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Importance sampling. [RC, Chapter 3.3] “The
method we now study is called importance sampling
because it relies on so-called importance functions,
which are instrumental distributions, in lieu of the
original distributions. In fact, an evaluation of

m := Ef(h(X)) =

∫ ∞
−∞

h(x)f(x)dx, (1)

based on simulations from f is almost never opti-
mal in the sense that using alternative distributions
can improve the variance of the resulting estimator of
(1).”
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Importance sampling. [RC] Importance sampling
is based on a alternative representation of the inte-
gral (1). Given an arbitrary density g that is strictly
positive when h · f is different from zero, i.e.

supp(g) ⊇ supp(h · f),

we can indeed rewrite (1) as

Ef(h(X)) =

∫
supp(g)

h(x)
f(x)

g(x)
g(x)dx = Eg

[h(X)f(X)

g(X)

]
and for any measurable set A

P(X ∈ A) =

∫
A

f(x)dx =

∫
A

f(x)

g(x)
g(x)dx
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Ef(h(X)) =

∫
supp(g)

h(x)
f(x)

g(x)
g(x)dx = Eg

[h(X)f(X)

g(X)

]
[RC] This importance sampling fundamental identity
justifies the use of the estimator

mIS
n =

1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi)→ Ef(h(X)),

based on a sample X1, . . . , Xn generated from g (not
from f !). By strong low of large numbers, if

Eg
∣∣∣h(X)f(X)

g(X)

∣∣∣ <∞
then the convergence is almost sure.
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Bias and variance of importance sampling.

Eg(mIS
n ) = m

Varg(mIS
n ) =

Varg(w(X) · h(X))

n

where

w(X) =
f(X)

g(X)
.

Moreover, the expected value of the weights is

Eg(w(X)) = 1.
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Example 3.5 [RC].

For example, if Z ∼ N(0,1) and we are interested in
the probability P(Z > 4.5), which is very small,

> pnorm(-4.5,log=T)

[1] -12.59242

> pnorm(-4.5)

[1] 3.397673e-06

simulating Zi ∼ N(0,1) only produces a hit once in
about 3 million iterations!
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Exercise 3.5 [RC].

Thanks to importance sampling, we can greatly im-
prove our accuracy and thus bring down the number
of simulations by several orders of magnitude.

For instance, if we consider a distribution with sup-
port restricted to (4.5,∞), the additional and unnec-
essary variation of the Monte Carlo estimator due to
simulating zeros (i.e., when x < 4.5) disappears. A
natural choice is to take g as the density of the ex-
ponential distribution Exp(1) truncated at 4.5,

g(y) =
e−y∫∞

4.5 e
−xdx

= e−(y−4.5)
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Exercise 3.5 [RC]. A natural choice is to take g
as the density of the exponential distribution Exp(1)
truncated at 4.5,

g(y) =
e−y∫∞

4.5 e
−xdx

= e−(y−4.5)

and the corresponding importance sampling estimator
of the tail probability is

1

n

n∑
i=1

f(Yi)

g(Yi)
=

1

n

n∑
i=1

e−Y
2
i /2+Yi−4.5

√
2π

where Yi’s are i.i.d. generations from truncated at 4.5
exponential Exp(1) distribution.
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Exercise 3.5 [RC]. The true value is P(Z > 4.5) ∼= 3.398 ·10−6

(red line). The estimated value is 3.480 · 10−06
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Exercise 3.5 [RC]. The true value is P(Z > 4.5) ∼= 3.398 ·10−6

(red line). The estimated value is 3.158 · 10−06
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Exercise 3.5 [RC]. Code p.71.

> Nsim=10^3
> y=rexp(Nsim)+4.5
> weit=dnorm(y)/dexp(y-4.5)
> plot(cumsum(weit)/1:Nsim,type="l",ylab="",xlab="Iterations")
> abline(a=pnorm(-4.5),b=0,col="red")
> est=sum(weit)/Nsim
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Example 3.5 [RC].

The accuracy of the approximation is remarkable, es-
pecially when compared with the original size require-
ments imposed by a normal simulation.

See Anexo 1 for detailed discussion about rare-event
probability estimation.
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Abstract theory. Let Z := h(X)

Z : (Ω,F ,P) → (R,B,PZ) measurable, i.e. Z is real-
valued random variable s.t. for all Borel sets B ∈ B

PZ(B) := P
(
Z−1(B)

)
= P(ω : Z(ω) ∈ B).

Consider another probability Q s.t. Q � P (we say
that Q is absolute continuous with respect to P): i.e.
for any A ∈ F

Q(A) = 0⇒ P(A) = 0.
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Abstract theory.

Consider the probability Q s.t. Q� P. Then there ex-
ists a likelihood ratio (or Radon-Nikodym derivative)
L : (Ω,F)→ (R,B) s.t.

dP = LdQ.

Equivalently

E(Z) = EQ(LZ).

It suffices a probability Q s.t. for all ω ∈ Ω

1(Z(ω) 6= 0)dP(ω) = 1(Z(ω) 6= 0)LdQ(ω).
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Abstract theory.

In the case of absolute continuous random variables

Q� P ⇔ supp(g) ⊇ supp(f)

and

dP = LdQ ⇔ f(x)dx =
f(x)

g(x)
g(x)dx
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Variance of importance sampling. Recall

mIS
n =

1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi)→ Ef(h(X)),

The variance of estimator

Varg(mIS
n ) =

Varg(w(X) · h(X))

n

where w(X) = f(X)/g(X). Consider Varg(w(X)h(X))

Varg(w(X)h(X)) =

∫
h2(x)

f2(x)

g(x)
dx−m2.

More important condition on choosing g is finiteness of variance
estimator, i.e.

Varg(w(X)h(X)) <∞.
Note that if f has heavier tails then g, then the weights will have
infinite variance.
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Variance of importance sampling. [RC1,pp.94-95] An al-
ternative to

mIS
n =

1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi) ≈ Ef(h(X)), (2)

which addresses the finite variance issue, and generally yields a
more stable estimator, is to use∑n

i=1
f(xi)
g(xi)

h(xi)∑n

i=1
f(xi)
g(xi)

, (3)

where we replaced n with the sum of the weights. Since

1

n

n∑
i=1

f(xi)

g(xi)
→ 1, as n→∞,

this estimator also converges to Ef(h(X)) by the Strong Low
of Large Numbers. Although this estimator is biased, the bias
is small, and the improvement in variance makes it a preferred
alternative to (2).



Aula 4. Monte Carlo Integration II. 17

Variance. Optimal proposal. Anexo 2.

Optimality Theorem. The distribution g that minimizes the
variances of mIS

n (for fixed n) is

ĝ =
|h(x)|f(x)∫
|h(t)|f(t)dt

∝ |h(x)|f(x)

• Theorem of little practical use: the optimal proposal in-
volves

∫
|h(t)|f(t)dt, which is the integral we want to esti-

mate!

• Practical relevance of theorem: choose g such that it is
close to |h(x)|f(x), i.e. looking for such distributions g for

which |h|f
g

is almost constant with finite variance.

[RC ] It is important to note that although the finite variance
constraint is not necessary for the convergence, importance
sampling performs quite poorly when∫

f2(x)

g(x)
dx =∞.
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Variance. Optimal proposal. Proof.

Varĝ(ŵ(X)h(X)) =

∫
h2(x)

f2(x)

ĝ(x)
dx−m2

=

∫
h2(x)f2(x)

|h(x)|f(x)

(∫
|h(t)|f(t)dt

)
dx−m2

=
(∫
|h(x)|f(x)dx

)2
−m2.

Cauchy-Swartz inequality shows that any other choice
of g increase the variance:(∫

|h(x)|f(x)dx
)2

=
(∫
|h(x)|f(x)

√
g(x)√
g(x)

dx
)2

≤
∫
h2(x)f2(x)

g(x)
dx

∫
g(x)dx ≤

∫
h2(x)f2(x)

g(x)
dx

�
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Self-normalized estimator. Anexo 2.

Importance sampling can be useful when the density
f is known up to some unknown constant

f(x) ∝ π(x), or f(x) = Cπ(x).

Applying directly the importance sampling estimator
provides

mIS
n =

1

n

n∑
i=1

Cπ(Xi)

g(Xi)
h(Xi) =

1

n

n∑
i=1

w(Xi)h(Xi).

What about the unknown constant C?



Aula 4. Monte Carlo Integration II. 20

Self-normalized estimator. Anexo 2.

mIS
n =

1

n

n∑
i=1

Cπ(Xi)

g(Xi)
h(Xi) =

1

n

n∑
i=1

w(Xi)h(Xi).

What about the unknown constant C? The idea:
we should estimate C as well, and use normalized
weights.

w̃(Xi) =
w(Xi)∑n
k=1w(Xk)

,

which gives us an idea to importance sampling simu-
lation of distribution f . Consider the estimator

mSNIS
n =

n∑
i=1

w̃(Xi)h(Xi) =

∑n
i=1w(Xi)h(Xi)∑n

i=1w(Xi)
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Self-normalized estimator. Anexo 2. Observe
that the self-normalized importance sampling estima-
tor does not depend on C:

mSNIS
n =

∑n
i=1w(Xi)h(Xi)∑n

i=1w(Xi)
=

∑n
i=1

π(Xi)
g(Xi)

h(Xi)∑n
i=1

π(Xi)
g(Xi)

Algorithm: Choose g such that supp(g) ⊃ supp(f ·h).

1. For i = 1, . . . , n :

(a) Generate Xi ∼ g.

(b) Set w(Xi) = π(Xi)
g(Xi)

.

2. Return

mSNIS
n =

∑n
i=1w(Xi)h(Xi)∑n

i=1w(Xi)
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Self-normalized estimator. Properties. Anexo 2.

mSNIS
n is consistent estimator. Indeed,

mSNIS
n =

∑n

i=1
w(Xi)h(Xi)∑n

i=1
w(Xi)

=

∑n

i=1
w(Xi)h(Xi)

n
× n∑n

i=1
w(Xi)

↓ ↓
Ef(h(X))

C
Eg(

f(X)
g(X)

) = C

where the convergence is almost sure, requiring

supp(g) ⊃ supp(f · h)

and Eg|w(X)h(X)| <∞.
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Self-normalized estimator. Properties. Anexo 2.

mSNIS
n =

∑n

i=1
w(Xi)h(Xi)∑n

i=1
w(Xi)

is biased, but asymptotically

unbiased.

Theorem. Bias and variance of mSNIS
n :

Eg
(
mSNIS
n

)
= m+

mVarg(w(X))

n
−
Covg(w(X), w(X)h(X))

n
+O

(
n−2
)

Varg
(
mSNIS
n

)
=

Varg(w(X)h(X))

n
−

2mCovg(w(X), w(X)h(X))

n

+
m2Varg(w(X))

n
+O

(
n−2
)
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Optimality Theorem and SNIS.

[RC1, p.95] A practical alternative taking advantage of The
Optimality Theorem is to use the self-normalized importance
sampling estimator (SNIS). Where instead of f we know g up
to an unknown constant g ∝ |h|f . Observe that the SNIS can
be defined in the same way. In this case SNIS is

mn =

∑n

i=1
f(xi)

|h(xi)|f(xi)
h(xi)∑n

i=1
f(xi)

|h(xi)|f(xi)

=

∑n

i=1
h(xi)
|h(xi)|∑n

i=1
1

|h(xi)|
, (4)

where xi ∼ g ∝ |h|f . “Note that the numerator is the number
of times h(xi) is positive minus the number of times when it is
negative. In particular, when h is positive, (4) is the harmonic
mean. Unfortunately, the optimality of Theorem dos not trans-
fer to (4), which is biased and may exhibit severe instability.”

The problem to use (4) in practice is the generation xi ∼ g ∝ |h|f .
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