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Classical Monte Carlo integration, [S].

Calculate integral of a function h(x, y) on an area
G ⊂ R2

m =

∫
G

h(x, y)f(x, y)dxdy

where f(x, y) is a density on G, i.e.∫
G

f(x, y)dxdy = 1.
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Classical Monte Carlo integration, [S].

Observe that any integral on a finite area G with
SG = |G| ∫

G

h(x, y)dxdy

can be represented as an integral of type

m =

∫
G

h1(x, y)f(x, y)dxdy

Indeed, considering

h1(x, y) = SGh(x, y), f(x, y) = 1/SG,

we obtain∫
G

h(x, y)dxdy =

∫
G

h1(x, y)f(x, y)dxdy.
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Classical Monte Carlo integration, [S].

Remember that in order to estimate the integral m =∫
G
h(x, y)f(x, y)dxdy we construct (simulate) a ran-

dom point p = (x, y) with density f(x, y) and random
variable Z = h(p) = h(x, y) which expectation is equal
to m :

E(Z) =

∫
G

h(p)f(p)dp.

Thus, if there exists E|Z| we have a convergence in
probability and also almost sure convergence

mn =
1

n

n∑
i=1

h(pi)→ m,

as n→∞.
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Classical Monte Carlo integration. [S]

If the function h is bounded, suppose 0 ≤ h(p) ≤ c
for any p ∈ G, we can suggest a geometric method
to estimate the integral. Consider a volume G̃ =
G × [0, c]. Consider a random point q = (x, y, z) on
G̃ with density f(x, y, z) = f(x, y)/c. Note that the
marginal distribution of q em area G has a density
f(x, y). Choosing n independent realizations q1, . . . , qn
of q we construct the following estimator

m̃n =
cν

n
,

where

ν = #{times when qi stays under the surface h(·)}
Prove, ν ∼ B(n, pν), where pν = m/c.
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Classical Monte Carlo integration.[S]

ν = #{times when qi stayed under the surface h(·)}

Prove, ν ∼ B(n, pν), where pν = m/c.

Indeed,

ν =
n∑
i=1

1(qi stays under the surface h(·))

=
n∑
i=1

1(zi < h(xi, yi))
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Classical Monte Carlo integration. [S]

ν = #{times when qi stays under the surface h(·)}

Prove, ν ∼ B(n, pν), where pν = m/c.

And,

pν = E(1(Zi < h(Xi, Yi)))

=

∫∫∫
1(z < h(x, y))f(x, y, z)dxdydz

=

∫∫ (∫ 1

0

1

c
1(z < h(x, y))dz

)
f(x, y)dxdy

=
1

c

∫∫ (∫ h(x,y)

0
dz
)
f(x, y)dxdy

=
1

c

∫∫
h(x, y)f(x, y)dxdy =

m

c
.
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Classical Monte Carlo integration. [S]

We see that Em̃n = m, and also we have almost sure
convergence m̃n → m. Note that we represented m̃n

in alternative form

m̃n =
1

n

n∑
i=1

Z̃i, where Z̃i =

{
c, if zi < h(xi, yi),
0, if zi ≥ h(xi, yi).

Compare this estimator with

mn =
1

n

n∑
i=1

h(pi) (= Zi).
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Classical Monte Carlo integration. [S]

In order to compare two estimators

mn =
1

n

n∑
i=1

Zi and m̃n =
1

n

n∑
i=1

Z̃i,

we require the existence of the second moment for
calculation of the variances

VarZ =

∫
G

h2(p)f(p)dp−m2 and VarZ̃ = cm−m2,

because E(Z̃2) = c2P(Z < h(X,Y )) = c ·m.

If 0 ≤ h(p) ≤ c, then∫
G

h2(p)f(p)dp ≤ c
∫
G

h(p)f(p)dp = c·m⇒ VarZ ≤ VarZ̃.
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Classical Monte Carlo integration, [S].

Example. Calculate the integral

I =

∫ 1

0
exdx

the estimators corresponding to the estimators con-
sidered before are

θN =
1

N

N∑
i=1

eUi, θ̃N = e
ν

N
,

where ν is the number of pairs (Ui, U ′i), . . . , (UN , U
′
N)

such that U ′i < eUi (as usial Ui, U ′i ∼ U [0,1] are i.i.d.).

Var(Z) =

∫ 1

0
e2xdx−m2 =

1

2
(e2 − 1)− (e− 1)2 ∼= 0.2420

Var(Z̃) = e ·m−m2 = e− 1 ∼= 1.7183
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Classical MC integration. Efficiency.

Consider two estimators

m(1)
n =

1

n

n∑
i=1

X(1)
i and m(2)

n =
1

n

n∑
i=1

X(2)
i

where

X(1)
i = X(1)

i (U1, . . . , Un1), X
(2)
i = X(2)

i (U1, . . . , Un2).

Let T (1), T (2) be time spent in calculation a value of
X(1) and X(2) correspondingly. It is natural to suppose
that an algorithm is more efficient if it spends less
time to achieve, say, the probable error accuracy rn =
ε.
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Classical MC integration. Efficiency.

Let T (1), T (2) be time spent in calculation a value of X(1) and X(2)

correspondingly. It is natural to suppose that an algorithm is

more efficient if it spends less time to achieve, say, the probable

error accuracy rn = ε.

Thus the efficiencies of two estimators can be defined
as

T (1)n(1) and T (2)n(2)

where n(1), n(2) are sample sizes needed to achieve the
accuracy rn. Thus, using estimation for sample sizes
we obtain the efficiency of algorithms

T (1)Var(X(1))
(0.6745

ε

)2
and T (2)Var(X(2))

(0.6745

ε

)2
.
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Classical Monte Carlo integration.

Example. Estimate the integral

m =

∫ 1

0

5
√
xdx =

5

6
.

We consider two methods: direct method and “geo-
metric” method.



Aula 3. Monte Carlo Integration I. Exercises. 13

Classical Monte Carlo integration.

Example. Estimate the integral

m =

∫ 1

0

5
√
xdx =

5

6
.

Direct method: h(x) = 5
√
x and f(x) = 1 if x ∈ (0,1),

f(x) = 0 if x /∈ (0,1), thus X(1) = h(U1) and

m(1)
n =

1

n

n∑
i=1

5
√
Ui.

Var(X(1)) =

∫ 1

0
x2/5dx−

(5

6

)2
=

5

252
.
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Classical Monte Carlo integration.

Example. Estimate the integral

m =

∫ 1

0

5
√
xdx =

5

6
.

“Geometric” method: since 0 ≤ 5
√
x ≤ 1, then

m(2)
n =

1

n

n∑
i=1

1(U ′i <
5
√
Ui).

and X(2) = X(2)(U1, U ′1) = 1(U ′i <
5
√
Ui) variance

Var
(
1(U ′i <

5
√
Ui)
)

=
5

6
−
(5

6

)2
=

5

36
.
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Classical Monte Carlo integration.

Example. Estimate the integral

m =

∫ 1

0

5
√
xdx =

5

6
.

Direct and “geometric” methods:

m(1)
n =

1

n

n∑
i=1

5
√
Ui, m(2)

n =
1

n

n∑
i=1

1(U ′i <
5
√
Ui).

Var(X(1)) =
5

252
< Var

(
X(2)

)
=

5

36
.
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Classical Monte Carlo integration. Infinite vari-
ance.

Consider two integrals

I1 =

∫ 1

0

dx
√
x

= 2 and I2 =

∫ 1

0

dx
3
√
x

=
3

2
.

Consider their estimators

Î(1)
N =

1

N

N∑
i=1

1√
Ui

=:
1

N

N∑
i=1

Xi,

Î(2)
N =

1

N

N∑
i=1

1
3
√
Vi

=:
1

N

N∑
i=1

Yi,

where Ui, Vi ∼ U [0,1] i.i.d.
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Classical Monte Carlo integration. Infinite vari-
ance.

fX(x) =

{
2
x3 x ∈ [1,∞)
0, otherwise

, fY (y) =

{
3
y4 x ∈ [1,∞)

0, otherwise

E(Xi) = 2, Var(Xi) =∞, E(Yi) = 2, Var(Yi) =
3

4
.

We will plot: for n ∈ {1,2, . . . , N}

black line: |Î(2)
n − 3/2|;

blue line: |Î(1)
n − 2|;

red line: 1.96
√

(3/4)/n.
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