
PGF5003: Classical Electrodynamics I
Problem Set 2

Professor: Luis Raul Weber Abramo
Monitor: Natalí Soler Matubaro de Santi

(Due to April 27, 2021)

Guideline: in this PS you will need to use di�erent math relations (for instance, for Legendre
Polynomials, Bessel functions of �rst and second kind). Use the Jackson’s book or your preferred reference
to look for them. Write every equation that you have used in the solution. Moreover, in every Laplacian
solution, write the di�erential equation and general solution in each exercise.

1 Question (1 point)
Compute the energy of a sphere uniformly charged, building the sphere from shells of charge dq brought
from in�nity until some radius r, in the way that the result will be a sphere of a uniform density charge
distribution.

1.1 Solution
Starting from the de�nition of energy, we can write the element of it as

dW = dq′Φ = dq′
1

4πε0

q′

r
, (1)

where q′ =
4π
3
r3q

4π
3
R3 = qr3

R3 is the fraction of charge in the sphere of radius r and

dq′ = ρdV =
q

4
3
πR3

4πr2dr =
3q

R3
r2dr. (2)

Then, we have

dW = dq′Φ = dq′
1

4πε0

q′

r
=

1

4πε0

3q

R3
r2dr

qr3

R3

1

r
=

1

4πε0

3q2

R6
r4dr, (3)

and the energy is �nally the integral of the above quantity from 0 to R as

W =
1

4πε0

3q2

R6

∫ R

0

drr4 =
1

4πε0

3q2

R6

R5

5
=

3

20πε0

q2

R
. (4)
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2 Question (1 point)
Consider two cylinders (that are both coaxial and conductive), with the same length L and with radius a
and b, in the way that a < b, L� a and L� b. Supposing that both cylinders are uniformly charged,
the inner one with +q and the exterior with −q, �nd:

a) the capacitance of this system;

b) the energy per unit of length (this result is in terms of the capacitance and density of charge);

2.1 Solution
a) Using the Gauss theorem, for a < r < b we have∫

V

dV ~∇ · E =

∮
S(V )

E · dS = 4π

∫
V

dV ρ

E2πrL =
q

ε0

E =
q

2πε0L

1

r
r̂. (5)

Then, the di�erence of the potential between the cylinders is given by (because E = −~∇Φ)

∆Φ = Φ(b)− Φ(a) = −
∫ b

a

E · dl = −
∫ b

a

2q

L

dr

r
= − q

2πε0L
ln

(
b

a

)
=

q

2πε0L
ln
(a
b

)
. (6)

By the de�nition of capacitance, we have

C =
Q

∆Φ
=

q
q

2πε0L
ln
(
a
b

) =
2πε0L

ln
(
a
b

) . (7)

b) The energy per unit of length is given by de�nition by (and using the capacitance per unit of
length):

w =
W

L
=

1

2

C

L
Φ2 =

1

2

C

L
[Φ(b)− Φ(a)]2 =

1

2

2πε0

ln
(
a
b

) [Φ(b)− Φ(a)]2

=
πε0

ln
(
a
b

) [ q

2πε0L
ln
(a
b

)]2

=
q2

4πε0L2
ln
(a
b

)
. (8)

3 Question (1 point)
The two-dimensional region: ρ ≥ a, 0 ≤ φ ≤ β is bounded by conducting surfaces at φ = 0, ρ = a and
φ = β held at zero potential, as indicated in the �gure. At large ρ, the potential is determined by some
con�guration of charges and/or conductors at �xed potentials.
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Figure 1: Figure for the question 3.

a)Write down a solution for the potential Φ(ρ, φ) that satis�es the boundary conditions for �nite ρ.

b) Keeping only the lowest non vanishing terms, calculate the electric �eld components Eρ and Eφ
and also the surface-charge densities σ(ρ, 0), σ(ρ, β) and σ(a, φ) on the three boundary surfaces.

3.1 Solution
a) In this problem we are solving the Laplace equation

∇2Φ = 0 (9)

in a 2-dimensional corners and along edges, then, the geometry suggests the use of polar coordinates
(ρ, φ), such that the Laplace equation becomes

1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂φ2
= 0. (10)

Using separation of variables, the problem could be written as

Φ(ρ, φ) = R(ρ)ψ(φ)

ρ

R

d

dρ

(
ρ
dR

dρ

)
+

1

ψ2

d2ψ

dφ2
= 0. (11)

Since the two terms are separately functions of ρ and φ, each one must be constant:

d2ψ

dφ2
= −ν2ψ ⇒ ψ(φ) = Aνe

iνφ +Bνe
−iνφ,

ρ
dR

dρ
+ ρ2d

2R

dρ2
= ν2R⇒ R(ρ) = āνρ

ν +
b̄ν
ρν

(12)
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and for ν = 0 the particular solution is{
R(ρ) = a0 + b0 ln ρ
ψ(φ) = A0 +B0φ

. (13)

Taking the boundary conditions we have
• Φ(ρ, 0) = 0⇒ 0 = (a0 + b0 ln ρ)A0 + (Aν +Bν)⇒ Bν = −Aν and A0 = 0;

• Φ(ρ, β) = 0

(a0 + b0 ln ρ)B0β + Aν
(
eiνβ − e−iνβ

)
= 0

Aν [cos(νβ) + i sin(νβ)− cos(νβ) + i sin(νβ)] = 0

B0 = 0 and ν =
nπ

β

Φ(ρ, φ) =
∞∑
n=0

An sin

(
nπ

β
φ

)(
āρnπ/β +

b̄

ρnπ/β

)
. (14)

• Φ(a, φ) = 0 (
āanπ/β + b̄a−nπ/β

)
= 0

ā = −b̄a−2nπ/β. (15)
Besides, as we do not have charge in ρ = 0, the coe�cients of ln ρ is zero.

Thus, the electric potential is written as

Φ(ρ, φ) =
∞∑
n=1

An sin

(
nπ

β
φ

)[(ρ
a

)nπ/β
−
(ρ
a

)−nπ/β]
. (16)

Here, An = b̄na
−nπ/β and b̄n is given due the problem speci�cation at in�nity (ρ→∞).

b) The electric �eld is given by

E = −~∇Φ = −∂Φ

∂ρ
~ρ− 1

ρ

∂Φ

∂φ
~φ

=
∞∑
n=0

An

{
−nπ
aβ

[(ρ
a

)nπ/β−1

+
(ρ
a

)−nπ/β−1
]

sin

(
nπ

β
φ

)}
ρ̂

− 1

ρ

{[(ρ
a

)nπ/β
−
(ρ
a

)−nπ/β] nπ
β

cos

(
nπ

β
φ

)}
φ̂. (17)

Keeping only the lowest non-vanishing terms means to consider n = 1. Then:

Eρ = −A1

{
π

aβ

[(ρ
a

)π/β−1

+
(ρ
a

)−π/β−1
]

sin

(
π

β
φ

)}
(18)

Eφ = −A1
1

ρ

{[(ρ
a

)π/β
−
(ρ
a

)−π/β] π
β

cos

(
π

β
φ

)}
(19)

Moreover, the surface charge density is given by
σ = ε0E · n|S

σ(ρ, 0) = ε0E · φ̂|φ=0 = −A1πε0
4βρ

{[(ρ
a

)π/β
−
(ρ
a

)−π/β]}
(20)

σ(ρ, β) = ε0E · (−φ̂)|φ=β = −A1πε0
4βρ

{[(ρ
a

)π/β
−
(ρ
a

)−π/β]}
(21)

σ(a, φ) = ε0E · ρ̂|ρ=a = −A1

{
2πε0
aβ

sin

(
π

β
φ

)}
. (22)
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4 Question (1 point)
Consider a cube with conductive faces and side a. If the face on z = a has constant potential Φ0 and
the other faces have zero potential, what is the electric potential inside the cube?

Figure 2: Figure for the question 4.

4.1 Solution
We are solving the Poisson equation

∇2Φ = 0 (23)
in Cartesian coordinates (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ = 0. (24)

Proposing the following separation of variables, we get

Φ(x, y, z) = X(x)Y (y)Z(z),

d2X

dx2
= −α2X(x)

d2Y

dy2
= −β2Y (y)

d2Z

dz2
= γ2Y (y),

since α2 + β2 = γ2. The general solutions follows as

X(x) = Aeiαx +Be−iαx

Y (y) = Ceiβy +De−iβy

X(x) = Eeγz + Fe−γz.

Imposing the boundary conditions:
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• Φ(0, y, z) = 0⇒ 0 = A+B ⇒ B = −A;

• Φ(a, y, z) = 0

A
(
eiαa − e−iαa

)
= 0

A [cos(αa) + i sin(αa)− cos(αa) + i sin(αa)] = 0

α =
nπ

a

X(x) =
∞∑
n=0

An sin
(nπ
a
x
)

(25)

for n ∈ [1, 2, . . . );

• Φ(x, 0, z) = 0⇒ 0 = C +D ⇒ D = −C ;

• Φ(x, a, z) = 0

C
(
eiβa − e−iβa

)
= 0

C [cos(βa) + i sin(βa)− cos(βa) + i sin(βa)] = 0

β =
mπ

a

Y (y) =
∞∑
m=0

Cn sin
(mπ
a
y
)

(26)

for m ∈ [1, 2, . . . );

• Because γ2 = α2 + β2, we have:

γ =

√(nπ
a

)2

+
(mπ
a

)2

=
π

a

√
m2 + n2; (27)

• Φ(x, y, 0) = 0⇒ 0 = E + F ⇒ F = −E:

Z(z) = E
(
eγa − e−γz

)
= 2E sinh(γz). (28)

• Φ(x, y, a) = Φ0:
Up to now, the general equation becomes

Φ(x, y, z)|z=a =
∑
m,n

AnCmEn,m sin
(nπ
a
x
)

sin
(mπ
a
y
)

sinh
[(π
a

√
m2 + n2

)
z
]
|z=a

=
∑
m,n

Kn,m sin
(nπ
a
x
)

sin
(mπ
a
y
)

sinh
[(π
a

√
m2 + n2

)
z
]
|z=a

=
∑
m,n

Kn,m sin
(nπ
a
x
)

sin
(mπ
a
y
)

sinh
[(π
a

√
m2 + n2

)
a
]

= Φ0. (29)

Integrating in both sides as follows∫ a

0

dx sin

(
n′π

a
x

)∫ a

0

dy sin

(
m′π

a
y

)
Φ0 =∑

m,n

Kn,m sinh
[(π
a

√
m2 + n2

)
a
]

∫ a

0

dx sin

(
n′π

a
x

)∫ a

0

dy sin

(
m′π

a
y

)
sin
(nπ
a
x
)

sin
(mπ
a
y
)
, (30)
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due to orthogonality, n′ = n, m′ = m. Because
∫ a

0
dx sin2

(
nπ
a
x
)

= a
2

and
∫ a

0
dx sin

(
nπ
a
x
)

=
a(1−cos(πn))

πn
= 2a

πn
, for odd numbers n:

Kn,m =
16Φ0

nmπ2

1

sinh
[(

π
a

√
m2 + n2

)
a
] . (31)

Finally, we get the electric potential inside the cube as

Φ(x, y, z) =
∞∑

m,n=0

16Φ0

nmπ2

sin
(
nπ
a
x
)

sin
(
mπ
a
y
)

sinh
[(

π
a

√
m2 + n2

)
a
] sinh

[(π
a

√
m2 + n2

)
z
]
, (32)

valid for m and n odd numbers.
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5 Question (2 points)
A spherical surface of radiusR has charge uniformly distributed over its surface with a densityQ/4πR2,
except for a spherical cap at the north pole, de�ned by the cone θ = α.

a) Show that the potential inside the spherical surface can be expressed as

Φ =
Q

2

∞∑
`=0

1

(2`+ 1)
[P`+1(cosα)− P`−1(cosα)]

r`

R`+1
P`(cos θ), (33)

where, for ` = 0, P`−1(cosα) = −1. What is the electric potential outside?

b) Find the magnitude and the direction of the electric �eld at the origin.

5.1 Solution
a) We are going to solve the Laplace equation

∇2Φ = 0. (34)

Because we have a spherical geometry, let’s do it in spherical coordinates:

Φ(r, θ, φ) = R(r)Θ(θ)ψ(φ)

1

r2 sin θ

[
sin θ

∂

∂r

(
r2 ∂

∂r

)
+

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin θ

(
∂2

∂φ2

)]
Φ = 0

sin2 θ

R

d

dr

(
r2dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

ψ

d2ψ

dφ2
= 0

sin2 θ

R

d

dr

(
r2dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
= m2

1

ψ

d2ψ

dφ2
= −m2

But, as we have azymutal symmetry, m = 0, i.e., the dependence in φ is zero. Then, we can write

d

dr

(
r2dR

dr

)
− λR = 0,

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ = 0

and the general solution is given using Legendre polynomials P`(cos θ) as

Φ(r, θ, φ) =
∞∑
`=0

(
A`r

` +
B`

r`+1

)
P`(cos θ). (35)

To solve this problem, we need to impose the boundary conditions, in the splitted solution: Φ ={
Φin, r < R
Φout, r > R

, then
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• Φins = Φout|r=R ⇒ Dirichlet;

•
(
∂Φout
∂r
− ∂Φins

∂r

)
|r=R = −4πσ ⇒ Neumann

Where we had to remember that:

σ =
−1

4π

∂Φ

∂r
=

{
Q

4πR2 , θ > α
0, θ < α

(36)

In this way we get

• B` = 0 inside (in order to not diverge the potential in r = 0):

Φins =
∞∑
`

A`r
`P`(cos θ);

• A` = 0 outside (in order to not diverge the potential when r →∞):

Φout =
∞∑
`=0

B`

r`+1
P`(cos θ) + B̄ (37)

and B̄ is due electric potential for r →∞. Diving deeper in this limit we can write

Φout(r →∞) =
Qtotal

r
=

[
∞∑
`=0

B`

r`+1
P`(cos θ) + B̄

]
r→∞

=
B0

r
+ B̄ ⇒ B̄ = 0⇔ B0 = Qtotal, (38)

in other words, there is no other charge in the problem! Just notice that we have usedP0(cos θ) =
1. But, what is Qtotal? It is given by the integral

Qtotal =

∫
dSσ =

∫ π

0

dθ sin θ

∫ 2π

0

dφR2σ

=
Q

2

∫ π

α

dθ sin θ =
Q

2
(1 + cosα) . (39)

Finally, we can write the solution in the outside as

Φout =
Q

2

(1 + cosα)

r
+
∞∑
`=1

B`

r`+1
P`(cos θ). (40)

Just now, we can impose the boundary conditions properly:

• Φins = Φout|r=R ⇒ Dirichlet:
∞∑
`

A`R
`P`(cos θ) =

Q

2

(1 + cosα)

R
+
∞∑
`=1

B`

R`+1
P`(cos θ)

A0 =
Q

2

(1 + cosα)

R
∞∑
`=1

P`(cos θ)

[
A`R

` − B`

R`+1

]
= 0⇒ B` = A`R

2`+1 (41)
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and, from this condition we get

Φins =
Q

2

(1 + cosα)

R
+
∞∑
`=1

A`r
`P`(cos θ)

Φout =
Q

2

(1 + cosα)

r
+
∞∑
`=1

A`R
2`+1

r`+1
P`(cos θ) (42)

•
(
∂Φout
∂r
− ∂Φins

∂r

)
|r=R = −4πσ = −Q

R2 ⇒ Neumann

∂Φout

∂r
= −Q

2

(1 + cosα)

r2
−
∞∑
`=1

A`R
2`+1

r`+2
P`(cos θ)

∂Φins

∂r
=
∞∑
`=1

A``r
`−1P`(cos θ)

−4πσ =

[
−Q

2

(1 + cosα)

R2
−
∞∑
`=1

A`R
2`+1

R`+2
P`(cos θ)−

∞∑
`=1

A``R
`−1P`(cos θ)

]

4πσ − Q

2

(1 + cosα)

R2
=
∞∑
`=1

A`R
`−1P`(cos θ) (2`+ 1)∫ π

0

dθ sin θP`′(cos θ)

[
4πσ − Q

2

(1 + cosα)

R2

]
=

∞∑
`=1

A`R
`−1 (2`+ 1)

∫ π

0

dθ sin θP`′(cos θ)P`(cos θ)

∫ π

0

dθ sin θP`′(cos θ)

[
4πσ − Q

2

(1 + cosα)

R2

]
=
∞∑
`=1

A`R
`−1 (2`+ 1)

2δ`,`′

2`+ 1∫ π

0

dθ sin θP`(cos θ)

[
4πσ − Q

2

(1 + cosα)

R2

]
= 2A`R

`−1

A` =
R−`+1

2

[
4πσ

∫ π

α

dθ sin θP`(cos θ)− Q

2

(1 + cosα)

R2

∫ π

0

dθ sin θP`(cos θ)

]
(43)

To solve this integral, we can use the relation

P`(x) =
d

dx

[
P`+1(x)− P`−1(x)

(2`+ 1)

]
(44)

changing the variables. Then,

A` =
R−`+1

2

{
4π

Q

4πR2

[
P`+1(cosα)− P`−1(cosα)

(2`+ 1)

]
−Q

2

(1 + cosα)

R2

[
P`+1(−1)− P`−1(−1)

(2`+ 1)

]}
=
R−`+1

2

{
4π

Q

4πR2

[
P`+1(cosα)− P`−1(cosα)

(2`+ 1)

]
−Q

2

(1 + cosα)

R2

[
−1 + 1

(2`+ 1)

]}
=

QR−`−1

2(2`+ 1)
[P`+1(cosα)− P`−1(cosα)] . (45)

10



Therefore, the electric �elds (inside and outside) becomes

Φins =
Q

2

(1 + cosα)

R
+
Q

2

∞∑
`=1

R−`−1

(2`+ 1)
r` [P`+1(cosα)− P`−1(cosα)]P`(cos θ)

=
Q

2

∞∑
`=0

1

(2`+ 1)

r`

R`+1
[P`+1(cosα)− P`−1(cosα)]P`(cos θ), (46)

Φout =
Q

2

(1 + cosα)

r
+
∞∑
`=1

R`

r`+1
P`(cos θ)

Q

2(2`+ 1)
[P`+1(cosα)− P`−1(cosα)]

=
Q

2

∞∑
`=1

1

(2`+ 1)

R`

r`+1
[P`+1(cosα)− P`−1(cosα)]P`(cos θ). (47)

b) The electric �eld in the origin is given by

E(r = 0) = −~∇Φ|r=0 = −
(
∂Φins

∂r
r̂ +

1

r

∂Φins

∂θ
θ̂

)
r=0

= −

{
Q

2

∞∑
`=1

1

(2`+ 1)

`r`−1

R`+1
[P`+1(cosα)− P`−1(cosα)]P`(cos θ)r̂

+
1

r

Q

2

∞∑
`=1

1

(2`+ 1)

r`

R`+1
[P`+1(cosα)− P`−1(cosα)]

[
` cos θP`(cos θ)− `P`−1(cos θ)

sin θ

]
θ̂

}
r=0

= −

{
Q

2

∞∑
`=1

1

(2`+ 1)

`r`−1

R`+1
[P`+1(cosα)− P`−1(cosα)]P`(cos θ)r̂

+
Q

2

∞∑
`=1

1

(2`+ 1)

`r`−1

R`+1
[P`+1(cosα)− P`−1(cosα)]

[
cos θP`(cos θ)− P`−1(cos θ)

sin θ

]
θ̂

}
r=0

.

Here, we can say that the terms ` = 2 and higher are all zero at the origin (r = 0), resting just ` = 1.
Then,

E(r = 0) = −
{
Q

2

1

3

1

R2
[P2(cosα)− P0(cosα)]P1(cos θ)r̂

+
Q

2

1

3

1

R2
[P2(cosα)− P0(cosα)]

[
cos θP1(cos θ)− P0(cos θ)

sin θ

]
θ̂

}
= − Q

6R2
[P2(cosα)− P0(cosα)]

{
P1(cos θ)r̂ +

[
cos θP1(cos θ)− P0(cos θ)

sin θ

]
θ̂

}
= − Q

6R2
[P2(cosα)− P0(cosα)]

{
P1(cos θ)r̂ +

[
cos θP1(cos θ)− P0(cos θ)

sin θ

]
θ̂

}
= − Q

6R2

[
1

2

(
3 cos θ2 − 1

)
− 1

]{
cos θr̂ +

[
cos2 θ − 1

sin θ

]
θ̂

}
= − Q

6R2

(
−3

2
sin2 α

)[
cos θr̂ − sin θθ̂

]
=

Q

4R2
sin2 αẑ (48)
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6 Question (2 points)
Consider a half-in�nite cylinder grounded, with a electric potential φ0 at its closed end.

φ0

Figure 3: Semi-in�nite cylinder.

Show that the electric potential in the inner parts of the cylinder is given by:

φ(ρ, θ, z) = 2φ0

∑
k

e−kz

ka

J0(kρ)

J1(ka)
, (49)

where J0(ka) = 0 and, of course, Ji is the Bessel function of �rst kind and order i.

6.1 Solution
Here we are solving the Poisson equation

∇2Φ = 0 (50)

in spherical coordinates

0 =
1

ρ

[
∂

∂ρ

(
1

ρ

∂

∂ρ

)
+

∂

∂φ

(
1

ρ

∂

∂φ

)
+

∂

∂z

(
1

ρ

∂

∂z

)]
.

Proposing the following separation of variables, we get

Φ(ρ, φ, z) = R(ρ)ψ(φ)Z(z),

d2Z

dz2
= k2Z(z)

d2ψ

dφ2
= −ν2ψ(z)

d2R

dρ2
= −1

ρ

dR

dρ
−
(
k − ν2

ρ2

)
R.

The general solution follow as

Φ(ρ, φ, z) =
∑
k,ν

[AJν(kρ) +BNν(kρ)]
[
Ceiνφ +De−iνφ

] [
Eekz + Fe−kz

]
, (51)

where Jν(kρ), Nν(kρ) are, respectively, the Bessel functions of �rst and second kind (the last one
could be called as Neumann function too). We can say some things about the conditions (not bound-
ary, but in general now) that we can impose in this problem:

12



• B = 0 because Nν(kρ) ∝ ρ−k and potential is �nite at ρ = 0;

• E = 0 because we need that ekz to not diverge on in�nity;

• ν = 0 because the problem has azimuthal symmetry;

then, the general solution follow as

Φ(ρ, φ, z) =
∑
k

ĀJ0(kρ)e−kz, (52)

where, clearly, Ā = AF .
Now, imposing the boundary conditions:

• Φ(ρ = a) = 0⇒ due to the cylinder being grounded

Φ(ρ = a) =
∑
k

ĀJ0(ka)e−kz = 0⇒ J0(ka) = 0⇒ k → km =
xm
a

(53)

and xm = [2.405, 5.520, 8.654, . . . ) are the roots from Bessel functions of �rst kind, which
implies that k assume discrete values.

• Φ(z = 0) = Φ0

Φ(ρ = a) =
∑
k

ĀJ0(ka) = Φ0 (54)

Here we need to use some machinery from mathematics. We can, for example, integrate both
sides of the above equation as follows∫ a

0

dρρJα(k′ρ)
∑
k

ĀJ0(ka) =

∫ a

0

dρρJα(k′ρ)Φ0

∑
k

Ā
a2

2
[J1(ka)]2 δk,k′ = Φ0J1(ka)

Ā =
2Φ0

a2J1(ka)
,

where we need to use the equation (3.95) from Jackson’s book∫ a

0

dρρJν

(
xνn′

ρ

a

)
Jν

(
xνn

ρ

a

)
=
a2

2
[Jν+1(xνn)]2 δn,n′ (55)

and the integral expression ∫ a

0

dρρJ0(kρ) =
aJ0(ka)

k
. (56)

Finally, we got the potential as

φ(ρ, θ, z) = 2φ0

∑
k

e−kz

ka

J0(kρ)

J1(ka)
�. (57)
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7 Question (2 points)
Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges ±Q.
The empty space between the spheres is half-�lled by a hemispherical shell of dielectric (of dielectric
constant ε), as shown in the Figure.

Figure 4: Figure for the question 7.

a) Find the electric �eld everywhere between the spheres.

b) Calculate the surface-charge distribution on the inner sphere.

7.1 Solution
a) We can solve this problem splitting it on two di�erent regions:

• empty (e);

• �lled (f).

Let’s start with the easy side: the empty. In this region, as we do not have any charges (it is empty),
we can write the Poisson equation

~∇Φe = 0, (58)

which has the solution

Φe =
∞∑
`=0

(
Aellr

` +
B`

r`+1

)
P`(cos θ). (59)

Considering the the potential on the surface of the �rst conductor (r = a) is a constant value, for
instance C , we can impose our �rst boundary condition and �nd out that

Φe(r = a) =
∞∑
`=0
���

���
���

�:0(
Aella

` +
B`

a`+1

)
P`(cos θ) = C

C = A0 +
B0

a
B` = −A`a2`+1, ` > 0,

and we use the fact that the terms assigned as zero have this value because the constant is a constant,
so it is independent of polar variable θ.
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Considering now the other conductor (r = b), that needs to have a constant potential (C̄) as
well, we have

Φe(r = b) =
∞∑
`=0
��

���
���

���:
0(

Aellb
` − A`a

2`+1

b`+1

)
P`(cos θ) = C̄

C̄ = A0 −
B0

b
b2`+1 = a2`+1 ⇒ A` = B` = 0, ` > 0. (60)

Because this relation hold for all values of the independent polar variable and because the Legendre
polynomials are orthogonal, all coe�cients must equate independently. Then, A` must be zero for
all ` > 1. Thus, the potential in the empty region is given by

Φe(r, θ, φ) = A0 +
B0

r
, (61)

and the electric �eld follow as

Ee = −~∇Φe =
B0

r2
r̂. (62)

But this is the solution only for the empty region. The �lled region, again, there is no charge
(at least in the region between the shells). Then, one more time we can solve the same equations,
�nding

Φf = Ā0 +
B̄0

r
r̂

Ef = −~∇Φf =
B̄0

r2
r̂. (63)

Having the splitted solution we only need to apply the boundary condition between the dielectric
and empty regions:

(Df −De) · n̂ = 0⇒ (ε0Ee = εEf )θ ,

(Ef − Ee) · t̂ = 0⇒ (Ee = Ef )r .

Taking the radial part, we conclude that

B0

r2
=
B̄0

r2
⇒ B0 = B̄0 (64)

and that the electrical �eld (E) and the displacement �elds (De and Df ) are

E =
B0

r2
r̂,De = ε0

B0

r2
r̂ and Df = ε

B0

r2
r̂. (65)

But what is the value ofB0? The answer to this question is given thinking about the total charge
that we could have access, for example, +Q, in the inner shell. Then, due the fact that ~∇ ·D = ρ,
the Gauss’ law in the region between the shells give it as following

Q =

∮
S(a<r<b)

dS ·D

Q =

∫ 2π

0

dφr2

[∫ π/2

0

dθ sin θε0
B0

r2
+

∫ π

π/2

dθ sin θε
B0

r2

]
= 2πB0(ε+ ε0)⇒ B0 =

Q

2π(ε+ ε0)
. (66)
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Finally,
E =

Q

2π(ε+ ε0)

1

r2
r̂,De =

ε0Q

2π(ε+ ε0)

1

r2
r̂ and Df =

εQ

2π(ε+ ε0)

1

r2
r̂. (67)

b) The surface-charge distribution in the inner sphere could be computed using

σ = (D2 −D1) · n̂|S

and, because inside a conductor there is no �elds D1 = 0. Then,

σe = De · r̂|r=a =
ε0Q

2π(ε+ ε0)

1

a2
,

σf = Df · r̂|r=a =
εQ

2π(ε+ ε0)

1

a2
. (68)
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