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A discussion of the above equation with no harvesting where K =  K(t) was also periodic 
(corresponding to a fluctuating environment) was given by B. D. Coleman, Y. Hsieh, and G. P. 
Knowles in 121. See also 17 for a more simplified analysis including harvesting. 

EXAMPLE2. The following model for populations of the North American spruce budworm was 
given by D. Ludwig, D. D. Jones, and C. S. Holling [3]: 

The second term on the right side of equation (3) models predation by birds and in the absence of 
predation, the growth is assumed to be logistic. If additional periodic harvesting (say, due to 
seasonal spraying) were to occur, then the equation would be of the form (1). 

In this case 

For x >, 0, g"(x) will be negative if r/K -B/4a2 > 0, and there will be at most two periodic 
solutions. For appropriate values of the constants there will be a stable equilibrium point x, 
satisfying K/2 < x, < K when there is no periodic harvesting-this can be easily seen by graphing 
the two expressions comprising the right hand side of the differential equation. Under small 
amplitude periodic harvesting, the equilibrium point will become a periodic solution. 
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The Maximum Brightness of Venus 

DENNISWILDFOGEL 
Stockton State College 

Pomona, NJ 08240 

Even a casual observer may notice that the planet Venus, at times the dominant object in the 
evening sky, appears noticeably brighter at some times than at others. While reading a book on 
popular astronomy 141one day, I came across the statement (with little explanation) that Venus is 
at its brightest when the illuminated portion of the apparent disk of the planet is 28% of the 
whole. Could that fact, I wondered, be determined theoretically? If you reflect for a moment, as I 
did, on the relative positions of the Earth, Venus and the Sun at various times, you should be able 
to see that, apart from the observer's local conditions, the brightness of Venus depends primarily 
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on two factors: the apparent size of its disk as seen from Earth, and the fraction of that disk which 
is illuminated by the Sun's light. Furthermore, those two factors work in opposition: when Venus 
is closest to Earth, so that its apparent size is greatest, it is then between the Sun and the Earth, so 
that its illuminated hemisphere is turned away from us; when Venus is fully illuminated from our 
vantage point, it is on the far side of the Sun and its apparent size is at a minimum (see FIGURE1). 
"Aha!" I thought to myself, "a perfect first-year Calculus maximum/minimum problem!" Indeed, 
I subsequently used the problem as an end-of-the-term group modeling project, as described in 
[Ill .  

Before solving t h s  problem, let me state it in astronomical terminology. Consider the 
Earthward-facing hemisphere of a planet or moon. As seen from the Earth, that hemisphere 
appears as a disk. The fraction of the area of that disk which is illuminated by the Sun's light at a 
given moment is called the phase. The elongation of a planet viewed from Earth is the size of the 
angle Sun-Earth-planet. In books and magazines on popular astronomy (e.g., [9]), tables giving 
phases and elongations are common. Thus our problem may be stated as follows: 

Find the phase and elongation of Venus at the moment it reaches maximum 
brightness. 

I will begin by assuming that Venus and Earth move in circular orbits with the Sun at the 
center of each circle. Of course a planet actually moves in what is essentially an ellipse with the 
Sun at one focus. But the eccentricity of the Earth's orbit is only .017, and that of Venus' is ,007. 
Thus, for example, the difference between the semi-major and semi-minor axes of the Earth's orbit 
is only about 13,000 miles out of some 93,000,000-an excellent approximation to a circle! The 
Sun is about one and a half million miles from the center of this near circle, but that is still less 
than 2% of the semi-major axis. 

(A) Venus close to earth 
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(B) Venus far from Earth: 

Telescopic view of 
Venus from Earth 

FIGURE1. Highly schematic views of the relative positions of Earth ( E ) ,Venus (V),  and the Sun (S)as seen from 
above the plane of the Earth's orbit. Representations of the appearance of Venus as viewed from Earth in a telescope 
appear at the right. 
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Sun Earth 

FIGURE2. Highly schematic view from above the plane of the solar system. 

I will also assume that the orbits of the planets are coplanar. The orbital plane of Venus is 
actually inclined by 3O to that of the Earth. One consequence of thls is that since the angular size 
of the Sun as seen from the Earth is 4", Venus rarely passes directly in front of (a transit) or 
behind (an occultation) the Sun. For our purposes, however, the very slight inclination makes 
extremely little difference in the distance between Earth and Venus. For example, should Venus 
happen to be at its maximum height above the Earth's orbital plane at the same moment that it is 
at its closest approach, then the difference between its actual distance and its distance calculated 
as if it were in the same plane is only about 250,000 miles out of some 24 million, i.e., about 1%. 
Thus we may safely assume that Venus and Earth orbit in the same plane. 

Let R denote the (fixed, by assumption) distance from the Earth to the Sun, r the distance from 
Venus to the Sun, and A the distance from the Earth to Venus (see FIGURE 2). Since the apparent 
diameter of Venus is essentially inversely proportional to A, the apparent area of Venus, and 
hence its brightness (or luminosity), is inversely proportional to A2. Thus if L denotes the 
luminosity of Venus and p that planet's phase, then the remarks in the first paragraph may be 
expressed as 

L = k - ,P 
A2 

where k is a constant of proportionality. 
If we could now obtain A as a function ofp,  we could then differentiate L with respect top  and 

obtain the desired result, namely, the value of p which maximizes L. However, A turns out to be a 
rather ugly function o fp ,  so instead we will obtainp as a function of A and first maximize L with 
respect to A. 

The curve whch marks the boundary of the lit and unlit portions of Venus (or of any planet or 
moon) is called the terminator. The terminator is always a great circle. (By the way, Venus is 
virtually a perfect sphere, as are Mercury and the Moon.) As viewed from Earth, though, the 
terminator is seen projected onto a plane perpendicular to the line from Earth to Venus and thus 
appears as half of an ellipse. In FIGURE 3, this projection is represented by the arc NAS.  The angle 
Sun-Venus-Earth, whch is denoted by + in FIGURE 2, is the angle FCC' in FIGURE 4. Then the 
angle A ' U  in FIGURE 4 is a -+ and so A C  = p cos(a -+), where p is the radius of Venus. 

Now the area of the half-ellipse NASCN (FIGURE 3) is 

so the area of the crescent NDSAN is 
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FIGURE3. "View" from Earth. Cross-section of Venus outlined by the great circle perpendicular to the line from 
Earth to Venus. The arc NAS is the projection of the terminator on this cross-section. The points A and C are in the 
interior of Venus and not actually visible from Earth. The points D, A ,  C, and E appear again in FIGURE 4. 

Thus the phase of Venus is given by 

I have derived the expression for p for a "crescent" Venus (@ > m/2). The reader should check 
that the expression is still valid for a "gibbous" Venus (@ < 7/2) even though the derivation has 
to be modified slightly. 

To get p as a function of A, apply the law of cosines to the triangle Sun-Venus-Earth (see 
FIGURE2) to get 

R~ = A2 + r 2- 2rAcos @, 

A2 + r2- R~ 
cos @ = 

2 rA 

FIGURE4. "View" from above. Cross-section of Venus outlined by the great circle parallel to the plane of the Earth's 
orbit. The line DCE (which is interior to the planet and not actually visible to an observer) is the intersection of the 
plane of FIGURE 3 with this cross-section. 
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and 

We can now express the luminosity of Venus as a function of A as follows: 

where K is the constant k / 4 r .  Then 

and so d L / d A  =0 if and only if A2 + 4rA + 3( r2- R 2 )= 0. The roots of the quadratic are 

A =  - 2 r i  4 7 7 5 .  
The negative value for A is clearly physically unacceptable. Thus the value A ,v = -2 r + \lr2+ 3 R 2  
is the only candidate for a relative extreme for L as a function of A. It is not hard to see (by, for 
example, factoring the quadratic) that the sign of d L / d A  is opposite to that of the factor 
A - \lr + 3R'
 ,,A>Aand decreasing for A ,<Ais an increasing function for LThusr.2+ and 
so A ,  is indeed a relative maximum. 

Note that the only physically acceptable values for A are those in the interval [ IR- rl, R + r ] .  
Does A ,  fall in t h s  interval? It is a straightforward exercise in inequalities to show that if R > r ,  
then A,> R - r ,  but that A,< R + r if and only if r / R  > 1/4.  If r / R  > 1 (i.e., r > R ) ,  then 
A ,  < 0. For the case of observing Venus from Earth, r / R  does satisfy 1 / 4  < r / R  < 1,  so A ,  is in 
[ R- r ,  R + r ] .  

We should also like the model developed here to be applicable to other planets, e.g., Venus 
viewed from Jupiter, Mars viewed from Earth, etc. In general, then, R would represent the 
distance from the Sun to the observer's planet and r the distance from the Sun to the planet under 
observation. In some cases, e.g., observing Venus from Jupiter, r / R  < 1 /4 .  In such a case 
A ,  > R + r ,  so L increases throughout the interval [ R- r ,  R + r ] .The extreme values of L then 
occur, of course, at the endpoints of the interval. On the other hand, observing Mars from Earth 
gives r > R .  In t h s  case A ,  < 0 < r - R ,  so L decreases steadily throughout the interval [ r- R ,  r 
+ R ] .  

I will summarize below the outcome of our model, making use of some further astronomical 
terminology. A planet is called inferior (superior) if it is closer to (further from) the Sun than the 
observer's planet. When a superior planet is, from the observer's perspective, 180" away from the 
Sun it is said to be at opposition (see FIGURE5) .  When it is again Lined up with the Sun and 
the observer but beyond the Sun, it is in conjunction. An inferior planet will also line up with the 
Sun and the observer in two different configurations. When it is on the near side of the Sun it is in 
inferior conjunction; when it is beyond the Sun it is in superior conjunction. 

We may then summarize our results as follows: 

If R > r and r / R  > 1 /4 ,  then the maximum brightness of the observed planet occurs at 
A ,v = -2 r + 4 w .Minimum values of brightness occur at the endpoints of the interval 
[ R- r ,  R + r ] ,  i.e., at inferior and superior conjunction. 

If r / R  < 1 /4 ,  then the brightness of the observed planet increases steadily from a minimum at 
A = R - r (inferior conjunction) to a maximum at A = R + r (superior conjunction). 

If r > R ,  then the brightness of the observed planet decreases "steadily from a maximum at 
A = r - R (opposition) to a minimum at A = r + R (conjunction). 

The summary statements above refer to the time interval from inferior to superior conjunction 
for an inferior planet or from opposition to conjunction for a superior planet. The variation in 
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FIGURE5. At left, an inferior planet is shown in its two possible alignments (inferior and superior conjunction) with 
the line from the observer through the sun. The corresponding alignments (opposition and conjunction) for a superior 
planet are shown at right. 

brightness is then of course reversed as the planets shft until they are once again in the original 
configuration. 

How well does ths  model correspond to observation? For the case of observing Venus 
( r  = 6.72 X lo7  miles) from Earth (R = 9.29 X lo7  miles), certainly 1/4 < r/R < 1,so the calcu- 
lated value A, = 4.00 X lo7 is a relative maximum for L. Ths  value for A, yields p = 26.6%, 
which is in very good agreement with the figure of 28% quoted at the beginning of this article. 

The elongation of Venus ( 4  in FIGURE 2) can be calculated from A by again using the law of 
cosines: 

A2 + R2- r 2  
cos 4= 

2AR ' 

For A = A, =4.00 X lo7,the angle 4 is 39.7 O. Also, by using the law of sines, 4 can be calculated 
directly from the phase p as 

4 = arcsini-l;sm(arccos(2p - I))).  	
(1) 

To test this model further, I have used data from the American Ephemeris 15, pp. 4 and 3691 for 
the phase of Venus on some selected dates to compute 4 according to equation (1). TABLE 1shows 
the excellent agreement between these computed values and the actual values listed in the 
Ephemeris. 

Note that phase and elongation are purely geometric concepts, i.e., they have nothng to do 
with brightness. The excellent agreement shown in TABLE 1between the actual and the calculated 
elongation suggests that even the small difference between our calculated value of 26.6% for the 
phase of Venus at maximum brightness and the quoted value of 28% is not accounted for by our 

4calculated 
1977 Date Phase 4actual from (1)-

Jan. 17 ,550 47 46.03 

Feb. 1 ,471 47 46.23 

Feb. 16 ,376 45 44.49 

Feb. 26 ,301 42 41.57 

Mar. 3 ,259 3 9 39.33 

Mar. 8 ,214 36 36.39 

Mar. 18 ,121 28 28.15 

Apr. 2 ,016 10 10.46 
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simplifying geometric assumptions. Have we made some other assumption about brightness that 
could account for the difference? Yes, in fact, we made an unstated assumption about the 
uniformity of the brightness of the disk of Venus. 

When we claim that the luminosity L is proportional to the phasep, we are assuming that if a 
particular portion of Venus is fully lit during two different phases then it appears equally as bright 
at each of those times. T h s  is, unfortunately, not the case. Actually, over-all brightness varies 
non-linearly with the phase (even assuming that distance remains fixed) in a complicated way that 
depends markedly on the reflective properties of the planet or moon under observation. (By the 
way, making this non-linear relation explicit for the case of an ideal sphere might be a good 
project for students in a multivariable calculus class.) For example, when the Earth's moon 
appears half lit (at First or Last Quarter) it is not half as bright as when it is full but rather only 
one-eleventh as bright! [8,p. 361. However, the non-linearity of the effect is substantially mitigated 
on Venus because it is the thick cloud cover and not that planet's surface whch reflects sunlight. 
Thus when the phase is 26.6%, Venus is not quite as bright as our model indicates, but the actual 
maximum brightness, whch must be determined empirically, occurs when the phase is only very 
slightly greater. 

Interestingly, astronomers define [6,p. 2091 the brilliancy of Venus as the quantity 

T h s  is, of course, essentially what I used for the brightness L. Even though t h s  is a purely 
theoretical quantity, tables of celestial phenomena actually list the moment of greatest brilliancy, 
not of greatest brightness (see [7, p. 291, 19, p. 391). 

I have shown that our model fits the data very well for the case of observing Venus from Earth, 
two planets with low orbital eccentricity. But what about Mercury, with an eccentricity of ,206, or 
even Mars with an eccentricity of .098? (The figure .098 may seem low, but even before the advent 
of the telescope Kepler was able to deduce that planets move in ellipses rather than circles by 
studying the orbit of Mars.) The expressions derived here for phase, elongation and brilliancy will 
still be accurate if, instead of using values for r and R representing the mean distance of those 
planets from the Sun, values are used whch more closely approximate the true values for those 
planets in the configurations under consideration. Using simple analytic geometry and some 
knowledge of astronomical coordinate systems, it is not too hard (and it would be a good project 
for students) to make such approximations for r and R (see for example [I]; for a shortcut, see [3, 
p. 297ffl). Even without such refinements, the model still gives a good quahtative account of the 
variation in brightness of the planet under observation (except that in the case of Mercury, the 
non-linear variation of brightness with respect to phase has a significant effect). 

It did not surprise me that astronomers have long known about the simple model I had worked 
out on my own to find out whether the phase of Venus at maximum brightness could be 
calculated theoretically. What did surprise me was that this simple model is actually in very good 
agreement with observation. I would imagine there are other astronomical phenomena that are 
amenable to analysis with the level of mathematics used in this note. Indeed, elementary calculus 
is used at several junctures in texts on positional astronomy [2], [lo]. 

Once, astronomy and mathematics were practiced by the same people. One sees little evidence 
of this in today's calculus texts. The instructor who is willing to look at the astronomical literature, 
or better yet, work out some models for h m  or herself, most likely will be rewarded with 
interesting material for use in introductory calculus courses. 
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The Circumdisk and its Relation to a 
Theorem of Kirszbraun and Valentine 

RALPHALEXANDER 
University of Ill~nois 

Urhu~zu.IL  61801 

In this note we consider the following problem: Given a finite set of points in euclidean m-space, 
characterize the radius R of the smallest disk (closed solid sphere) which contains those points. We 
believe that our solution to t h s  problem is new, characterizing R in terms of a well-known 
quadratic form. Moreover, it provides a new proof of the very appealing theorem of Kirszbraun- 
Valentine: If a collection of disks (of vaiying radii) in En' having nonempty intersection are 
rearranged so that corresponding distances between centers do not increase, then the rearranged 
collection also has nonempty intersection. Whether or not the volume of the intersection can 
decrease remains a problem which baffles mathematicians. 

We first need to review some of the basic ideas that will be required. Let p,, p,, . . . ,p,, ,n 2 1,be 
a collection of distinct points in euclidean space En'.Among all those disks (closed solid spheres) 
whch contain these points, there is a unique disk of smallest radius, called the circumdisk. In 
FIGURE1we give a simple but very useful example. Here m = 2, n = 2, and the unbroken circle 
with diameter Ip, - p,l bounds the circumdisk. 

The existence of a minimal containing disk follows from the Blaschke selection theorem [12,p. 
371. However, those readers familiar with sequential compactness in En' can easily concoct a proof 
of existence. Such a disk is unique, for if there were two distinct minimal disks, centered at u and 

/-then a disk of radius R ,ur, respectively, and having radius centered at i ( u  + u') 
would also contain all the points p,. 

Some writers use the word circumsphere instead of circumdisk. However, we wish to reserve 
the former as a term for a generalization of the notion circumcircle. Thus, if p,,p,,. . . ,p,, are 
points in En', we define the circumsphere to be the sphere of least radius on which all the points 
lie, provided such a sphere exists. For example, three collinear points have no circumsphere. In 
FIGURE1, observe that p,,p,,p, lie on a circumsphere (the circle determined by the dashed arc) 
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