


Lightning review of QFT

* Our goal: practical review of perturbation theory in QFT

® Woave equations
® Propagators
® |nteractions/Vertices

® Feynman diagrams



l. VWWave equations

* Given a Lagrangian density the EOM is

0, (L) - 2
"\ 90, oy

L= i 0+ o U VR~ V(@Y = i = —5 VP + V(@)

for instance

* The Lagrangian must reflect the symmetries of the problem.



* A symmetry is a transformation that leaves the action invariant

/
r— X

pi(z) = ()
L — L+ 9,A"

forinstance £ = j30* 0,9 - zinw*V%b — V(Z)Y™y

is invariant under /constant

r—2' =z and Y — Y (2)) = e *Y(x)



* Noether’s theorem: for continuous symmetry there is a conserved
current

r— 0pj(r) = @j(x) — pj(z)
(x) = 0. (z oL
<70]( ) SD]( ) J,u: . 590]_/\#
L — L+ (‘9“/\“ aa,u@g
DT = 0

for the Schrodinger field J" = <¢*¢a %(w*vw - ¢V¢*))



Real scalar field

e Under Lorentz transformation its transformation is
r—a = ¢@) = ()

* The relativistic free Lagrangian density is

1 m?
— = H 2
the EOM is (0,0" +m?)p =0
with solutions eTP* with pupt = m?




Complex scalar field

e Under Lorentz transformation its transformation is
r—a = ¢'(a") = o(x)

* The relativistic free Lagrangian density is £ = 9,0 0"¢ — m*¢* ¢

the EOM is (0,0" +m?)p =0

T1px 2

with solutions e with p,p" =m

constant

conserved current  ¢(z) = ¢'(z) = e"“¢(z)

symmetry J, = 90,0" — ¢p*0,0



Dirac field ¥j(z) , j=1-4

* Under Lorentz transformation its transformation is
r— 12 = Y(2')=85(A)p(x) with S = e~ 1w

- EOM (17" 0 =m)y =0
{v*, 4"} = 2¢"”  one representation " = ( é _O[ > 7 = ( o (Z)J )

e Lagrangian density £ = ¢ (iy*9, — m)y = TAY
constant

e

e Invariance under ¥ (x) — ¢¥'(2) = e"*Y(x) = JH = py"
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* Free particle solutions ¥ (x) = u(p) e

where

ui(p) = VE +m

vi(p) = VE +m

(
\

\ (p1 —ip2)/(E+m) )

pup" =m

: )

0
p3/(E +m)

p3/(E£ +m)

(p1 — ipz)l/(E +m)

0 /

e Useful relations:

]b - p,ufyu

P or

2

uz(p) = VE +m

(z) = v(p) e P?

and p’ =

(

ﬁQ—I_mQ
0 \

(p1 —ip2)/(E +m)
—p3/(E +m)




Vector field A,(x)

* Under Lorentz transformation its transformation is
r— o't =A 1" — AH(")=A" A" (x)
« EOM 6’MFW =0 with FH*Y =9FAY — Y AH

* Lagrangian density [ = —i o B

e Invariance under A,(z) — A;L(ZE) =A,(x)+0,A

 Solutions

A, (z) :eg)eim" with p2=0 , pe¥) =0 , =12
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ll. Propagators

* The quadratic parts of the Lagrangian define the propagators

* Propagators are the inverse of the operators in the quadratic parts

1 |
L= o(-0,0" —m*)p = —— -..E....

direction of the arrow




* For massless vector fields we need to add a gauge fixing term
1 1 N g (L= A)pupy

[ = —— VFW/ 0. AF — % M
4~ " 2\ " : p? + i€ (p? + i€)?

TAVAVAVAY

* For a massive vector field

2 2
Py o Ly WY 9w~ PuPu/m
4" K D% —m? 4+ i




lll. Vertices

* The non quadratic part of the Lagrangian defines the vertices

* Each field gives rise to one line of the vertex

Example £ =yy"A, ¢ AVAVAVA

* Rules to determine the weight of a vertex

|. Start with a factor of |

2. To derivatives associate an incoming momentum 0J,, <> —ip,,

3. Remove fields and the remaining is a contribution to the weight
4.“daggers" lead to outgoing "arrows"
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IV. Feynman diagrams

* Draw all possible topologically distinct diagrams with the number of
external lines given by the number of incoming and outgoing
particles

* For each external line write

|. Real and complex scalars: 1

~

2. Incoming fermion line:

~d
=

3. Incoming anti-fermion line:

=g

4. Outgoing fermion line:
5. Outgoing anti-fermion line: v(p

6. Incoming neutral vector €, (p)

7. Outgoing vector particle € "(p)



* Write the contribution of a fermion line adding the elements going
in the opposite direction of the arrow

* For each fermion loop take the trace and multiply by -1

* Impose energy-momentum conservation in each vertex

d*p

(2m)*
* Multiply the contribution of each diagram by:

* For each momentum p not fixed add

|. A global minus sign for the external fermion lines if they are
exchanged with respect to the first diagram
2. The symmetry factor |/S where S is the number of permutations of

the internal lines and vertices leaving the diagram unchanged with the

external legs fixed.



V. Examples

¥ Scalar electrodynamics

1 1
L=—>F,F"
I 25

4
+ [(0y + ieAL) @] T[(0" + ieA)p] — m ¢!

(9, A")°

whose vertices are

o

o — = (¢Tp




¥ Electrodynamics

1 1
L=—"F,,FH"
I 25

; (0 A") + 1 (i) — e —m)

whose vertex is

—jeyH

¥ Mixing both models ete™ — stTs™

Y4

p1 P3¢’
,u yi' _ . _Zg 1 . 1Y
. ./\/l:vj(pZ)(_wVM/)uvk(pl) qzu —ie(p3 — pa)”]

D2 1 pzfr

3 spin
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¥ Vacuum polarization QED




Denner, Hahn, Kublbeck, PLB 291 (1992) 278

VI. Majorana fermions

» Let’s go out of the box: Majorana fermions ¢ = Cy! = ¢
* Consider the interaction L7 = yl'y = héchaFiXb(I)c

* Then write the interaction in terms of

X — C}ZT y >:< — _XTCT y F, — CFTCT

ni 1 forl; =1, 1ys, YuVs,

CI;’C™! = nI;

= —1 forl; = Y4, Ow,

'CI — >:<F/>~< — hzbcniibFiXa(I)c
* Obtain the Feynman rules for the two forms of the interaction
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* Feynman rules

|. Fermions are represented by solid lines. Dirac fermions carry an
arrow while Majorana ones don't.
2. Vertices are read of the two forms of the interaction " and T"

fermion number flow
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3. The propagators follow the following rule with respect to the

fermion number flow

o~ o tS(p)
o0 1.5(—p)

’ ‘ 15(p)

o— | -  —
> —> -  —
——y @ —— @  —
————— e ——— i et
——y 4@ ——e @ —@
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5. Draw all possible diagrams for a given process

6. Fix and arbitrary orientation (fermion flow) for each fermion chain
/. Follow the rules 2, 3 and 4 to write the fermion contributions

8. Multiply by (-1) each closed fermion loop

9. Consider the -1 factors associated to fermion permutations

|0. Majorana fermions behave like scalars and vectors to obtain the

combinatoric factors

L J @ L J o vy L))
Example e e @--»-° e e @--»-¢ e @--»-°
a‘0 z‘o lo
—— - -~ > - - Q- - » —— — — > -
‘I’b D, ‘I’b D, \i’b @,

IM = ——i'ﬁaE'S (pc ~ Da )I}ubhéachébd
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