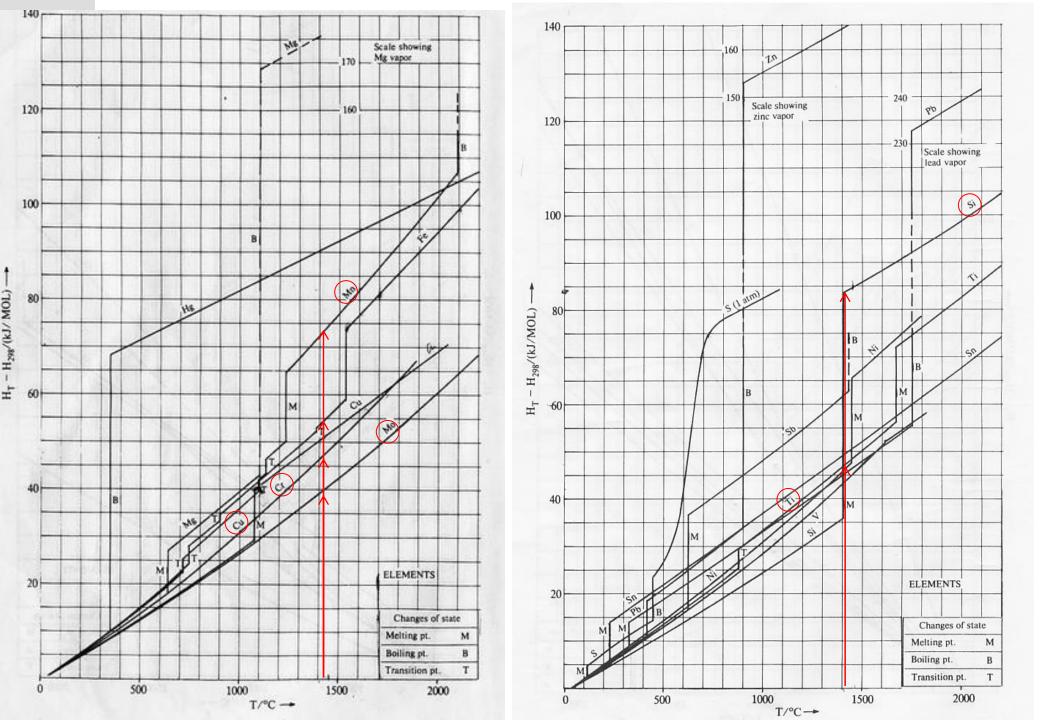
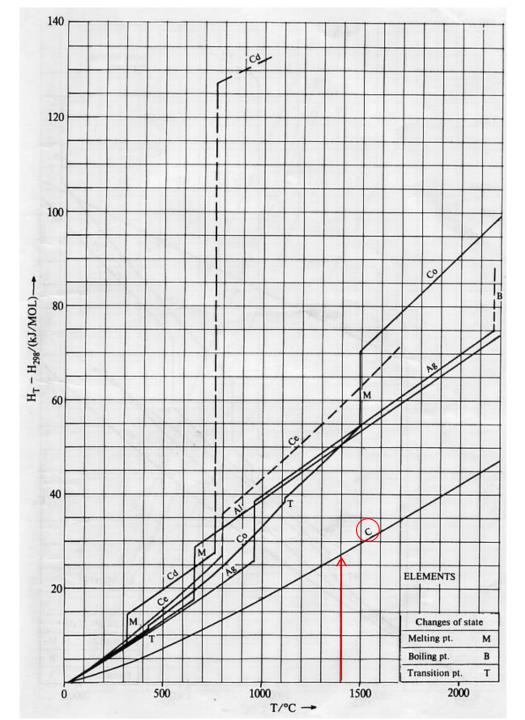


# **PMT 3205**

# Físico-Química para Metalurgia e Materiais I




16. Determinar a quantidade de energia necessária para fundir 100 kg de aço a 25°C com a seguinte composição química: 2%C, 2%Mn, 1%Si, 5%Cr, 5%Mo e 1%Ti sabendo que a sua T<sub>liquidus</sub>=1410°C[20]


Calcular as variações de entalpia dos elementos e somá-las

### Para cada 100 kg de liga há:

- 84 kg Fe e 84/56 kmol -
- 2 kg C e 2/12 kmol -
- 2 kg Mn e 2/55 kmol -
- 1 kg Si e 1/28 kmol -
- 5 kg Cr e 5/52 kmol -
- 5 kg Mo e 5/96 kmol -
- 1 kg Ti e 1/48 kmol -









- Fe: (84.000/56)x(53.429,4+3.300x4,18)=1,01x108J
- C:  $(2.000/12)x(27.641,7)=4,61x10^6$ J
- Mn:  $(2.000/55)x(78.812,5)=2,5x10^6$ J
- Si:  $(1.000/28)x(35.925,3+12.100x4,18)=3,09x10^6$ J
- Cr:  $(5.000/52)x(45.315,3+4.000x4,18)=5,96x10^6J$
- Mo:  $(5.000/96)x(39.496+6.600x4,18)=3,49x10^6$ J
- Ti: (1.000/48))x $(46.560,4+4.500x4,18)=1,36x10^6$ J

# $\Delta H_{liga} = 1,22x10^8 J/100 kg$

 $\Delta h_{liga,TC} = 1,09x10^8 J/100kg (~12\%)$ 



# **Termoquímica**

$$a.A + b.B = c.C + d.D$$

$$\Delta H_{\text{reação}} = \Sigma H_{\text{produtos}} - \Sigma H_{\text{reagentes}} = c.H_{\text{C}}, (T,P) + d.H_{\text{D}}, (T,P) - a.H_{\text{A}}, (T,P) - b.H_{\text{B}}, (T,P)$$

$$\Delta H_{reação}$$
<0  $\rightarrow$  exotérmica  $\Delta H_{reação}$ >0  $\rightarrow$  endotérmica



 H não é uma propriedade absoluta, só é possível determinar valores relativos.

# **REFERÊNCIA**

•O <u>zero de entalpia</u> é escolhido como sendo a entalpia das substâncias elementares puras (elementos químicos e gases mono e diatômicos), em sua fase mais estável, à temperatura de 25°C e pressão de 1 atm.

SER (Standard Element Reference)



$$SER H_{Fe} = H_{Fe}^{ccc}(298K, 1atm) = 0$$

$$H_{Fe}^{cfc}(298K, 1atm) \neq 0$$

$$SER H_{C} = H_{C}^{grafite}(298K, 1atm) = 0$$

$$H_{C}^{diamante}(298K, 1atm) \neq 0$$

$$< M > + \frac{1}{2}(O_{2}) = < MO > a 298K$$

$$\Delta H_{r,298} = H_{,298K} - H_{,298K} - \frac{1}{2}H_{(O_{2}),298K}$$
ou
$$\Delta H_{r,298} = H_{,298K} = \Delta H_{298}^{o}$$
Tabelado

Variação de entalpia de formação ou reação



#### Table 13-II. Thermodynamic Data\* on Some Elements and Compounds Encountered in Ferrous Metallurgical Processes.

Units:  $\Delta H_{res}^{\circ}$  in cal. per mole;  $S_{298}^{\circ}$  in cal. per deg. per mole;  $C_p$  in cal. per deg. per mole; transformation (t.p.), melting (m.p.) and boiling (b.p.) point temperatures in °C; heats of transformation and fusion in cal. per mole.

Notations: " "indicate nonstoichiometric compound; underlined m.p. indicates incongruent m.p.; values in ( ) are estimated, dec. = decomposes. Sub. = sublimes.

|                                                        | marcan                | T       | 1                                                                      |                    | distriction       | T                  | 1          | Г            | \            |              | T        | T                                         |
|--------------------------------------------------------|-----------------------|---------|------------------------------------------------------------------------|--------------------|-------------------|--------------------|------------|--------------|--------------|--------------|----------|-------------------------------------------|
| Substance                                              | $-\Delta H^{o}_{208}$ | S°      | $C_p = a + bT - cT^{-2}$<br>$a \qquad b \times 10^3  c \times 10^{-5}$ |                    | Temp.<br>Range °C | t.p.<br>°C         | m.p.<br>°C | b.p.<br>°C   | $\Delta H_t$ | $\Delta H_f$ | Remarks  |                                           |
| Al                                                     | 0                     | 6.77    | 4.94                                                                   | 2.96               |                   | 25–659             |            | 659          | 2467         |              | 2,570    |                                           |
| (110)                                                  | (200                  | 10.0    | 7.00                                                                   | 2.02               |                   | 659-2400           | (1000)     | 2020         |              | (00.000)     | (20,000) |                                           |
| $Al_2O_3$ $Al_2S_3$                                    | 399,600<br>172,900    | 12.2    | 27.49                                                                  | 2.82               | 8.38              | 25-1500            | (1000)     | 2030<br>1100 | dec.<br>dec. | (20,600)     | (26,000) |                                           |
| AlN                                                    | 76,470                | 5.0     | 5.47                                                                   | 7.80               | -                 | 25-600             |            | dec.         | dec.         |              |          |                                           |
| $Al_iC_a$                                              | 35,900                | (31.3)  | 24.08                                                                  | 31.60              |                   | 25-320             |            | dec.         | dec.         |              |          | / Heats of                                |
| $Al_2SiO_2(1)$                                         | 39,900°               | 22.3    | 46.24                                                                  | -                  | 12.53             | 25-1300            |            |              |              |              |          | (1) Andalusite ) formation                |
| (2)                                                    | 40,000°               | 20.0    | 45.52                                                                  | 2.34               | 16.00             | 25-1400            |            |              |              |              | 1        | (2) Kyanite from ox-                      |
| (3)                                                    | 46,000°               | 23.0    | 40.09                                                                  | 5.86               | 10.13             | 25-1300            |            | 1810         |              |              |          | (3) Sillimanite   ides, Al <sub>2</sub> O |
| V1 V0 28 2                                             |                       |         | W. 00                                                                  |                    |                   |                    | -          |              |              |              |          | + SiO <sub>2</sub> .                      |
| Al <sub>0</sub> Si <sub>2</sub> O <sub>13</sub>        |                       |         | 59.65                                                                  | 67.00              | ( <u>Apple</u> )  | 25–300             |            |              |              |              |          | Mullite                                   |
| В                                                      | 0                     | 1.40    | 4.13                                                                   | 1.66               | 1.76              | 25-2027            | _          | 2027         | 3927         | _            | 5,300    |                                           |
|                                                        |                       |         | 7.50                                                                   | 3 <del>12700</del> |                   | 2027-2700          |            |              |              |              |          | -43                                       |
| $B_2O_3$ °                                             | 305,300               | 12.87   | 8.73                                                                   | 25.40              | 1.31              | 25-450             |            | 450          | (2300)       |              | 5,500    | Crystalline.                              |
| P O ·                                                  | 301,000               | 18.58   | 30.50<br>2.28                                                          | 42.10              | ****              | 450–1700<br>25–450 |            | 450          | (0000)       |              |          |                                           |
| $B_{2}O_{3}$ *                                         | 301,000               | 10.00   | 30.50                                                                  | 42.10              | 0                 | 450-1700           |            | 450          | (2300)       |              | _        | Amorphous (glass).                        |
| BN                                                     | 60,700                | 3.67    | 1.82                                                                   | 3.62               |                   | 25–900             |            |              |              | ,            |          |                                           |
| "B,C"                                                  | 12,200                | 6.47    | 22.99                                                                  | 5.40               | 10.72             | 25-1450            | A          |              | /            |              |          |                                           |
| Ba                                                     | 0                     | 15.50   | 5.36                                                                   | 3.16               |                   | 25-370             | 370        | 710          | 1637         | 150          | 1,830    |                                           |
|                                                        |                       | 13.30   | 2.60                                                                   | 6.86               | S                 | 370-710            |            |              | 2001         | 100          | 1,000    |                                           |
|                                                        |                       |         | 7.50                                                                   | -                  | - <del></del>     | 710-1600           |            |              |              | 4)           |          | 1                                         |
| "BaO"                                                  | 133,500               | 16.80   | 11.79                                                                  | 1.88               | 0.88              | 25-1700            | 1          | 1925         | (2750)       |              | 13,800   | l .                                       |
| BaS                                                    | 106,000               | 22.0    |                                                                        |                    |                   |                    |            | 2200         |              |              |          |                                           |
| $Ba_3N_2$                                              | 87,000                | 36.4    |                                                                        |                    |                   |                    |            | dec.         |              |              |          |                                           |
| BaSiO <sub>3</sub>                                     | 38,000°               | 26.8    |                                                                        |                    |                   |                    |            | 1605         |              |              |          | from its oxides.                          |
| Ba <sub>2</sub> SiO <sub>4</sub>                       | 64,500°               | 43.5    | 29.03                                                                  | 2.04               | 4.58              | 25-1700            | = 100      | 1760<br>1705 |              | 10 47        |          | from its oxides.                          |
| BaTiO <sub>5</sub><br>Ba <sub>5</sub> TiO <sub>4</sub> | ,                     | 47.0    | 43.00                                                                  | 2.04<br>1.60       | 6.96              | 25-1700            | 5; 120     | 1705         |              | 16; 47       |          |                                           |
| Be                                                     | 0                     | 2.28    | 4.58                                                                   | . 2.12             | 1.14              | 25-1283            |            | 1283         | 2477         |              | 2,800    |                                           |
| De                                                     |                       | 2.20    | 7.50                                                                   | کا،ک<br>—          | 1.111             | 1283-2400          | -          | 1200         | 2411         |              | 2,000    |                                           |
| BeO                                                    | 143,100               | 3.37    | 8.45                                                                   | 4.00               | 3.17              | 25–900             |            | 2530         | 4120         | _            | 17,000   |                                           |
| BeS                                                    | 55,900                | 8.4     |                                                                        | ****               | ~                 |                    |            |              |              |              | 2.,000   |                                           |
| Be <sub>3</sub> N <sub>2</sub>                         | 134,700               | DOSMINE | 7.32                                                                   | 30.80              |                   | 25-500             |            |              |              |              |          |                                           |
| Be <sub>2</sub> SiO <sub>4</sub>                       | 12,000°               | 15.4    | 22.84                                                                  |                    |                   | 25                 |            | <u>1560</u>  |              |              |          | from its oxides.                          |
| C(1)                                                   | 0                     | 1.36    | 4.03                                                                   | 1.14               | 2.04              | 25-2200            |            | Sub.         | 3727°        |              | (33,000) | (1) Graphite;                             |
| 271 2700                                               |                       |         |                                                                        |                    |                   |                    |            |              | .0           |              |          | *Sublimation point                        |



#### **Exemplos:**

2 Fe + 
$$3/2$$
 O<sub>2</sub> = Fe<sub>2</sub>O<sub>3</sub>

$$\Delta H^{o}_{Fe2O3.298K}$$
 = -194580 cal/mol .... valor tabelado

$$\Delta H^{o}_{reação, 298K, 1 atm} = H^{o}_{Fe2O3, 298K, 1 atm} - 2H^{o}_{Fe, 298K, 1 atm} - 3/2 H^{o}_{O2, 298K, 1 atm} = -194.580 cal/mol$$

0 cal

-----

$$2/3 \text{ Fe}_3 O_4 + 1/6 O_2 = \text{Fe}_2 O_3$$

$$\Delta H^{o}_{Fe2O3,298K}$$
 = -194580 cal/mol .... valor tabelado  $\Delta H^{o}_{Fe3O4,298K}$  = -263430 cal/mol .... valor tabelado

$$\Delta H^{o}_{reação, 298} = H^{o}_{Fe2O3,298} - 2/3H^{o}_{Fe3O4,298} - 1/6 H^{o}_{O2,298} = -18.960 cal/mol$$
-194580 cal -263430 cal 0

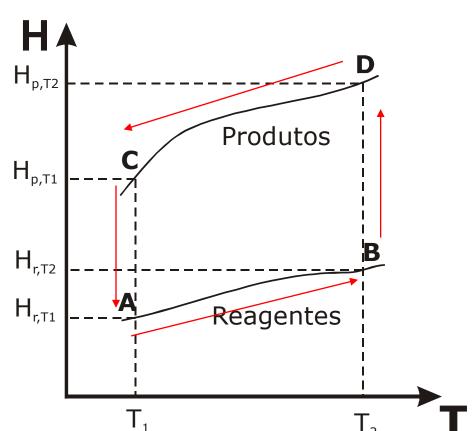


#### **Exemplos:**

$$CaO + TiO_2 = CaTiO_3$$

$$\Delta H^o{}_{reaç\~ao,298K,1atm} = H^o{}_{CaTiO3,s\'olido,298K,1atm} - H^o{}_{CaO,s\'olido,298K,1atm} - H^o{}_{TiO2,s\'olido,298K,1atm}$$
 ou 
$$\Delta H^o{}_{reaç\~ao,298K,1atm} = \Delta H^o{}_{CaTiO3,s\'olido,298K,1atm} - \Delta H^o{}_{CaO,s\'olido,298K,1atm} - \Delta H^o{}_{TiO2,s\'olido,298K,1atm}$$
 -1660200 joules -635090 joules -943210 joules

CaO + TiO<sub>2</sub> = CaTiO<sub>3</sub>...... 
$$\Delta H^{o}_{298}$$
 = -81900 joule/mol




$$\Delta H_{A \to B} = \int_{T_1}^{T_2} \sum c_{P,reagentes} dT$$

$$\Delta H_{B \to D} = \Delta H_{reação, T_2}$$

$$\Delta H_{D \to C} = \int_{T_2}^{T_1} \sum c_{P,produtos} dT$$

$$\Delta H_{C \to A} = -\Delta H_{reação, T_1}$$



## Ciclo Fechado

$$\Delta H_{A \to B} + \Delta H_{B \to D} + \Delta H_{D \to C} + \Delta H_{C \to A} = 0$$



### <u>Termodinâmica</u>

$$\Delta H_{rea \zeta \tilde{a} o, T_{2}} = -\int_{T_{2}}^{T_{1}} \sum c_{P,produtos} \cdot dT - \int_{T_{1}}^{T_{2}} \sum c_{P,reagentes} \cdot dT + \Delta H_{rea \zeta \tilde{a} o, T_{1}}$$

$$\Delta H_{rea \zeta \tilde{a} o, T_{2}} = \int_{T_{1}}^{T_{2}} (\sum c_{P,produtos} - \sum c_{P,reagentes}) \cdot dT + \Delta H_{rea \zeta \tilde{a} o, T_{1}}$$

# Regra de Kirchoff

$$\Delta H_{T_2} = \Delta H_{T_1} + \int_{T_1}^{T_2} \Delta c_p.dT$$

# <u>Termodinâmica – Balanço térmico</u>

# **REGRA PRÁTICA**

- 1.Levar todos os reagentes para uma temperatura de referência, normalmente 298K  $\Delta H_a$ ;
- 2. Fazer a reação química na temperatura de referência -

$$\Delta H_b = \Delta H_{reação,298K}$$
;

3. Levar todos os produtos para as temperaturas reais -  $\Delta H_c$ .

$$\Delta H_{reação} = \Delta H_a + \Delta H_b + \Delta H_c$$



# <u>Termodinâmica – Balanço térmico</u>

# 17. Calcular a variação de entalpia das seguintes reações:[80]

- a. Fe  $(25^{\circ}C) + \frac{1}{2}O_{2}(25^{\circ}C) = FeO(25^{\circ}C)$
- b. Fe  $(25^{\circ}C) + \frac{1}{2}O_{2}(25^{\circ}C) = FeO(500^{\circ}C)$
- c. Fe  $(500^{\circ}\text{C}) + \frac{1}{2} \text{ O}_{2}(300^{\circ}\text{C}) = \text{FeO}(1000^{\circ}\text{C})$

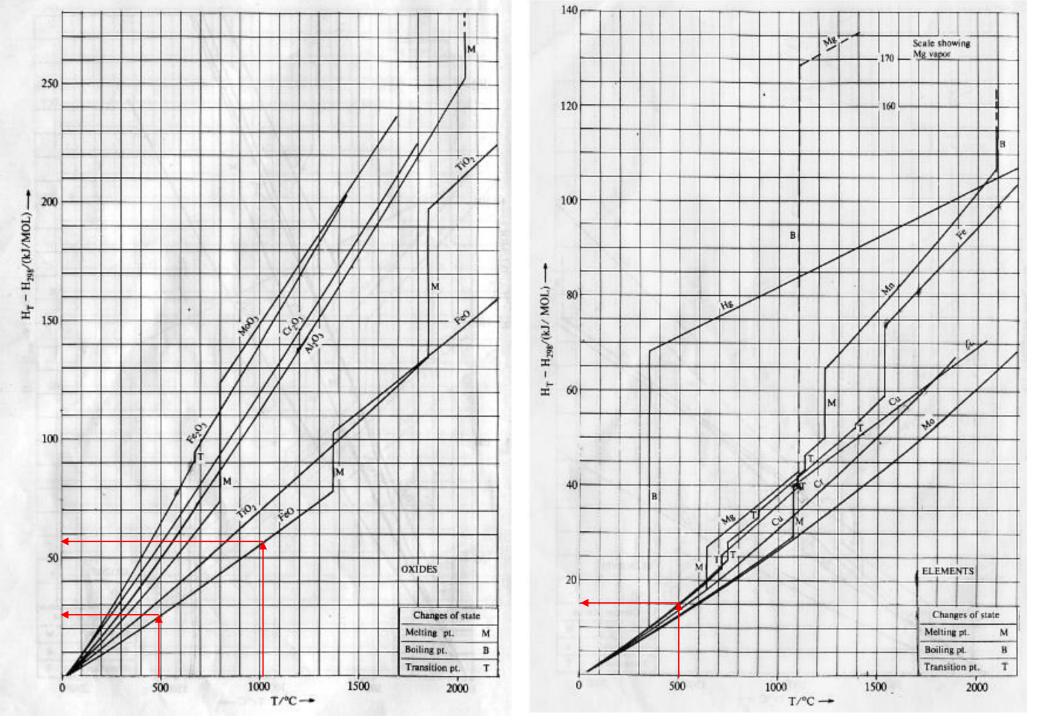
| Fe             | 0      | 6.49  | 3.04                                   | 7.58                         | ~0.60 | 25-769                                                   | 760*,910;<br>1392 | 1537 | 3070 | 326,215,<br>165 | 3 670 |
|----------------|--------|-------|----------------------------------------|------------------------------|-------|----------------------------------------------------------|-------------------|------|------|-----------------|-------|
| "FeO"          | 63 800 | 13.7  | 11.13<br>5.80<br>6.74<br>9.77<br>11.66 | 1.98<br>1.60<br>0.40<br>2.00 |       | 769—911<br>911—1392<br>1392—1537<br>1537—2700<br>25—1377 |                   | 1377 | dec  |                 | 7 490 |
| O <sub>2</sub> | .0     | 49.02 | 7.16                                   | 1.00                         | 0.40  | 25—2700                                                  | -250;-229         | -219 | -183 | 224;178         | 106   |



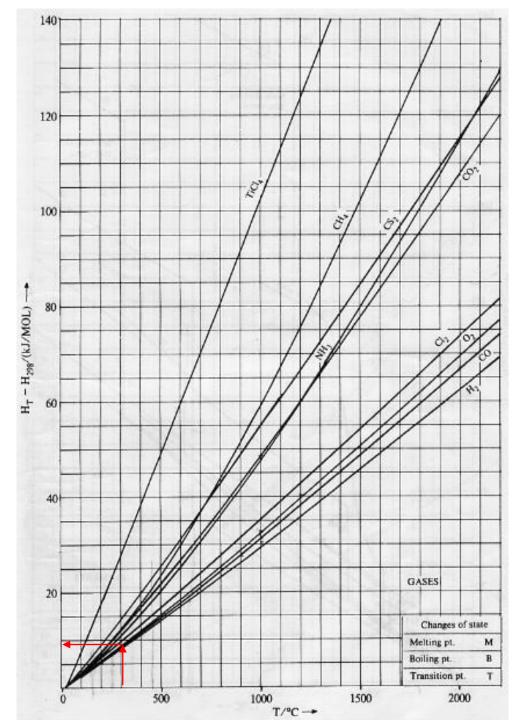
# Termodinâmica – Balanço térmico

a. Fe  $(25^{\circ}C) + \frac{1}{2}O_{2}(25^{\circ}C) = FeO(25^{\circ}C)$ 

$$\Delta H^{o}_{reação,298K} = \Delta H^{o}_{FeO,298K} - \Delta H^{o}_{Fe,298K} - 0,5.\Delta H^{o}_{O2,298K} = -63.800 \text{ cal/mol}$$


- b. Fe  $(25^{\circ}C) + \frac{1}{2}O_{2}(25^{\circ}C) = FeO(500^{\circ}C)$
- 1.  $\Delta H_a = 0$  (estão na temperatura de referência)
- 2.  $\Delta H_b = \Delta H^o_{reac\tilde{a}o,298K} = \Delta H^o_{FeO,298K} \Delta H^o_{Fe,298K} 0,5.\Delta H^o_{O2,298K} = -63.800 \text{ cal/mol}$
- 3.  $\Delta H_c = \Delta H_{aquec, FeO, 298K-773K} = 25000/4, 18=5.981 \text{ cal/mol (H}_T-H_{298})$

$$\Delta H_{reac\tilde{a}o} = \Delta H_a + \Delta H_b + \Delta H_c = 0 + (-63.000) + 5.981 = -57.819 \text{ cal/mol}$$


c. Fe  $(500^{\circ}\text{C}) + \frac{1}{2} \text{ O}_2(300^{\circ}\text{C}) = \text{FeO}(1000^{\circ}\text{C})$ 



- 1.  $\Delta H_a = \Delta H_{resf,Fe,773K-298K} + 0.5.\Delta H_{resf,O2,573K-298K} = (-15.000-0.5x9.000)/4.18 = -1.000$ 4.665 cal/mol
- 2.  $\Delta H_b = \Delta H^o_{reação,298K} = \Delta H^o_{FeO,298K} \Delta H^o_{Fe,298K} 0,5.\Delta H^o_{O2,298K} = -63.800 \text{ cal/mol}$
- 3.  $\Delta H_c = \Delta H_{aquecimento, FeO, 298K-1273K} = 52.500/4, 18 = 12.560 cal/mol$
- $\Delta H_{reac\tilde{a}o} = \Delta H_a + \Delta H_b + \Delta H_c = -4.665 + (-63.000) + 12.560 = -55.905 \text{ cal/mol}$











# <u>Termodinâmica – Balanço térmico</u>

19. Cr<sub>2</sub>O<sub>3</sub> puro reage com uma quantidade estequiométrica de Al, ambos inicialmente a 25°C, produzindo alumina e cromo puro. Se a máxima temperatura obtida no cadinho foi de 1900°C, calcular o calor perdido para o meio por kg de Al. [22]

$$Cr_2O_3 + 2AI = 2Cr + AI_2O_3$$
  
298K 298K 2173K 2173K

 $\begin{array}{l} \Delta H_{reação,298K} = -1,28x10^5 \ cal/mol \\ \Delta H_{aquecimento,Al2O3} = (-3,45x10^5 + 4,00x10^5) cal/mol \\ \Delta H_{aquecimento,Cr} = 2x1,70X10^4 \ cal/mol \end{array}$ 

 $\Delta H_{reação} = -1,28x10^5 + (-3,45x10^5 + 4,00x10^5) + 2x1,70X10^4 = -38.600$  cal/mol  $\Delta H_{reação} = -38600x1000/(2x27) = -714.814,82$  cal/kg Al