

Lightning review of QFT

• Our goal: practical review of perturbation theory in QFT

- Wave equations
- Propagators
- Interactions/Vertices
- Feynman diagrams

I. Wave equations

Given a Lagrangian density the EOM is

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \varphi_{j}} \right) = \frac{\partial \mathcal{L}}{\partial \varphi_{j}}$$

for instance

$$\mathcal{L} = i\psi^* \partial_t \psi + \frac{1}{2m} \psi^* \nabla^2 \psi - V(\vec{x}) \psi^* \psi \implies i\partial_t \psi = -\frac{1}{2m} \nabla^2 \psi + V(\vec{x}) \psi$$

The Lagrangian must reflect the symmetries of the problem.

• A symmetry is a transformation that leaves the action invariant

$$x \to x'$$

 $\varphi_j(x) \to \varphi_j(x')$
 $\mathcal{L} \to \mathcal{L} + \partial_\mu \Lambda^\mu$

for instance
$$\mathcal{L}=i\psi^{\star}\partial_{t}\psi+\frac{1}{2m}\psi^{\star}\nabla^{2}\psi-V(\vec{x})\psi^{\star}\psi$$

is invariant under

$$x \to x' = x$$
 and $\psi \to \psi'(x') = e^{i\alpha}\psi(x)$

 Noether's theorem: for continuous symmetry there is a conserved current

$$x \to x'$$

$$\varphi_{j}(x) \to \varphi_{j}(x')$$

$$\mathcal{L} \to \mathcal{L} + \partial_{\mu}\Lambda^{\mu}$$

$$\delta\varphi_{j}(x) = \varphi'_{j}(x) - \varphi_{j}(x)$$

$$J_{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu}\varphi_{j}} \delta\varphi_{j} - \Lambda_{\mu}$$

$$\partial_{\mu}J^{\mu} = 0$$

for the Schrödinger field
$$J^{\mu}=\left(\psi^{\star}\psi,\frac{i}{2m}(\psi^{\star}\nabla\psi-\psi\nabla\psi^{\star})\right)$$

Real scalar field

• Under Lorentz transformation its transformation is

$$x \to x' \implies \phi'(x') = \phi(x)$$

• The relativistic free Lagrangian density is

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \ \partial^{\mu} \phi - \frac{m^2}{2} \phi^2$$

the EOM is

$$(\partial_{\mu}\partial^{\mu} + m^2)\phi = 0$$

with solutions

$$e^{\pm ipx}$$
 with $p_{\mu}p^{\mu}=m^2$

Complex scalar field

Under Lorentz transformation its transformation is

$$x \to x' \implies \phi'(x') = \phi(x)$$

• The relativistic free Lagrangian density is $\mathcal{L}=\partial_{\mu}\phi^{\star}~\partial^{\mu}\phi-m^{2}\phi^{\star}\phi$

the EOM is

$$(\partial_{\mu}\partial^{\mu} + m^2)\phi = 0$$

with solutions

$$e^{\pm ipx}$$
 with $p_{\mu}p^{\mu}=m^2$

conserved current

$$\phi(x) \to \phi'(x) = e^{i\alpha}\phi(x)$$

symmetry

$$J_{\mu} = \phi \partial_{\mu} \phi^{\star} - \phi^{\star} \partial_{\mu} \phi$$

Dirac field
$$\psi_j(x)$$
, $j=1-4$

Under Lorentz transformation its transformation is

$$x \to x' \implies \psi'(x') = S(\Lambda)\phi(x) \text{ with } S = e^{-\frac{i}{4}\omega_{\mu\nu}\Sigma^{\mu\nu}}$$

EOM

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$

$$\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}\quad \text{one representation}\quad \gamma^0=\left(egin{array}{cc} I & 0 \ 0 & -I \end{array}
ight)\quad \gamma^j=\left(egin{array}{cc} 0 & \sigma^j \ -\sigma^j & 0 \end{array}
ight)$$

• Lagrangian density
$${\cal L}= \bar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi$$

$$\bar{\psi} = \psi^{\dagger} \gamma^0$$

• Invariance under $\ \psi(x) \to \psi'(x) = \ e^{i\alpha} \psi(x) \implies J^\mu = \bar{\psi} \gamma^\mu \psi$

$$\implies J^{\mu} = \bar{\psi}\gamma^{\mu}\psi$$

• Free particle solutions $\ \psi(x)=u(p)\ e^{ipx}$ or $\psi(x)=v(p)\ e^{-ipx}$

$$p_{\mu}p^{\mu} = m^2$$
 and $p^0 = \sqrt{\vec{p}^2 + m^2}$

where

$$u_1(p) = \sqrt{E+m} \begin{pmatrix} 1 \\ 0 \\ p_3/(E+m) \\ (p_1 - ip_2)/(E+m) \end{pmatrix} \quad u_2(p) = \sqrt{E+m} \begin{pmatrix} 0 \\ 1 \\ (p_1 - ip_2)/(E+m) \\ -p_3/(E+m) \end{pmatrix}$$

$$v_1(p) = \sqrt{E+m} \begin{pmatrix} p_3/(E+m) \\ (p_1 - ip_2)/(E+m) \\ 1 \\ 0 \end{pmatrix} \quad v_2(p) = \sqrt{E+m} \begin{pmatrix} (p_1 - ip_2)/(E+m) \\ -p_3/(E+m) \\ 0 \\ 1 \end{pmatrix}$$

Useful relations:

Vector field $A_{\mu}(x)$

• Under Lorentz transformation its transformation is

$$x \to x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \implies A'^{\mu}(x') = \Lambda^{\mu}_{\ \nu} A^{\nu}(x)$$

- EOM $\partial_{\mu}F^{\mu\nu} = 0$ with $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$
- Lagrangian density ${\cal L} = -rac{1}{4} F_{\mu
 u} F^{\mu
 u}$
- Invariance under $A_{\mu}(x) \rightarrow A'_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}\Lambda$

Solutions

$$A_{\mu}(x) = \epsilon_{\mu}^{(j)} e^{ipx}$$
 with $p^2 = 0$, $p\epsilon^{(j)} = 0$, $j = 1, 2$

II. Propagators

- The quadratic parts of the Lagrangian define the propagators
- Propagators are the inverse of the operators in the quadratic parts

$$\mathcal{L} = \frac{1}{2}\phi(-\partial_{\mu}\partial^{\mu} - m^{2})\phi \quad \Longrightarrow \quad \frac{i}{p^{2} - m^{2} + i\epsilon} \qquad \qquad \blacksquare$$

$$\mathcal{L} = \phi^*(-\partial_\mu \partial^\mu - m^2)\phi \quad \Longrightarrow \quad \frac{i}{p^2 - m^2 + i\epsilon}$$

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi \quad \Longrightarrow \quad \frac{i}{\not \!\!\!/ - m + i\epsilon}$$

· For massless vector fields we need to add a gauge fixing term

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\lambda} \partial_{\mu} A^{\mu} \quad \Longrightarrow \quad -i \left[\frac{g_{\mu\nu}}{p^2 + i\epsilon} - \frac{(1 - \lambda)p_{\mu}p_{\nu}}{(p^2 + i\epsilon)^2} \right]$$

• For a massive vector field

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{m^2}{2}A_{\mu}A^{\mu} \implies -i\frac{g_{\mu\nu} - p_{\mu}p_{\nu}/m^2}{p^2 - m^2 + i\epsilon}$$

III. Vertices

- The non quadratic part of the Lagrangian defines the vertices
- Each field gives rise to one line of the vertex

Example
$$\mathcal{L} = \bar{\psi} \gamma^{\mu} A_{\mu} \psi$$

- Rules to determine the weight of a vertex
 - I. Start with a factor of i
 - 2. To derivatives associate an incoming momentum $\;\partial_{\mu} \leftrightarrow -ip_{\mu}\;$
 - 3. Remove fields and the remaining is a contribution to the weight
 - 4. "daggers" lead to outgoing "arrows"

III. Vertices

- The non quadratic part of the Lagrangian defines the vertices
- Each field gives rise to one line of the vertex

Example
$$\mathcal{L} = \bar{\psi} \gamma^{\mu} A_{\mu} \psi$$

- Rules to determine the weight of a vertex
 - I. Start with a factor of i
 - 2. To derivatives associate an incoming momentum $\;\partial_{\mu} \leftrightarrow -ip_{\mu}\;$
 - 3. Remove fields and the remaining is a contribution to the weight
 - 4. "daggers" lead to outgoing "arrows"

IV. Feynman diagrams

- Draw all possible topologically distinct diagrams with the number of external lines given by the number of incoming and outgoing particles
- For each external line write
 - I. Real and complex scalars: 1
 - 2. Incoming fermion line: u(p)
 - 3. Incoming anti-fermion line: $\bar{v}(p)$
 - 4. Outgoing fermion line: $\bar{u}(p)$
 - 5. Outgoing anti-fermion line: v(p)
 - 6. Incoming neutral vector $\epsilon^{\mu}_{\lambda}(p)$
 - 7. Outgoing vector particle $\epsilon_{\lambda}^{\mu \star}(p)$

- Write the contribution of a fermion line adding the elements going in the opposite direction of the arrow
- For each fermion loop take the trace and multiply by I
- Impose energy-momentum conservation in each vertex
- For each momentum p not fixed add $\frac{d^4p}{(2\pi)^4}$
- Multiply the contribution of each diagram by:
- I. A global minus sign for the external fermion lines if they are exchanged with respect to the first diagram
- 2. The symmetry factor I/S where S is the number of permutations of the internal lines and vertices leaving the diagram unchanged with the external legs fixed.

V. Examples

****** Scalar electrodynamics

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} \right)^{2}$$

$$+ \left[\left(\partial_{\mu} + ieA_{\mu} \right) \varphi \right]^{\dagger} \left[\left(\partial^{\mu} + ieA^{\mu} \right) \varphi \right] - m^{2} \varphi^{\dagger} \varphi - \frac{\lambda}{4} \left(\varphi^{\dagger} \varphi \right)^{2}$$

whose vertices are

$$-i\lambda$$
 $q \longrightarrow q'$
 p'

$$-ie(p+p')_{\mu}$$

$$2ie^2g_{\mu\nu}$$

***** Electrodynamics

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2\xi} \left(\partial_{\mu}A^{\mu}\right)^{2} + \bar{\psi} \left(i\partial \!\!\!/ - eA\!\!\!/ - m\right)\psi$$

whose vertex is

$$-ie\gamma^{\mu}$$
 $\sim\sim\sim$

****** Mixing both models
$$e^+e^- \rightarrow s^+s^-$$

** Vacuum polarization QED

$$-\int \frac{d^4q}{(2\pi)^4} \operatorname{Tr} \left[(-ie\gamma^{\mu}) \frac{i}{\not q - m} (-ie\gamma^{\nu}) \frac{i}{\not q + \not p - m} \right]$$

VI. Majorana fermions

- Let's go out of the box: Majorana fermions $\;\psi^c\equiv C\bar{\psi}^T=\psi$
- Consider the interaction $\mathcal{L}_I = \bar{\chi} \Gamma \chi = h^i_{abc} \bar{\chi}_a \Gamma_i \chi_b \Phi_c$
- Then write the interaction in terms of

$$\tilde{\chi} = C\bar{\chi}^T$$
 , $\bar{\tilde{\chi}} = -\chi^T C^{\dagger}$, $\Gamma' = C\Gamma^T C^{\dagger}$

$$\eta_i = 1 \quad \text{for } \Gamma_i = 1, \, i\gamma_5, \, \gamma_\mu \gamma_5,$$

$$C\Gamma_i^{\text{T}} C^{-1} = \eta_i \Gamma_i$$

$$= -1 \quad \text{for } \Gamma_i = \gamma_\mu, \, \sigma_{\mu\nu},$$

$$\mathcal{L}_{I} = \bar{\tilde{\chi}} \Gamma' \tilde{\chi} = h_{abc}^{i} \eta_{i} \bar{\tilde{\chi}}_{b} \Gamma_{i} \tilde{\chi}_{a} \Phi_{c}$$

Obtain the Feynman rules for the two forms of the interaction

- Feynman rules
- I. Fermions are represented by solid lines. Dirac fermions carry an arrow while Majorana ones don't.
- 2. Vertices are read of the two forms of the interaction Γ and Γ'

3. The propagators follow the following rule with respect to the fermion number flow

4. The initial state obey the rule:

- 5. Draw all possible diagrams for a given process
- 6. Fix and arbitrary orientation (fermion flow) for each fermion chain
- 7. Follow the rules 2, 3 and 4 to write the fermion contributions
- 8. Multiply by (-1) each closed fermion loop
- 9. Consider the -I factors associated to fermion permutations
- 10. Majorana fermions behave like scalars and vectors to obtain the combinatoric factors

Example

$$i\mathcal{M} = -i\overline{v}_a \Gamma_i' S(p_c - p_a) \Gamma_j u_b h_{eac}^i h_{ebd}^j$$