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The Hat Matrix in Regression and ANOVA
DAVID C. HOAGLIN AND ROY E. WELSCH*

1. Introduction

2. Basic Properties

which summarizes the dependence of the response Y

* David C. Hoaglin is Senior Analyst, Abt Associates, 55
Wheeler Street, Cambridge, MA 02138, and Research Associate,
Department of Statistics, Harvard University, Cambridge, MA
02138. Roy E. Welsch is Associate Professor of Operations Re
search and Management, Sloan School of Management, Massachu
setts Institute of Technology, Cambridge, MA 02139. This work
was supported in part by NSF Grant SOC75-15702 to Harvard
University and by NSF Grant 76-14311 DSS to the National
Bureau of Economic Research.

(2.4)

(2.5)

var(y) = erH,

vanr) = er(I - H).

For the data analyst, the element hij of H has a
direct interpretation as the amount of leverage or
influence exerted on Yi by Yj (regardless of the actual
value of Yj, since H depends only on X). Thus a look
at the hat matrix can reveal sensitive points in the
design, points at which the value of y has a large
impact on the fit (Huber 1975). In using the word
"design" here, we have in mind both the standard
regression or ANOVA situation, in which the values
of Xl' ... , Xp are fixed in advance, and the situation
in which y and Xl' ... ,Xp are sampled together. The
simple designs, such as two-way analysis of variance,
give good control over leverage (as we shall see in
Section 3); and with fixed X one can examine, and
perhaps modify, the experimental conditions in ad
vance. When the carriers are sampled, one can at
least determine whether the observed X contains
sensitive points and consider omitting them if the
corresponding y value seems discrepant. Thus we use
the hat matrix to identify "high-leverage points." If
this notion is to be really useful, we must make it
more precise.

The influence of the response value Yi on the fit is
most directly reflected in its leverage on the corre-

on the carriers Xl' ... , Xp in terms of the data
values Yi and Xii' ••• , xip for i = 1, ... , n. (We
refrain from thinking of Xl' ... , Xp as independent
variables because they are often not independent in
any reasonable sense.) In fitting the model (2.1) by
least squares (assuming that X has rank p and that
E(e) = 0 and varte) = erIn ) , we usually obtain the
fitted or predicted values from y = Xb, where b =

(XTXtlXTy. From this it is simple to see that

y = X(XTX)-lXTy . (2.2)

To emphasize the fact that (when Xis fixed) each y, is
a linear function of the Yj, we write (2.2) as

y = Hy, (2.3)

where H = X(XTX)-lXT. The n x n matrix H is
known as the hat matrix simply because it maps y
into y. Geometrically, if we represent the data vector
y and the columns of X as points in euclidean n space,
then the points XfJ (which we can obtain as linear
combinations of the column vectors) constitute a p
dimensional subspace. The fitted vector y is the point
of that subspace nearest to y, and it is also the
perpendicular projection of y into the subspace. Thus
H is a projection matrix. Also familiar is the role
which H plays in the covariance matrices of y and of
r = y - y:

(2.1)y=XfJ+e,
nXI nxp pXl nXl

We are concerned with the linear model

In least-squares fitting it is important to understand the influence
which a data y value will have on each fitted y value. A projection
matrix known as the hat matrix contains this information and,
together with the Studentized residuals, provides a means of
identifying exceptional data points. This approach also simplifies
the calculations involved in removing a data point, and it requires
only simple modifications in the preferred numerical least-squares
algorithms.

KEY WORDS; Analysis of variance; Regression analysis; Projec
tion matrix; Outliers; Studentized residuals; Least-squares compu
tations.

In fitting linear models by least squares it is very
often useful to determine how much influence or
leverage each data Y value (Yj) can have on each fitted
Y value (9'i)' For the fitted value »i corresponding to
the data value Yi' the relationship is particularly
straightforward to interpret, and it can reveal multi
variate outliers among the carriers (or x variables)
which might otherwise be difficult to detect. The
desired information is available in the hat matrix,
which gives each fitted value »i as a linear combina
tion of the observed values Yj' (The term "hat ma
trix" is due to John W. Tukey, who introduced us to
the technique about ten years ago.) The present
article derives and discusses the hat matrix and gives
an example to illustrate its usefulness.

Section 2 defines the hat matrix and derives its
basic properties. Section 3 formally examines two
familiar examples, while Section 4 'gives a numerical
example. In practice one must, of course, consider
the actual effect of the data Y values in addition to
their leverage; we discuss this in terms of the resid
uals in Section 5. Section 6 then sketches how the hat
matrix can be obtained from two accurate numerical
algorithms used for solving least-squares problems.
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and it is immediately clear that 0 :::; hii :::; 1. These
limits are helpful in understanding and interpreting
hii , but they do not yet tell us when hii is large. We
know, however, that the eigenvalues of a projection
matrix are either zero or one and that the number of
nonzero eigenvalues is equal to the rank of the
matrix. In this case, rank(H) = rank(X) = p, and
hence trace(H) = p ; i.e.,

The average size of a diagonal element of the hat
matrix, then, is pin. Experience suggests that a
reasonable rule of thumb for large hi is hi > Lpln:
Thus we determine high-leverage points by looking at
the diagonal elements of H and paying particular
attention to any x point for which hi > 2p/n. Usually
we treat the n values hi as a batch of numbers and
bring them together in a stem-and-leaf display (as we
shall illustrate in Section 4). For a more refined
screening when the model includes the constant car
rier and the rows of X are sampled from a (p - 1)
variate Gaussian distribution, we could use the fact
that (for any single hi) [en - p )(hi - 1/n)]/[(p - 1)(1
- h,)] has an F distribution on p - 1 and n - p

degrees of freedom.
From (2.6), we can also see that whenever hii = 0

or h,i = 1, we have hij = 0 for all j =1= i, These two
extreme cases can be interpreted as follows. First, if
hii = 0, then y, must be fixed at zero by design-it is
not affected by Yi or by any other Yj' A point with x =

owhen the model is a straight line through the origin

(3.2)

l =1=j;

k =1= i;

k =1= i, l =1= j.

)lij = Yi· + y.j - y..

hij,ij = l/C + (l/R) - (l/RC) = (R + C - l)/RC;

(3.3)

(3.4)

(3.5)

(3.6)

hij,il = (R - l)/RC,

hij,kj = (C - l)/RC,

hij,kl = -(l/RC),

To illustrate the hat matrix and develop our intui
tion, we begin with two familiar examples in which
the calculations can be done by simple algebra.

The usual regression line,

3. Formal Examples

and a few steps of algebra give

provides a simple example. Second, when hii = 1, we
have )Ii = Yi-the model always fits this data value
exactly. In effect, the model dedicates a parameter to
this particular observation (as is sometimes done
explicitly by adding a dummy variable to remove an
outlier).

Now that we have developed the hat matrix and a
number of its properties, we turn to three examples,
two designed and one sampled. We then discuss (in
Section 5) how to handle Yi when hii indicates a high
leverage point.

has

Next we examine the relationship between struc
ture and leverage in a simple balanced design: a two
way table with R rows and C columns and one
observation per cell. (Behnken and Draper (1972)
discuss variances of residuals in several more compli
cated designs. It is straightforward to find H through
(2.5).) The usual model for the R x C table is

Yij = P, + a; + f3j + ~j,

with the constraints al + ... + an = 0 and f3l + ...
+ f3c = 0; here n = RC and p = R + C - 1. We
could, of course, write this model in the form of (2.1),
but it is simpler to preserve the subscripts i and j and
to denote an element of the hat matrix as hij,kl' When
we recall that

(a dot in place of a subscript indicates the average
with respect to that subscript), it is straightforward to
obtain

From (3.3) we see that all the diagonal elements of H
are equal, as we would expect in a balanced design.
Further, (3.3) through (3.6) show that )Iii will be
affected by any change in Ykl for any values of k and l.

(2.6)

(2.7)
n

~ hi =p.
i=l

n

hii = ~ hi] = hi~ + ~ hi~'
j=l j~i

sponding fitted value Yi' and this is precisely the
information contained in hii , the corresponding diago
nal element of the hat matrix. We can easily imagine
fitting a simple regression line to data (Xi' Yi)' making
large changes in the Y value corresponding to the
largest X value, and watching the fitted line follow
that data point. In this one-carrier problem or in a
two-carrier problem a scatter plot will quickly reveal
any X outliers, and we can verify that they have
relatively large diagonal elements hii . When p > 2,
scatter plots may not reveal multivariate outliers,
which are separated in p space from the bulk of the x
points but do not appear as outliers in a plot of any
single carrier or pair of carriers, and the diagonal of
the hat matrix is a source of valuable diagnostic
information. In addition to being somewhat easier to
understand, the diagonal elements of H can be less
trouble to compute, store, and examine, especially if
n is moderately large. Thus attention focuses primar
ily (often exclusively) on the hii , which we shall
sometimes abbreviate hi' We next examine some of
their properties.

As a projection matrix, H is symmetric and
idempotent (H2 = H), as we can easily verify from
the definition following (2.3). Thus we can write

18 © The American Statistician, February 1978, Vol. 32, No.1
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4. A Numerical Example Moisture
content
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7 10
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9

Specific gravity

Figure A. The Two Carriers for the Wood Beam Data (Plotting
symbol is beam number.).

I. Data on Wood Beams

In this section we examine the hat matrix in a
regression example, emphasizing (either here or in
Section 5) the connections between it and other
sources of diagnostic information. We use a ten-point
example, for which we can easily present H in full. In
a larger data set, we would generally work with only
the diagonal elements, hi' Welsch and Kuh (1977)
discuss a larger example.

The data for this example come from Draper and
Stoneman (1966); we reproduce it in Table 1. The
response is strength, and the carriers are the con
stant, specific gravity, and moisture content. To
probe the relationship between the nonconstant car
riers, we plot moisture content against specific grav
ity (Figure A). In this plot, point 4, with coordinates
(0.441, 8.9), is to some extent a bivariate outlier (its
value is not extreme for either carrier), and we should
expect it to have substantial leverage on the fit.
Indeed, if this point were absent, it would be consid
erably more difficult to distinguish the two carriers.

beam specific moisture
number gravity content strength

1 0.499 11.1 11.14
2 0.558 8.9 12.74
3 0.604 8.8 13.13
4 0.441 8.9 11. 51
5 0.550 8.8 12.38
6 0.528 9.9 12.60
7 0.418 10.7 11.13
8 0.480 10.5 11. 70
9 0.406 10.5 11. 02

10 0.467 10.7 11. 41

The hat matrix for this X appears in Table 2, and a
stem-and-Ieaf display (Tukey 1972b, 1977) of the
diagonal elements (rounded to multiples of .01) is as
follows:

o
I 559
2 456
3 2
4 22
5
6 0

We note that h4 is the largest diagonal element and
that it just exceeds the level (2p/n = 6/10) set by our
rough rule of thumb. Examining H element by ele
ment, we find that it responds to the other qualitative
features of Figure A. For example, the relatively high
leverage of points I and 3 reflects their position as
extremes in the scatter of points. The moderate
negative value of h1,4 is explained by the positions of
points 1 and 4 on opposite sides of the rough sloping
band where the rest of the points lie. The moderate
positive values of h1.8 and hu o show the mutually
reinforcing positions of these three points. The cen
tral position of point 6 accounts for its low leverage.
Other noticeable values of hij have similar explana
tions.

Having identified point 4 as a high-leverage point in
this data set, it remains to investigate the effect of its
position and response value on the fit. Does the
model fit well at point 4, or should this point be set
aside? We turn to these questions next.

2. The Hat Matrix for the Wood Beam Data (lower triangle omitted by symmetry)

j

i 1 2 3 4 5 6 7 8 9 10

1 .418 -.002 .079 -.274 -.046 .181 .128 .222 .050 .242
2 .242 .292 .136 .243 .128 -.041 .033 -.035 .004
3 .417 -.019 .273 .187 -.126 .044 -.153 .004
4 .604 .197 -.038 .168 -.022 .275 -.028
5 .252 .111 -.030 .019 -.010 -.010
6 .148 .042 .117 .012 .111
7 .262 .145 .277 .174
8 .154 .120 .168
9 .315 .148

10 .187
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(5.2)

5. Bringing in the Residuals

So far we have examined the design matrix X for
evidence of points where the data value Y has high
leverage on the fitted value y. If such influential
points are present, we must still determine whether
they have had any adverse effects on the fit. A
discrepant value of Y, especially at an influential
design point, may lead us to set that entire observa
tion aside (planning to investigate it in detail sepa
rately) and refit without it, but we emphasize that
such decisions cannot be made automatically. As we
can see for the regression line, with hij given by (3.1),
the more extreme design points generally provide the
greatest information on certain coefficients (in this
case, the slope), and omitting such an observation
may substantially reduce the precision with which we
can estimate those coefficients. If we delete row i,
that is, X; = (Xi!' .•• , XiP)' from the design matrix X
and denote the result by Xri), then (Rao 1965, p. 29),
except for the constant factor cr, the covariance
matrix of b is

(X~)X(i))-l = (XTX)-l (5.l)
+ (X TX)- lx?xi(XTX)-l/(1 - hi)'

The presence of (1 - hi) in the denominator shows
how removing a high-leverage point may increase the
variance of coefficient estimates. Alternatively, the
accuracy of the apparently discrepant point may be
beyond question, so that dismissing it as an outlier
would be unacceptable. In both these situations,
then, the apparently discrepant point may force us to
question the adequacy of the model.

In detecting discrepant y values, we always exam
ine the residuals, ri = Yi - Yi, using such techniques
as a scatterplot against each carrier, a scatterplot
against Y, and a normal probability plot. (Anscombe
(1973) has discussed and illustrated some of these.)
When there is substantial variation among the hi
values, (2.5) indicates that we should allow for differ
ences in the variances of the r, (Anscombe and Tukey
1963) and look at ri / (1 - hi)l/2. This adjustment puts
the residuals on an equal footing, but it is often more
convenient to use the standardized residual, ri/(s(1 
hi)l/~, where S2 is the residual mean square.

For diagnostic purposes, we would naturally ask
about the size of the residual corresponding to Yi
when data point i has been omitted from the fit. That
is we base the fit on the remaining n - 1 data points
and then predict the value for Yi' This residual is Yi 
XiP(i) , where p(i) is the least-squares estimate of f3
based on all the data except data point i. (These
residuals are also the basis of Allen's (1974) PRESS
criterion for selecting variables in regression.) Simi
larly sf;) is the residual mean square for the "not-i"
fit and the standard deviation of Yi - XiPii) is esti
m~ted by S(i)[l + Xi (X{;)X(o)-1x?J1/2. We now define the
Studentized residual:

* _ Yi - XiP(i)

ri - s(i)[l + Xi(XTi)XrO) lX?]1/2'

Since the numerator and denominator in (5.2) are
independent, ri* has a t distribution on n - p - 1
degrees of freedom, and we can readily assess the
significance of any single Studentized residual. (Of
course, ri* and r/ will not be independent.) In
actually calculating the Studentized residuals we can
save a great deal of effort by observing that the
quantities we need are readily available. Straightfor
ward algebra using (5.1) turns (5.2) into

ri* = ri/(s(i)(l - hi)l/2), (5.3)

and we can obtain S(i) from

(n - p - l)sf;) = (n - p)S2 - r/j(l - hi)' (5.4)

Once we have the diagonal elements of H, the rest is
simple.

Our diagnostic strategy, then, is to examine the hi
for high-leverage design points and the ri * for discre
pant Y values. These two aspects of the search for
troublesome data points are complementary; neither
is sufficient by itself. When hi is small, r;* may be
large because ri is large, but the impact of Yi on the fit
or on the coefficients may be minor. And when hi is
large, ri* may still be moderate or small because Yi is
consistent with the model and the rest of the data.

Just how to combine the information from hi and ri*
is a matter of judgment. We prefer the more detailed
grasp of the data which comes from looking at the hi
and the ri* separately. For diagnostic purposes, a
practice which we recommend is to tag as exceptional
any data point for which hi or ri* is significant at the
10 percent level. To decide whether an exceptional
point is actually damaging, one would then use a
criterion which is appropriate in the context of the
data. Two likely criteria are the change in coeffi
cients, P - P(i), easily calculated from

{J = {J(i) = (xTX)-lX;Tr;/(1 - hi); (5.5)

and the change in fit at point i, Xi({J - {J(i))' which
simply reduces to hiri/(1 - hi)' (The size of such
changes would customarily be compared to some
suitable measure of scale.) For both of these criteria
it is easy to determine the effect of setting aside an
exceptional point without recalculation.

To continue our diagnosis of the wood beam exam
ple, we plot strength against specific gravity in Figure
B and strength against moisture content in Figure C.
With the exception of beam 1, the first of these looks
quite linear and well-behaved. In the second plot we
see somewhat more scatter, and beam 4 stands apart
from the rest. Table 3 gives r., (1 - hi )1 /2, s(ij, and the
Studentized residuals ri* . Among the r;*, beam 1
appears as a clear stray (p < .02), and beam 6 also
deserves attention (p < .1). Since beam 4 is known to
have high leverage (hi = .604), we continue to investi
gate it.

The fit for the full data is

Y = 10.302 + 8.495(SG) - 0.2663(MC), (5.6)

with S = 0.2753; and when we set aside beams 1, 4,

20 © The American Statistician, February 1978, Vol. 32, No.1
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3. Studentized Residuals and Related Quantities for
the Wood Beam Data

(l-h. )1/2 "i r. h. s(i) r.
1- 1- 1- 1-

1 -.444 .418 .763 .179 -3.254
2 .069 .242 .871 .296 .267
3 .041 .417 .764 .297 .182
4 -.167 .604 .629 .277 -.961
5 -.250 .252 .865 .273 -1.058
6 .450 .148 .se s .221 2.203
7 .127 .262 .859 .291 .509
8 .117 .154 .920 .293 .436
9 .066 .315 .828 .296 .270

10 -.009 .187 .902 .298 -.033

8

12

5

4

3

beam 6. Dividing each of these by the estimated
standard error of Yi (sVll; from (2.4» yields -1.790,
-1.196, and 0.737, respectively. On the whole these
are not as substantial as the coefficient changes, but
beam 1 and (to a lesser extent) beam 4 are still fairly
damaging.

We have used two sources of diagnostic informa
tion, the diagonal elements of the hat matrix and the
Studentized residuals, to identify data points which
may have an unusual impact on the results of fitting
the linear model (2.1) by least squares. We must
interpret this information as clues to be followed up
to determine whether a particular data point is discre
pant, but not as automatic guidance for discarding
observations. Often the circumstances surrounding
the data will provide explanations for unusual behav
ior, and we will be able to reach a much more
insightful analysis. Judgment and external sources of
information can be important at many stages. For
example, if we were trying to decide whether to
include moisture content in the model for the wood
beam data (the context in which Draper and Stone
man (1966) introduced this example), we would have
to give close attention to the effect of beam 4 on the
correlation between the carriers as well as the corre
lation between the coefficients. Such considerations
do not readily lend themselves to automation and are
an important ingredient in the difference between
data analysis and data processing (Tukey 1972a).

.6

7
9

10

7
9

.4

11

11

4

8

Strength

10

2

6

13

.5
Specific gravity

Figure B. Strength versus Specific Gravity for the Wood Beam
Data (Plotting symbol is beam number.).

(6.1)X = Q R,
nxp nXn nxp

(with Q an orthogonal transformation and R [.IF,

Since we find the hat matrix (at least the diagonal
elements hi) a very worthwhile diagnostic addition to
the information usually available in multiple regres
sion, we now briefly describe how to obtain H from
the more accurate numerical techniques for solving
least-squares problems. Just as these techniques pro
vide greater accuracy by not forming XTX or solving
the normal equations directly, we do not calculate H
according to the definition.

For most purposes the method of choice is to
represent X as

6. Computation

119 10
Moisture content

Figure c. Strength versus Moisture Content for the Wood Beam
Data (Plotting symbol is beam number.).

and 6 in turn, we find {J - {J(i) to be (2.710, -1.772,
-0. 1932)T, (-2.109, 1.695, O.1242)T, and (-0.642,
0.748, 0.0329)T, respectively. The estimated standard
errors for f3o, f3b and f32 are 1.896, 1.784, and 0.1237,
so that setting aside either beam 1 or beam 4 causes
each coefficient to change by roughly 1.0 to 1.5 in
standard-error units. Thus we should be reluctant to
include these data points. By comparison, removing
beam 6 leads to changes only about 25 percent as
large.

Similarly, the change in fit at point i, Xi(J3 - P(i)' is
-0.319 for beam 1, -0.256 for beam 4, and 0.078 for
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[Received October 18. 1976. Revised June 9. 1977.]

where UTU = Ip , l is diagonal, and V is orthogonal.
If this more elaborate approach is used (e.g., when X
might not be of full rank), we can calculate the hat
matrix from

These and other decompositions are discussed by
Golub (1969). For a recent account of numerical
techniques in solving linear least-squares problems,
we recommend the book by Lawson and Hanson
(1974).

With a modest increase in computation cost, a simple
modification of the basic algorithm yields H as a by
product. If n is large, we can arrange to calculate and
store only the hi'

Finally we mention the singular-value decomposi
tion,
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H = uur.

x = U l vr,
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O'l'J T, where R is p x p upper triangular) and obtain Q
as a product of Householder transformations. Substi
tuting (6.1) and the special structure of R into the
definition of H, we see that

H=Q[~ ~]QT.
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