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Importance sampling. [RC, Chapter 3.3] “The
method we now study is called importance sampling
because it relies on so-called importance functions,
which are instrumental distributions, in lieu of the
original distributions. In fact, an evaluation of

oo
mi=E(hC)) = [ h@f@dz, Q)
—00
based on simulations from f is almost never opti-
mal in the sense that using alternative distributions
can improve the variance of the resulting estimator of

(1)."
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Importance sampling. [RC] Importance sampling
IS based on a alternative representation of the inte-
gral (1). Given an arbitrary density g that is strictly
positive when h - f is different from zero, i.e.

supp(g) 2 supp(h - f),
we can indeed rewrite (1) as

_ V@ S RGOS
£/ (h(X)) = /Supp(g) ()2 g(e)de = By [12
and for any measurable set A

P e )= [ fyin = [ g
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g(z)der =E

_ f(z) h(X) f(X)

[RC] This importance sampling fundamental identity
justifies the use of the estimator

Z MO = B O)

based on a sample X1,...,X, generated from g (not
from f1). By strong low of large numbers, if

h(X) f(X)
g(X)

then the convergence is almost sure.

g |<OO



Aula 4. Monte Carlo Integration II.

Bias and variance of importance sampling.

Eg(mﬁs) = m
VaTg(mIS) Va'rg(w(X) ’ h(X))
where
_ f(X)
w(X) = —g(X)'

Moreover, the expected value of the weights is

Ey(w(X)) = 1.
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Example 3.5 [RC].

For example, if Z ~ N(0,1) and we are interested in
the probability P(Z > 4.5), which is very small,

> pnorm(-4.5,1log=T)
[1] -12.59242
> pnorm(-4.5)

[1] 3.397673e-06

simulating Z; ~ N(0,1) only produces a hit once in
about 3 million iterations!
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Exercise 3.5 [RC].

Thanks to importance sampling, we can greatly im-
prove our accuracy and thus bring down the number
of simulations by several orders of magnitude.

For instance, if we consider a distribution with sup-
port restricted to (4.5,00), the additional and unnec-
essary variation of the Monte Carlo estimator due to
simulating zeros (i.e., when = < 4.5) disappears. A
natural choice is to take g as the density of the ex-
ponential distribution Exp(1) truncated at 4.5,
e Y
9(y) = e = 0
f4.56 dx




Aula 4. Monte Carlo Integration II. {

Exercise 3.5 [RC]. A natural choice is to take g
as the density of the exponential distribution Exzp(1)
truncated at 4.5,

e_y

9(y) = = 4
ffi;) e Tdx

and the corresponding importance sampling estimator
of the tail probability is

f(Y) n —Y2/2—|—Y —4.5

Z “g(Y)) Z V2

where Y;'s are i.i.d. generations from truncated at 4.5
exponential Exzp(1) distribution.
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Exercise 3.5 [RC]. The true value is P(Z > 4.5) = 3.398-10°°
(red line). The estimated value is 3.480- 1006
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Exercise 3.5 [RC]. The true value is P(Z > 4.5) & 3.398.10°
(red line). The estimated value is 3.158 - 10796
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Exercise 3.5 [RC]. Code p.71.

Nsim=10"3

y=rexp(Nsim)+4.5

weit=dnorm(y)/dexp(y-4.5)
plot(cumsum(weit)/1:Nsim,type="1",ylab="",xlab="Iterations")
abline (a=pnorm(-4.5) ,b=0,col="red")

est=sum(weit)/Nsim

V V V V VYV
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Example 3.5 [RC].

The accuracy of the approximation is remarkable, es-
pecially when compared with the original size require-
ments imposed by a normal simulation.

See Anexo 1 for detailed discussion about rare-event
probability estimation.



Aula 4. Monte Carlo Integration II. 12

Abstract theory. Let Z := h(X)

Z (2, F,P) — (R,B,Pz) measurable, i.e. Z is real-
valued random variable s.t. for all Borel sets B € B

Pz(B) :=P(Zz'(B)) =P(w: Z(w) € B).

Consider another probability Q s.t. Q <« P (we say
that Q is absolute continuous with respect to P): i.e.
for any A € F

Q(A) = 0 = P(A) = 0.
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ADbstract theory.

Consider the probability Q s.t. Q < P. Then there ex-
ists a likelihood ratio (or Radon-Nikodym derivative)
L:(2,F)— (R,B) s.t.

dP = LdQ.
Equivalently
E(Z) =Eq(LZ).
It suffices a probability Q s.t. for all w € 2

1(Z(w) # 0)dP(w) = 1(Z(w) # 0)LdQ(w).
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ADbstract theory.

In the case of absolute continuous random variables

QP &  supp(g) 2 supp(f)
and

f(x)
g(x)

dP = LdQ & f(x)dx = g(x)dx
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Variance of importance sampling. Recall
1 Z f(X3)
9(Xi)

The variance of estimator
15y — Vary(w(X) - h(X))

— Ef(h(X)),

Var,(m,,
where w(X) = f(X)/g(X). Consider Var,(w(X)h(X))
2
Var,(w(X)h(X)) = /h2( )f(( )) — m2.

More important condition on choosing g is finiteness of variance
estimator, i.e.

Var,;(w(X)h(X)) < oo.
Note that if f has heavier tails then g, then the weights will have
infinite variance.
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Variance of importance sampling. [RC1,pp.94-95] An al-

ternative to
X.
—EjfEX; )~ ES(h(X)), (2)

which addresses the finite variance issue, and generally yields a
more stable estimator, is to use

> B (ay)

i=1 g(x;)
Zn f(mZ) ’
i=1 g(xi)
where we replaced n with the sum of the weights. Since

f(xi)
g(a:@)

(3)

— 1, as n — oo,

this estimator also converges to E;(h(X)) by the Strong Low
of Large Numbers. Although this estimator is biased, the bias
is small, and the improvement in variance makes it a preferred
alternative to (2).



Aula 4. Monte Carlo Integration II. 17

Variance. Optimal proposal. Anexo 2.

Optimality Theorem. The distribution g that minimizes the
variances of mlS (for fixed n) is

|h ()| f(x)
[ 1h@®)| () dt
e Theorem of little practical use: the optimal proposal in-

volves [ |h(t)|f(t)dt, which is the integral we want to esti-
matel

o [h(z)|f ()

g=

e Practical relevance of theorem: choose g such that it is
close to |h(x)|f(x), i.e. looking for such distributions g for

which % is almost constant with finite variance.

[RC ] It is important to note that although the finite variance
constraint is not necessary for the convergence, importance
sampling performs quite poorly when

P,
/ o(z) BT




Aula 4. Monte Carlo Integration II. 18

Variance. Optimal proposal. Proof.

f2(z)

dz — m?

Varg(w(X)h(X)) = /hz(x)

g(zx)
e x — m?
\h(z)|f(z) (/lh(t)lf(t)dt)d

_ (/ \h(a:)|f(a:)d:c)2 —m?2.

Cauchy-Swartz inequality shows that any other choice
of g increase the variance:

(/|h(x)|f(x)dx /|h(£l})|f(x)\/g(7) )2

v g(x)
h2(z) f2(x) hQ(w)fQ(:v)
= / g(x) dm/g(ag)daj = / g(x)
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Self-normalized estimator. Anexo 2.

Importance sampling can be useful when the density
f is known up to some unknown constant

f(x) < m(x), or f(x) = Cn(x).
Applying directly the importance sampling estimator
provides

n n

1 Cr(X;) 1
m, =~ ; mhm == ; w(X)h(X;).

What about the unknown constant C7
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Self-normalized estimator. Anexo 2.

. Cr(X;) .
mlS = g; 00 TP (X)) = Zw(X)h(X)

What about the unknown constant C? The idea:
we should estimate C as well, and use normalized
weights.

w(X;)
which gives us an idea to importance sampling simu-
lation of distribution f. Consider the estimator

Yo w(X)h(X5)
Z?:l w(X;)

w(X;) =

SNIS Z’LU(X)h(X)
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Self-normalized estimator. Anexo 2. Observe
that the self-normalized importance sampling estima-
tor does not depend on C:

n n w(Xi) _
snis _ 2uim1 WX)h(Xi) _ Di=1 gexy (Xa)
" E?:l w(X;) Zn (X))

=1 g(Xi)
Algorithm: Choose g such that supp(g) D supp(f-h).

m

l. For:=1,...,n:
(a) Generate X; ~ g.

N ()
(b) Set w(X;) = T4,

2. Return

SNIS _ > g w(Xi)h(X;)
" 22;1 w(Xz)

m
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Self-normalized estimator. Properties. Anexo 2.

m>N15 is consistent estimator. Indeed,

mSN]S — Z;lw(Xi)h(Xi) — Z;lw(Xi)h(Xi) % n
" 2;1 w(X:) " Zj:l w(X;)
E (hi(X)) f(i)
X)\ —
: C Eg(g(X)) =C

where the convergence is almost sure, requiring

supp(g) D supp(f - h)
and Ej|lw(X)h(X)| < co.
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Self-normalized estimator. Properties. Anexo 2.

! w ) h i . . .
moNIS = PRICOLICD is biased, but asymptotically

D iy WX

unbiased.

Theorem. Bias and variance of m>N15:

E, (mSNIS) —_— mVarg(w(X)) Covg(w(X)jnw(X)h(X)) n O(n_2>

SNIS) Varg(w(X)h(X)) 2mCovy(w(X), w(X)h(X))

n

Var, (m
n n

m2Var,(w(X)) n O(n_2)

n

+
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Optimality Theorem and SNIS.

[RC1, p.95] A practical alternative taking advantage of The
Optimality Theorem is to use the self-normalized importance
sampling estimator (SNIS). Where instead of f we know g up
to an unknown constant g « |h|f. Observe that the SNIS can
be defined in the same way. In this case SNIS is

n f(xi) _ no h(z)
D i1 GGy (@) _ D it Ta(ed]
OIS 1

where z; ~ g « |h|f. “Note that the numerator is the number
of times h(xz;) is positive minus the number of times when it is
negative. In particular, when h is positive, (4) is the harmonic
mean. Unfortunately, the optimality of Theorem dos not trans-
fer to (4), which is biased and may exhibit severe instability.”

(4)

my —

The problem to use (4) in practice is the generation x; ~ g « |h|f.
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