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Classical Monte Carlo integration, [S].

Calculate integral of a function A(z,y) on an area
G CR?

m = / h(e,y) f (2, y)dady
G

where f(x,y) is a density on G, i.e.

/ f(z,y)dzdy = 1.
G
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Classical Monte Carlo integration, [S].

Observe that any integral on a finite area G with
Se = |G]

/h(x,y)da:dy
G
can be represented as an integral of type
m=/m@wﬁ@mw@
G

Indeed, considering

hi(z,y) = Sgh(z,y), f(z,y) =1/5¢,
we obtain

/ h(e, y)dedy = / h (e, y) f (2, y)dady.
G G
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Classical Monte Carlo integration, [S].

Remember that in order to estimate the integral m =
fG h(x,y)f(x,y)dxdy we construct (simulate) a ran-
dom point p = (z,y) with density f(z,y) and random
variable Z = h(p) = h(x,y) which expectation is equal
to m:

E(Z) = /G h(p) f (p)dp.

Thus, if there exists E|Z| we have a convergence in
probability and also almost sure convergence

1 n
my, = — E h(p;) = m,
n
i=1

as n — o0.
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Classical Monte Carlo integration. [S]

If the function h is bounded, suppose 0 < h(p) < ¢
for any p € G, we can suggest a geometric method
to estimate the integral. Consider a volume G =
G x [0,c]. Consider a random point ¢ = (x,y,z) on
G with density f(z,y,2) = f(z,y)/c. Note that the
marginal distribution of ¢ em area G has a density
f(x,y). Choosing n independent realizations q1,...,qn
of ¢ we construct the following estimator
- cv
myp — —,
n

where

v = #{times when ¢; stays under the surface h(-)}

Prove, v ~ B(n,p,), where p, = m/c.



Aula 3. Monte Carlo Integration I. Exercises.

Classical Monte Carlo integration.[S]

v = #{times when ¢; stayed under the surface h(:)}

Prove, v ~ B(n,p,), where p, = m/c.

Indeed,

P Zl(% stays under the surface h(-))
=1

Z 1(z < h(xi,yi))
i—1
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Classical Monte Carlo integration. [S]

v = #{times when ¢; stays under the surface h(:)}

Prove, v ~ B(n,p,), where p, = m/c.
And,
p» = E(1(Zi <h(Xi,Y5)))
= ///1(z < h(x,y)) f(z,y, z)dxdydz

_ // / "1z < h(z,y))dz) (2, y)dady
_ / / / h(m’y)dz F(x,y)dedy

_ / / B, y) f (o, y)dady =

C
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Classical Monte Carlo integration. [S]

We see that Em, = m, and also we have almost sure
convergence m, — m. Note that we represented m,
in alternative form

1 = [ ¢, if z < h(zi,y),
my, = 52227 where Z; = { 0, it z; > h(:UZ)y’L)

Compare this estimator with

=" hp) (= 7).
1=1
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Classical Monte Carlo integration. [S]

In order to compare two estimators

n

mnz%;&- and m":%;Z’

we require the existence of the second moment for
calculation of the variances

VarZ = / h2(p) f(p)dp — m? and VarZ = em — m?,
G
because E(Z?) = c?P(Z < h(X,Y)) = c-m.

If 0 < h(p) <c, then

/ R2(p)f (p)dp < ¢ / () (p)dp = c-m = VarZ < VarZ,
G G
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Classical Monte Carlo integration, [S].

Example. Calculate the integral

1
I=/ etdx
0

the estimators corresponding to the estimators con-
sidered before are

1 N 1
Oy = — Vi Oy = e—,
N N;‘e NT N

where v is the number of pairs (U;,U)),...,(Un,Uy)
such that U/ < eV (as usial U;,U} ~ U[0,1] are i.i.d.).

1
1
Var(Z) = / e2dr — m? = 5(62 —1)—(e—1)?=0.2420
0

Var(Z2) e-m—m2=e—1=17183
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Classical MC integration. Efficiency.

Consider two estimators

n n

1 1
M) = ZN"xD gand m@ == x@
where
Xz(l) — Xi(l)(Ula SR Unl)? Xz'(Q) — Xi(Q)(U:L? Tt Un2)

Let 7T, T2 pe time spent in calculation a value of
XM and X@ correspondingly. It is natural to suppose
that an algorithm is more efficient if it spends less
time to achieve, say, the probable error accuracy r, =

E.
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Classical MC integration. Efficiency.

Let T, 7 pe time spent in calculation a value of X1 and X2
correspondingly. It is natural to suppose that an algorithm is
more efficient if it spends less time to achieve, say, the probable
error accuracy r, = ¢.

Thus the efficiencies of two estimators can be defined
as

T gnd T3
where n(1) n(2) are sample sizes needed to achieve the
accuracy r,. T hus, using estimation for sample sizes
we obtain the efficiency of algorithms

(0.6745)2

and T®Var (X @)

67452
TOVar (X D) (M) ,
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Classical Monte Carlo integration.

Example. Estimate the integral

1 5
m=/\5/5dx=—.
0 6

We consider two methods: direct method and *geo-
metric” method.
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Classical Monte Carlo integration.

Example. Estimate the integral

1
m = \5/5d33=§.
0 6

Direct method: h(z) = +/z and f(x) =1 if x € (0,1),
f(z) =0 if x ¢ (0,1), thus X1 = h(U;) and

1 n
(1) — E S/,
m,, 2 Us.

1 2
Var(X1)) = / 22/ dx — (E) = i
0 6 252
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Classical Monte Carlo integration.

Example. Estimate the integral

' 5
m = rdr = —.
0 6

“Geometric” method: since 0 < /z <1, then

1 n
(2 — = I 21T
m,; - izgl 1(U; < v U).

and X®@ = x®)(Uy,U}) = 1(U! < ¥/U;) variance
5 5 /5\2 5
Var(1(U; < Y/0)) =2 - (2) = o=
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15

Classical Monte Carlo integration.

Example. Estimate the integral

1
m = %dchE.
0 6

Direct and ‘‘geometric’ methods:
1 — 1
m) == Z JU;, mP == Z 1(U] < vU;).
ni= ni=

5 5
Var(XM) = = < Var(X(Q)) = —.
252 36
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Classical Monte Carlo integration. Infinite vari-
ance.

Consider two integrals

1 1
d d

I, = 2 — 2 and I, =
0 VT 0

Consider their estimators

N[ W

N N
A(l) _ 1 1

N N
o5 %z

~
I
=

where U;,V; ~ U[0, 1] i.i.d
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Classical Monte Carlo integration. Infinite vari-
ance.

2

3
n@={ g teio)d wa={g 155

0, otherwise O, otherwise
3
E(X;) =2, Var(X;) = oo, E(Y;) = 2, Var(Y;) = 2
We will plot: forn e {1,2,...,N}
black line: |I}? —3/2|;

blue line: |IY — 2|;

red line: 1.96,/(3/4)/n.
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