PGF5003: Classical Electrodynamics I
Problem Set 2

Professor: Luis Raul Weber Abramo
Monitor: Natali Soler Matubaro de Santi
(Due to April 27, 2021)

Guideline: in this PS you will need to use different math relations (for instance, for Legendre
Polynomials, Bessel functions of first and second kind). Use the Jackson’s book or your preferred reference
to look for them. Write every equation that you have used in the solution. Moreover, in every Laplacian

solution, write the differential equation and general solution in each exercise.

1 Question (1 point)

Compute the energy of a sphere uniformly charged, building the sphere from shells of charge dq brought
from infinity until some radius r, in the way that the result will be a sphere of a uniform density charge

distribution.

1.1 Solution

Starting from the definition of energy, we can write the element of it as
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and the energy is finally the integral of the above quantity from 0 to R as
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2  Question (1 point)

Consider two cylinders (that are both coaxial and conductive), with the same length L and with radius a
and b, in the way that a < b, L > a and L > b. Supposing that both cylinders are uniformly charged,
the inner one with +q and the exterior with —q, find:

a) the capacitance of this system;

b) the energy per unit of length (this result is in terms of the capacitance and density of charge);

2.1 Solution

a) Using the Gauss theorem, for a < r < b we have
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Then, the difference of the potential between the cylinders is given by (because E = —6@)
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By the definition of capacitance, we have
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b) The energy per unit of length is given by definition by (and using the capacitance per unit of
length):

— W1 = 1) — ey = %127;) o(5) — @ (a)]”
- 1:(6%) [%’ZoL o <%>} N 47TZOL2 n <%> . ©

3 Question (1 point)

The two-dimensional region: p > a,0 < ¢ < 3 is bounded by conducting surfaces at p = 0, p = a and
¢ = (3 held at zero potential, as indicated in the figure. At large p, the potential is determined by some
configuration of charges and/or conductors at fixed potentials.



Figure 1: Figure for the question 3.

a) Write down a solution for the potential (p, ¢) that satisfies the boundary conditions for finite p.

b) Keeping only the lowest non vanishing terms, calculate the electric field components I, and E
and also the surface-charge densities o(p,0), o(p, 5) and o(a, ¢) on the three boundary surfaces.

3.1 Solution
a) In this problem we are solving the Laplace equation
V2 =0 ©)

in a 2-dimensional corners and along edges, then, the geometry suggests the use of polar coordinates
(p, @), such that the Laplace equation becomes
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Using separation of variables, the problem could be written as

®(p,¢) = R(p)y(¢)
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Since the two terms are separately functions of p and ¢, each one must be constant:
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and for v = 0 the particular solution is
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Taking the boundary conditions we have
« &(p,0)=0=0=(ap+bylnp)Ay+ (A, + B,) = B, = —A, and Ay = 0;
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Besides, as we do not have charge in p = 0, the coefficients of In p is zero.

Thus, the electric potential is written as
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Here, A,, = b,a~""/# and b,, is given due the problem specification at infinity (p — oc0).

b) The electric field is given by
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Keeping only the lowest non-vanishing terms means to consider n =
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Moreover, the surface charge density is given by
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4 Question (1 point)

Consider a cube with conductive faces and side a. If the face on z = a has constant potential &, and
the other faces have zero potential, what is the electric potential inside the cube?

Figure 2: Figure for the question 4.

4.1 Solution

We are solving the Poisson equation
Vi =0 (23)

in Cartesian coordinates
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Proposing the following separation of variables, we get
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since a? + 32 = 2. The general solutions follows as
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Imposing the boundary conditions:
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Because 72 = a? + 32, we have:
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Up to now, the general equation becomes
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Integrating in both sides as follows
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dge to(orglogonality, n’ = n, m' = m. Because foa dw sin® ("Tzrx) = 5 and foa dx sin (%z) =
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Finally, we get the electric potential inside the cube as
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5 Question (2 points)
A spherical surface of radius R has charge uniformly distributed over its surface with a density Q) /47 R?,
except for a spherical cap at the north pole, defined by the cone = a.

a) Show that the potential inside the spherical surface can be expressed as

é
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where, for { =0, P;_1(cos «) = —1. What is the electric potential outside?

b) Find the magnitude and the direction of the electric field at the origin.

5.1 Solution

a) We are going to solve the Laplace equation
Vi = 0. (34)
Because we have a spherical geometry, let’s do it in spherical coordinates:

O(r,0,9) = R(r)0(0)¢(¢)
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But, as we have azymutal symmetry, m = 0, i.e., the dependence in ¢ is zero. Then, we can write
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and the general solution is given using Legendre polynomials Py(cos #) as

O(r,0,9) = i (Ag?"é Z1> Py(cos0). (35)
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To solve this problem, we need to impose the boundary conditions, in the splitted solution: & =

q)m,r <R
{ (I)omhr > R ’ then



hd ®ins = ®out|r:R = Dirichlet,
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Where we had to remember that:

) \r:R = —4mo = Neumann

_ —100 Q9>
— A7 R2
" 4r Or { 0,0 <« (36)

In this way we get

« By = 0 inside (in order to not diverge the potential in 7 = 0):

D6 ZAgr Py(cosb);

« A; = 0 outside (in order to not diverge the potential when r — o0):
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and B is due electric potential for 7 — oo. Diving deeper in this limit we can write
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in other words, there is no other charge in the problem! Just notice that we have used Fy(cos ) =
1. But, what is Qe ? It is given by the integral
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Finally, we can write the solution in the outside as
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Just now, we can impose the boundary conditions properly:
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and, from this condition we get
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To solve this integral, we can use the relation
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Therefore, the electric fields (inside and outside) becomes
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b) The electric field in the origin is given by
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Here, we can say that the terms ¢ = 2 and higher are all zero at the origin (r = 0), resting just £ = 1.
Then,
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6 Question (2 points)

Consider a half-infinite cylinder grounded, with a electric potential ¢, at its closed end.

Figure 3: Semi-infinite cylinder.

Show that the electric potential in the inner parts of the cylinder is given by:

e % Jy(kp)
0 =2 49
where Jo(ka) = 0 and, of course, J; is the Bessel function of first kind and order i.
6.1 Solution
Here we are solving the Poisson equation
V2 =0 (50)
in spherical coordinates
o= |2 (L2, 0 (12) 0 (10
plop\pdp)  0p\pdp) 02\pdz)|
Proposing the following separation of variables, we get
®(p, ¢,2) = R(p)(9)Z(2),
d*Z 9
d*y
ap = V)
d’R 1dR 2
on_ vy,
dp p dp p
The general solution follow as
®(p,¢,2) = > _[AJy(kp) + BN, (kp)] [Ce™® + De™™?] [Ee™ + Fe ], (51)

kv

where J,(kp), N, (kp) are, respectively, the Bessel functions of first and second kind (the last one
could be called as Neumann function too). We can say some things about the conditions (not bound-
ary, but in general now) that we can impose in this problem:
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« B = 0because N, (kp) < p~* and potential is finite at p = 0;
« F = 0 because we need that ¢** to not diverge on infinity;
« v = () because the problem has azimuthal symmetry;

then, the general solution follow as

®(p, ¢, 2) ZAJO kp)e ™, (52)

where, clearly, A= AF.
Now, imposing the boundary conditions:

« ®(p = a) = 0 = due to the cylinder being grounded

=" Ady(ka)e™ = 0= Jo(ka) = 0 = k — ky = %m (53)
k

and z,,, = [2.405,5.520,8.654,...) are the roots from Bessel functions of first kind, which
implies that £ assume discrete values.

4 q)(z = 0) = (DQ
O(p=a) =) Ay(ka) =Py (54)

Here we need to use some machinery from mathematics. We can, for example, integrate both
sides of the above equation as follows

/ dppJa<k'p>ZAJo<ka>= | doorntipye
0 0

ZA [J1(ka)]? O pr = Po.Jy (ka)

- 29
A= ——7—
a?Ji(ka)’

where we need to use the equation (3.95) from Jackson’s book

/0 “ppd (2) dy (202) = & Ui (55)
and the integral expression
[ dopaig) = S22 (56)
0
Finally, we got the potential as
61002 =300 - ﬂ’;i ; al (57)
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7 Question (2 points)

Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges =(Q).
The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of dielectric
constant €), as shown in the Figure.

Figure 4: Figure for the question 7.

a) Find the electric field everywhere between the spheres.

b) Calculate the surface-charge distribution on the inner sphere.

7.1 Solution

a) We can solve this problem splitting it on two different regions:
. empty (o)
« filled (f).

Let’s start with the easy side: the empty. In this region, as we do not have any charges (it is empty),
we can write the Poisson equation

Vo, =0, (58)
which has the solution
oo B
_ L £
d, = 2 (Aem" + m) Py(cosb). (59)

Considering the the potential on the surface of the first conductor (r = a) is a constant value, for
instance C, we can impose our first boundary condition and find out that

o0 0
O (r=a)= ZW Py(cost) =C
=0

B
C:A0+—O
a

B, = —Aga%H,ﬁ > 0,

and we use the fact that the terms assigned as zero have this value because the constant is a constant,
so it is independent of polar variable 6.
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Considering now the other conductor (r = b), that needs to have a constant potential (C)) as

well, we have
P ( W)f (cosb)

P =2t = A, = B, =0, > 0. (60)

Because this relation hold for all values of the independent polar variable and because the Legendre
polynomials are orthogonal, all coefficients must equate independently. Then, A, must be zero for
all £ > 1. Thus, the potential in the empty region is given by

B
Pe(r,0,0) = Ao+ —, (61)
and the electric field follow as

E.=-Vo, = —Qf. (62)
But this is the solution only for the empty region. The filled region, again, there is no charge
(at least in the region between the shells). Then, one more time we can solve the same equations,

finding

;= Ag+ =27
- By .
Ef = —V<I>f = ﬁ?”. (63)

Having the splitted solution we only need to apply the boundary condition between the dielectric
and empty regions:

Taking the radial part, we conclude that

B B
—20 = 0 = By = By (64)
,
and that the electrical field (E) and the displacement fields (D, and Dy) are
B By B
E = Of’ D.=¢ 27‘ and Df—e—zof. (65)
r2 r

But what is the value of B,? The answer to this question is given thinking about the total charge
that we could have access, for example, (), in the inner shell. Then, due the fact that V - D = p,
the Gauss’ law in the region between the shells give it as following

Q= f{ dS - D
S(a<r<bd)

2 /2 B
Q= / der? / df sin (960—20 —|—/ df sin 66—
0 0 r /2

Q

=218 = By=——.
mBy(e + €) 0= e+ e)

(66)
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Finally,

Q [ ol 1. €@ 1.
= D, =— = dDf=——"——-—1. 67
27 (e + €o) 2 2m(e + ) 2 ANC 2m(e+ €) = (67)
b) The surface-charge distribution in the inner sphere could be computed using
g = (D2 — Dl) . ﬁ|g
and, because inside a conductor there is no fields D; = 0. Then,
1
Oe =D, 7peg = i_’
27m(e + €o) a?
1
O'f:Df-ﬂT:a: i— (68)

27 (e + €g) a?
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