o prato é estático e o tambor está fixado ao eixo de acionamento. O movimento do tambor é responsável pelo movimento dos pistões entre o PMI e PMS. O contado entre os pistões é garantido com o uso de molas ou através de sistema de guia deslizante das sapatas dos pistões no prato. Necessidade de lubrificação entre tambor e placa. Este tipo de bomba é mais aplicada em aviões.

Bombas de prato inclinado




• Bombas de prato inclinado

Bombas de prato inclinado

- 6 = Fendas de comando (em forma de rins)
- 7 = Acionamento passante (eixo passante)

1 = Disco inclinado (berço de basculamento)

h = Curso do pistão

2 = Eixo de acionamento 3 = Posição zero 4 = Pistões 5 = Placa de comando

- A = Área do pistão
- D_T = Diâmetro do círculo primitivo com α = 0°
- α = ângulo de basculamento (p. ex. 20°)
- V_a = Volume geométrico de curso [cm³ rotação]
- x = Número de pistões (p. ex. 9)
- $h = D_T \cdot \tan \alpha$
- $V_{\alpha} = x \cdot A \cdot h$
- $V_{\alpha} = x \cdot A \cdot D_{\tau} \cdot \tan \alpha$

Nos dois casos:

Curso de cada pistão

$$h = D_t \tan \alpha$$

Volume deslocado (m³/revolução)

$$V = xAh$$

$$V = xAD_t \tan \alpha$$

$$A = \frac{\pi d_p^2}{4}$$

• Bombas de prato inclinado

• Fundamentos de cálculo (considerando bomba ideal):

$$Q_t = \frac{V \times n}{1000}$$

$$n = \text{rotação (min}^{-1})$$

V = volume deslocado

$$n = \frac{Q \times 1000}{V}$$

$$T = \text{torque (Nm)}$$

(cm³/rev)

$$T = \frac{V \times \Delta p}{20\pi}$$

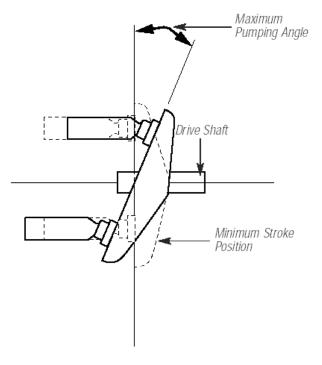
$$\Delta p$$
 = pressão diferencial (bar)

$$P = \frac{2\pi \times T \times n}{60000}$$

Bombas de prato inclinado

Acionamento Mecânico

Acionamento Elétrico



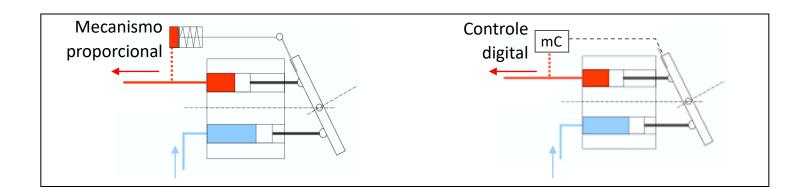
- Bombas de prato inclinado
 - Deslocamento variável

• Observando as equações anteriores verifica-se que a alteração do ângulo do prato (ou disco deslizante) torna possível a alteração do curso dos pistões e, consequentemente, alteração do

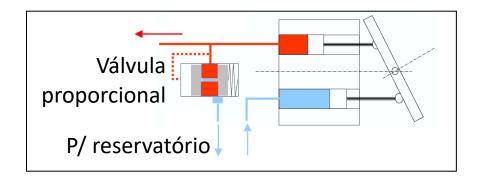
volume deslocado e da vazão.

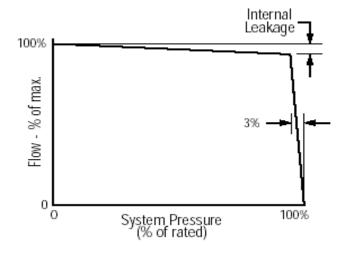
• Bombas de prato inclinado – deslocamento variável

Fundamentos de cálculo (considerando bomba ideal):


Curso de cada pistão	$h = D_t \tan \alpha$		
Volume deslocado (m³/revolução)	$V = xAh$ $V = xAD_t \tan \alpha$	$A = \frac{\pi d_p^2}{4}$	
Vazão [//min]	$Q_t = \frac{V_{max} \times n \times \operatorname{sen} \alpha}{1000 \times \operatorname{sen} \alpha_{max}}$	n = rotação (min⁻¹)	
Rotação requerida	$n = \frac{Q \times 1000 \times \text{sen } \alpha_{max}}{V_{max} \text{sen } \alpha}$	V = volume deslocado (cm³/rev)	
Notação requerida	$V_{max} \operatorname{sen} \alpha$	T = torque (Nm)	
Torque requerido [Nm]	$T = \frac{V_{max} \times \Delta p \times \operatorname{sen} \alpha}{20\pi \times \operatorname{sen} \alpha_{max}}$	Δp = pressão diferencia (bar)	
Potência requerida	$P = \frac{2\pi \times T \times n}{60000}$	P = potência (kW)	

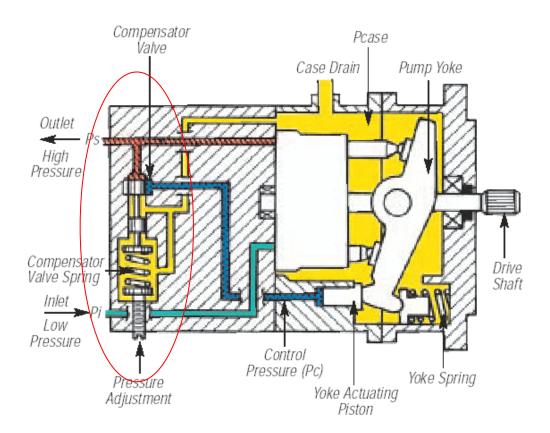
• Bombas de prato inclinado


- Deslocamento variável
- Bombas de deslocamento positivo fornecem vazão constante (a menos das perdas), mas o que deve ser fornecido ao sistema hidráulico é pressão constante (3000psi, 4000psi ou 5000psi).
- Bombas de volume variável:
 - Controle através de mecanismos proporcionais.
 - Controle digital.


- Bombas de prato inclinado
 - Deslocamento variável
 - Bombas de volume fixo:
 - Desvio de parte da vazão usando válvulas proporcionais.

- Bombas de prato inclinado
 - <u>Tipos de controles</u>
 - Compensação de pressão (Flat Cut-off):

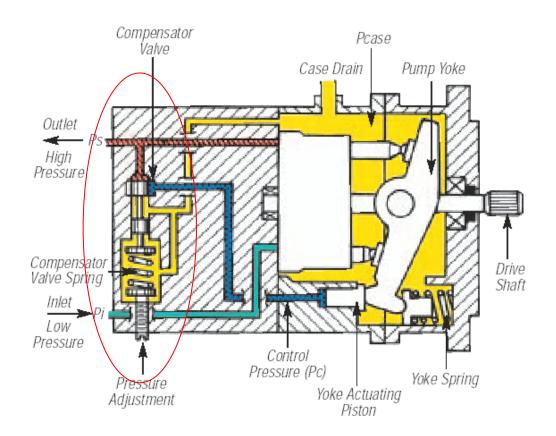
Este tipo de controle garante a pressão do sistema praticamente constante em toda faixa possível de vazão, limitando o aumento de pressão desde a condição de vazão máxima até vazão nula.



- Bombas de prato inclinado
 - Controle por compensação de pressão (Flat Cut-off):

Funcionamento:

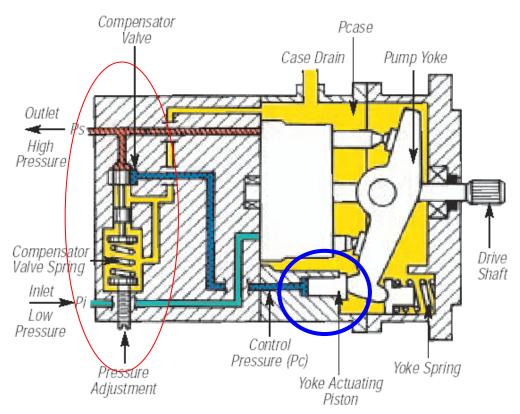
1 - <u>Condição inicial</u>: Assume-se inicialmente que não existe restrição ao escoamento no sistema, o que implica em pressão muito baixa no sistema e ângulo máximo do prato inclinado.



- Bombas de prato inclinado
 - Controle por compensação de pressão (Flat Cut-off):

Funcionamento:

2 - <u>Aumento do carregamento</u>: A medida que se aumenta o carregamento (resistência ao escoamento), a pressão é aumentada e a vazão se mantém máxima até que se atinja a pressão de trabalho pré-determinada com o ajuste da mola da válvula compensadora (3000 psi (207 bar)). Ou seja, quando a pressão está em 3000 psi, a força de mola e força devido a pressão na saída se equilibram e o carretel fica centrado.

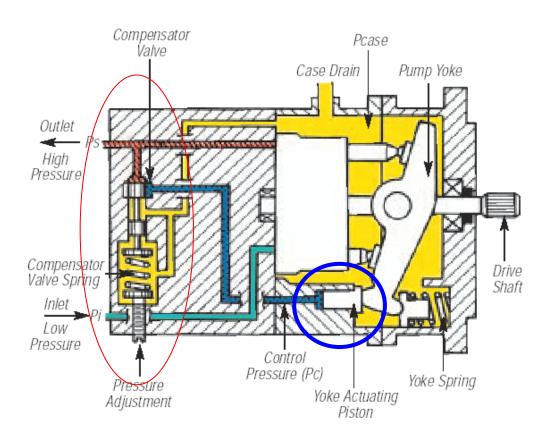


• Bombas de prato inclinado

Controle por compensação de pressão (Flat Cut-off):

Funcionamento:

2.1 - Vazão para pistão proporcional a abertura da válvula: com o aumento do carregamento a pressão no sistema excederá os 3000 psi e o carretel da válvula compensadora será movido para baixo, permitindo o escoamento do fluido da linha de alta pressão (Ps) para o pistão atuador (Pc) (---). A vazão do fluido da linha de alta pressão é proporcional a abertura da válvula e, logo, proporcional a pressão de saída acima de 3000 psi.

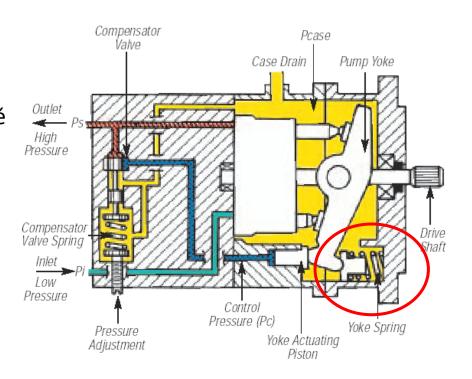


• Bombas de prato inclinado

• Controle por compensação de pressão (Flat Cut-off):

Funcionamento:

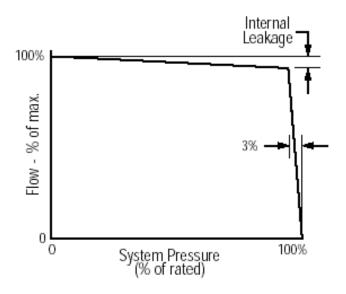
2.2 - Controle da vazão na linha de saída: a velocidade do pistão (e do prato) é proporcional a posição da válvula compensadora. Logo, a taxa de redução da vazão na linha de saída varia com pressões acima da pré-estabelecida para o sistema. O ângulo do prato é reduzido até que a vazão na linha de saída seja novamente igual a pressão pré-estabelecida para o sistema.

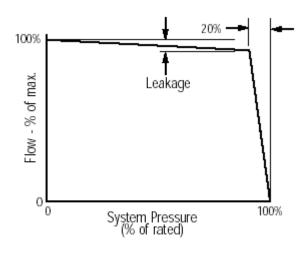

• Bombas de prato inclinado

Controle por compensação de pressão (Flat Cut-off):

Funcionamento:

3 - <u>Diminuição do carregamento</u>: se o carregamento no sistema for diminuído, a pressão na linha de saída é temporariamente diminuída e o carretel da válvula é movido para cima, conectando a linha do pistão atuador a linha amarela. A mola do prato (---) vai causar o aumento do ângulo do mesmo até que a vazão seja aumentada o suficiente para ajustar a pressão na linha de saída (igual a pressão préestabelecida).

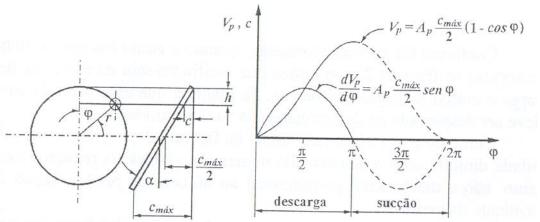

Agora, o prato tem uma nova posição e a válvula compensadora é novamente fechada.


- Bombas de prato inclinado
 - Controle por compensação de pressão (Flat Cut-off):
 - Fatores que tendem a tornar a regulagem mais vertical (ganhos mais altos) são molas menos rígidas (tanto para válvula compensadora quanto para prato), menores vazamentos, maiores áreas.
 - implica na estabilidade do sistema.
 - Sempre existirá alguma regulagem devido a vazamentos internos.

- Bombas de prato inclinado
 - Controle por compensação diferencial de pressão (Differantial Cut-off):
 - Este tipo de controle proporciona uma região de regulagem maior (em geral 20% da pressão máxima), ou seja, um maior decréscimo de pressão com a variação de vazão.

Vantagens:

- melhor divisão da carga em sistemas com duas ou mais bombas em paralelo;
- maior estabilidade;
- menores transientes.



- Irregularidades em bombas
 - Relacionado ao comportamento pulsátil da vazão de máquinas hidrostáticas e a influência do número de células de transporte.
 - Da figura verifica-se que o curso de cada pistão em função da posição angular $\,\phi$ é dado por:

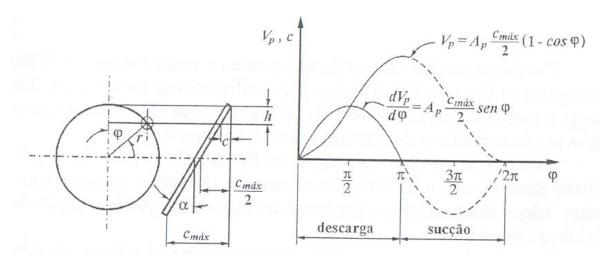
$$h = \frac{h_{max} y}{2 r}$$

$$y = r(1 - \cos \varphi)$$

$$h = \frac{h_{max}}{2} (1 - \cos \varphi)$$

Assim, o volume deslocado por cada pistão será:

$$V = \frac{h_{max}}{2} (1 - \cos \varphi) A_p$$



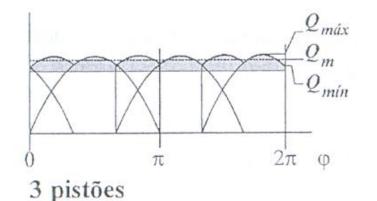
- Irregularidades em bombas
 - A variação do volume deslocado em relação a posição angular (volume instantâneo):

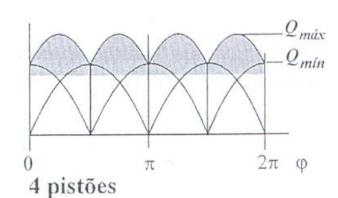
$$\frac{dV}{d\varphi} = \frac{h_{max}}{2} A_p \operatorname{sen} \varphi$$

• As curvas da figura mostram qualitativamente os comportamentos do volume deslocado total Vp, e instantâneo $dVp/d\phi$ de um cilindro.

Linhas cheias indicam o volume, total ou instantâneo, liberado pelo cilindro (0 a π).

Linhas tracejadas indicam a região de sucção da bomba.

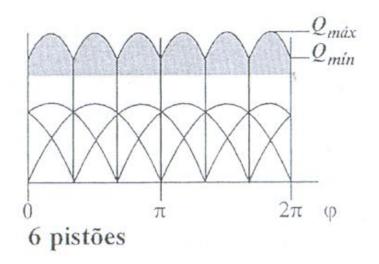


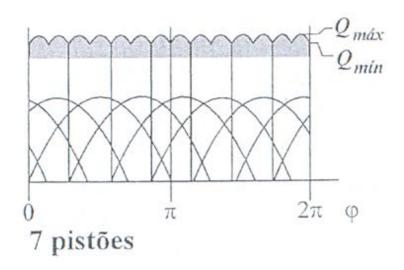

Irregularidades em bombas

• A soma dos deslocamentos individuais dos z pistões de uma bomba se determina o volume deslocado pela bomba. Considerando o ângulo $2\pi/z$ formado entre os eixos dos pistões e o centro do tambor, determina-se a variação total instantânea do volume deslocado:

$$\frac{dV}{d\varphi} = \frac{h_{max}}{2} A_p \left[\operatorname{sen} \varphi + \operatorname{sen} \left(\varphi + \frac{2\pi}{z} \right) + \operatorname{sen} \left(\varphi + \frac{4\pi}{z} \right) + \dots + \operatorname{sen} \left(\varphi + \frac{n\pi}{z} \right) \right]$$

$$n = 2(z - 1)$$





• Irregularidades em bombas

• As figuras mostram que a vazão total é uma superposição das vazões dos diversos cilindros defasados de um ângulo $2\pi/z$, explicando o comportamento pulsátil da vazão.

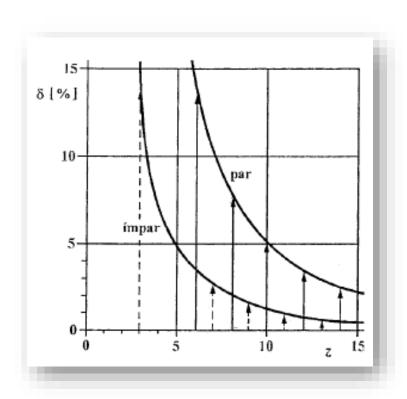
- Irregularidades em bombas
 - Verifica-se um deslocamento volumétrico instantâneo máximo, mínimo e médio. O médio pode ser aproximado por:

$$\left. \frac{dV}{d\varphi} \right|_{m} = h_{max} A_{p} \frac{z}{2\pi}$$

Assim, define-se o grau de irregularidade como:

$$\delta = \frac{\frac{dV}{d\varphi}\Big|_{max} - \frac{dV}{d\varphi}\Big|_{min}}{\frac{dV}{d\varphi}\Big|_{m}} \times 100\%$$

- Irregularidades em bombas
 - Assim, define-se o grau de irregularidade como:


$$\delta = \frac{\frac{dV}{d\varphi}\Big|_{max} - \frac{dV}{d\varphi}\Big|_{min}}{\frac{dV}{d\varphi}\Big|_{m}} \times 100\%$$

- A irregularidade diminui com o aumento do número de pistões;
- Quando a bomba possui um número par de pistões eles ficam em posições diametralmente opostas (diferença entre *Qmax* e *Qmin* elevada).
- Quando a bomba possui um número ímpar de pistões ocorre uma defasagem de posição entre cilindros opostos (diferença entre *Qmax* e *Qmin* menor).

- Irregularidades em bombas
 - O grau de irregularidade poder ser aproximado como (para z≥3),

$$\delta = 1 - \cos \frac{180}{7}$$
 Número par de pistões

$$\delta = 1 - \cos \frac{90}{z}$$
 Número ímpar de pistões

- Irregularidade para número par de pistões é relativamente maior que para ímpar;
- Grau de irregularidade de bomba com número ímpar de pistões é igual ao de uma bomba com o dobro de pistões;
 - 3 e 6 pistões, irregularidade 14%;
 - 5 e 10 pistões, irregularidade 5%;
 - 7 e 14 pistões, irregularidade 2,5%

Rendimento volumétrico

- Até o momento considerou-se uma máquina ideal. A vazão calculada é a vazão teórica ou geométrica (rendimento 100%).
- Porém, a vazão efetivamente emitida na saída será menor e dada por:

$$Q_b = Q_t - Q_f$$

Onde Q_b é a vazão real da bomba, Q_t a vazão teórica ou geométrica e Q_f a vazão de fugas.

• Rendimento volumétrico é definido como:

$$\eta_{vb} = \frac{Q_b}{Q_t} = 1 - \frac{Q_f}{Q_t}$$

Rendimento global

Define-se potencia útil como a potência entregue ao fluido, ou potência hidráulica

$$P_{ub} = Q_b \Delta p$$

Potência de acionamento

$$P_{ab} = T_b \omega$$

• Rendimento global é definido como

$$\eta_{gb} = \frac{P_{ub}}{P_{ab}} = \eta_{vb}\eta_{mb}$$

Equações com rendimentos

$$Q_t = \frac{V_{max} \times n \times \operatorname{sen} \alpha \times \eta_{vb}}{1000 \times \operatorname{sen} \alpha_{max}}$$

$$n = \text{rotação (min}^{-1})$$

$$n = \frac{Q \times 1000 \times \operatorname{sen} \alpha_{max}}{V_{max} \times \eta_{vh} \times \operatorname{sen} \alpha}$$

$$T = \frac{V_{max} \times \Delta p \times \operatorname{sen} \alpha}{20\pi \times \eta_{mb} \times \operatorname{sen} \alpha_{max}}$$

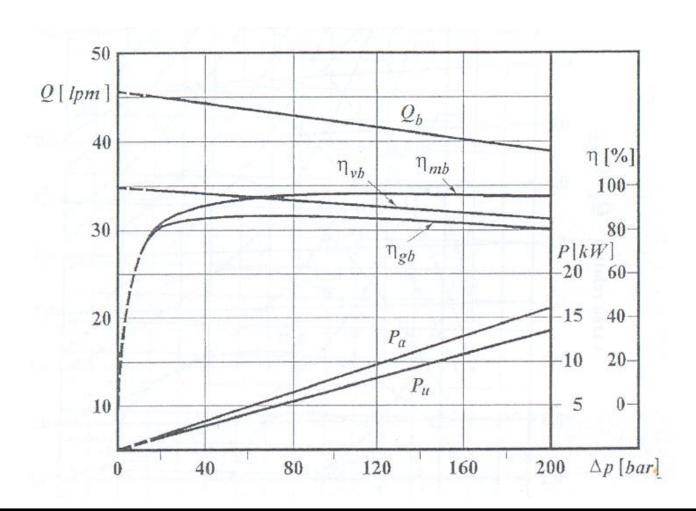
$$T = \text{torque (Nm)}$$

$$\Delta p$$
 = pressão diferencial (bar)

$$P = \frac{2\pi \times T \times n}{60000 \times \eta_{gb}}$$

EESC · USP

Sumário



- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

Curvas de desempenho de bombas

EESC · USP

Sumário

- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

Exemplo de dimensionamento

Pump Efficiencies at Normal Recommended Speeds. 3000, 4000 and 5000 psi Pressures.

			Efficiency				
			Volumetric	Torque	Overall		
•	3000 psi	Typical (average)	0.96	0.92	0.885		
	30	Minimum	0.94	0.905	0.85		
	4000 psi	Typical (average)	0.95	0.94	0.89		
		Minimum	0.93	0.925	0.86		
	5000 psi	Typical (average)	0.94	0.95	0.89		
		Minimum	0.92	0.935	0.86		

Basic Model Characteristics of 3000, 4000 and 5000 psi Pumps

Basic Model	Maximum Displacement		Typical Speed (rpm)		Theo. Flow at Normal Speed		Dry Weight	
No.	in³/rev.	mL/rev.	Normal	Max.0v.Sp.	gpm	L/min.	lbs.	kg.
PV3-003	0.030	0.5	18,000	22,500	2.38	9.00	1.7	0.8
PV3-006	0.061	1.0	15,000	18,750	3.96	15.00	2.4	1.1
PV3-008	0.08	1.31	13,500	16,800	4.68	17.72	3.4	1.6
PV3-011	0.11	1.803	12,500	15,600	5.95	22.53	3.7	1.8
PV3-019	0.192	3.15	12,100	15,100	10.07	38.12	3.7	1.7
PV3-022	0.22	3.605	10,000	12,500	9.52	36.05	4.6	2.1
PV3-032	0.32	5.244	9,000	11,250	12.47	47.19	6.0	2.7
PV3-044	0.44	7.210	8,000	10,000	15.24	57.68	7.1	3.2
PV3-049	0.488	8.0	8,800	11,000	18.60	70.40	6.4	2.9
PV3-056	0.56	9.177	8,200	10,250	19.88	75.25	7.1	3.2
PV3-075	0.75	12.29	7,000	8,750	22.73	86.03	8.9	4.0
PV3-115	1.15	18.85	6,600	8,250	32.86	124.4	11.5	5.2
PV3-150	1.50	24.58	6,000	7,500	38.96	147.5	15.0	6.8
PV3-205	1.80	29.50	5,900	7,400	45.97	174.0	19.8	9.0
PV3-240	2.40	39.33	5,300	6,600	55.06	208.4	22.5	10.2
PV3-300	3.00	49.16	5,000	6,250	64.94	245.8	28.0	12.7
PV3-375	3.75	61.45	4,800	6,000	77.92	295.0	34.5	15.6
PV3-400	4.0	65.55	4,400	5,500	76.19	288.4	33.5	15.3
PV3-488	4.9	80.30	4,100	5,125	86.97	329.2	46.3	21.0

Exemplo de dimensionamento

$$Q_t = \frac{V \times n}{1000} = \frac{12,29 \times 7000}{1000} = 86,03 \ l/min$$
 $Q_f = (1 - \eta_{vb}) \times Q_t = 3,4 \ l/min$

$$Q_f = (1 - \eta_{vb}) \times Q_t = 3.4 l/mir$$

$$Q_b = Q_t \times \eta_{vb} = 86,03 \times 0,96 = 82,6 \ l/min$$

$$T = \frac{V \times \Delta p}{20\pi} = \frac{12,29 \times 206,8}{20\pi} = 40,5 Nm$$

$$T_b = \frac{T}{\eta_{mb}} = \frac{40.5}{0.92} = 44.0 \ Nm$$

Potência real
$$P_{ab} = \frac{2\pi \times T_b \times n}{60000} = \frac{2\pi \times 44 \times 7000}{60000} = 32,23 \text{ kW}$$

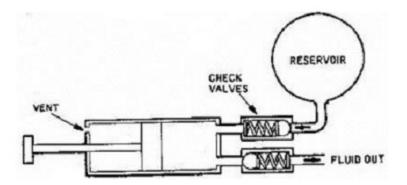
$$\eta_{gb} = \frac{P_{ub}}{P_{ab}} = \eta_{vb}\eta_{mb}$$

$$P_{ub} = 32,23 \times 0,885 = 28,5 \text{ kW}$$

$$P_{ub} = 32,23 \times 0,885 = 28,5 \ kW$$

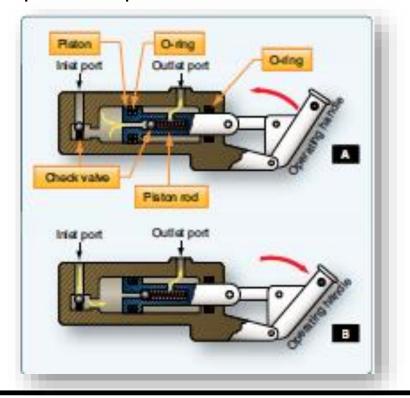
EESC · USP

Sumário


- Bombas
- Classificação das máquinas hidráulicas
- Bombas de deslocamento por engrenagem
- Bombas de deslocamento por parafusos
- Bombas de palhetas
- Bombas de pistões axiais
- Curvas de desempenho de bombas
- Exemplo de dimensionamento
- Bombas manuais

Bombas manuais

- São usadas em sistemas de emergência podendo ser de ação simples ou ação dupla
- Ação simples
 - Só é criada uma vazão de saída em um dos sentidos de movimento do pistão



Bombas manuais

- São usadas em sistemas de emergência podendo ser de ação simples ou ação dupla
- Ação dupla
 - Existe vazão de saída quando o pistão é movimentado nos dois sentidos

