

POLICONDENSAÇÃO

A policondensação é dividida em duas:

- Polimerização em etapas
- Polimerização por abertura de anel (ring-opening). Ex.: polimerização de lactonas e lactamas.

Polimerização da propiolactona (aniônica)

Obs.: $Y_{:}^{\Theta} \Longrightarrow INICIADOR$

- Aminas;
- Sais orgânicos quartenários de amônio, etc.;

POLICONDENSAÇÃO

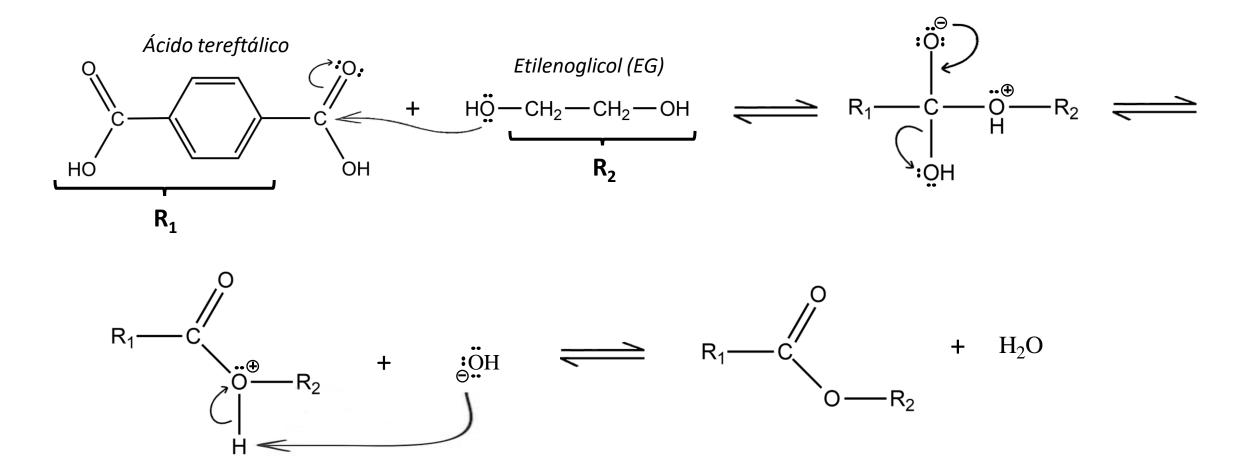
Polimerização da propiolactona (aniônica)

$$Y \longrightarrow C \longrightarrow CH_2 \longrightarrow$$

$$Y \stackrel{\bigcirc}{\longleftarrow} C - CH_2 - CH_2 - O \stackrel{\bigcirc}{\longleftarrow} C - CH_2 - CH_2 - O \stackrel{\bigcirc}{\bigcirc} C + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O \stackrel{\bigcirc}{\longleftarrow} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 - CH_2 - O + R - C \stackrel{\bigcirc}{\bigcirc} C - CH_2 -$$

FUNCIONALIDADE MÉDIA (\overline{f})

MOLÉCULA 1	f_1	MOLÉCULA 2	f_2	\bar{f}	PRODUTO
H₃C — COOH	1	H ₃ C — CH ₂ — OH	1	1	H_3C-C $O-CH_2-CH_3$
H₃C — COOH	1	HO—CH ₂ —CH ₂ —OH	2	1,5	$H_{3}C$ O CH_{2} CH_{2} O CH_{3}
CI	2	H_2N NH_2	2	2	$\begin{array}{c c} CI & \begin{array}{c} CI & \end{array} \end{array} \end{array} \end{array}$
$C + CH_2 + C$ OH	2	H ₂ C — C — CH ₂ 	3	2,5	$C - C + CH_2 + C - CH_2 - C - C - CH_2 - C - C - C - C - C - C - C - C - C - $



POLIÉSTERES

(MECANISMOS)

ESTERIFICAÇÃO

Obtenção do poli(tereftalado de etileno) (PET)

ESTERIFICAÇÃO

Obtenção do poli(tereftalado de etileno) (PET)

Reação global:

Em condições estequiométricas (quantidade de ácido = quantidade de glicol):

O polímero termina em:

ESTERIFICAÇÃO COM CATÁLISE ÁCIDA

Obtenção do poli(tereftalado de etileno) (PET)

Reação global:

Mecanismo:

ESTERIFICAÇÃO COM CATÁLISE ÁCIDA

Obtenção do poli(tereftalado de etileno) (PET)

ESTERIFICAÇÃO COM CATÁLISE ÁCIDA

Obtenção do poli(tereftalado de etileno) (PET)

$$+: A \longrightarrow 0$$

$$C \longrightarrow CH_2-CH_2-OH$$

$$+: A \longrightarrow 0$$

$$C \longrightarrow CH_2-CH_2-OH$$

$$T = 150 - 200 \, ^{\circ}C$$
 $H_{3}C - O$
 $H_{$

$$H_3C - O$$
 $+ H_3C - OH$

Reagindo com 2 HO— CH_2 — CH_2 —OH, temos a formação de um diéster bifuncional (reativo):

Observação: o mecanismo para a formação do diéster em questão é idêntico ao apresentado anteriormente.

Em altas temperaturas, ocorre a AUTOCONDENSAÇÃO, formando:

MECANISMO DE AUTOCONDENSAÇÃO:

$$T = 260 - 290 \, ^{\circ}C$$

$$Sb_{2}O_{3}$$

$$HO - H_{2}C - H_{2}C - O$$

$$CH_{2} - CH_{2} - OH$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$OH$$

MECANISMO DE AUTOCONDENSAÇÃO:

MECANISMO DE AUTOCONDENSAÇÃO:

Reação global: