


Monte Carlo Method




Motivation

e Evaluation of cross sections leads to

o — /dajldx2 Z fa1/p(aj1) fa»2/ﬁ(aj2)

subp

1 ~ \
/dCI)n(azlPA —+ CCQPB; D1 .. .pn)@(CU_tS)Z’MP(CLlCLQ — bl ce bn

25(2m)3n—4

there are 3n-2 integrals.We also need to simulate the detector!
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there are 3n-2 integrals.We also need to simulate the detector!

* We need effective techniques to perform the calculations!



Shortcomings of traditional numerical methods

* Traditional methods work well for low dimensional integrals:

Simpson’s rule:
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* This can be improved
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* Traditional methods work well for low dimensional integrals:

method /uncertainty | 1 dimension | d dimensions
Trapedoidal rule % n21/d
Simpson’s rule = n41/d
Gauss rule ninq,_l n(2m1_1>/d
Monte Carlo \/Lﬁ \/Lﬁ

* |/d factor renders the methods inefficient




Example

1
[ — / dr cos (fa;) _ 2 063661977
0 2 T

evaluations Simpson MC
0.638 0.3

0.6367 0.8

0.63662 0.6

0.636619 0.65

0.636619 0.636




Introduction

* MC transforms the problem into a stochastic one.

* MC provides approximate solutions using statistical sampling
experiments.

* MC has a wide range of applications from economics to physics
e MC is a statistical method used in simulation of data

* MC uses a sequence of random numbers as data

* MC can be applied to problems with no probabilistic content



Central Limit Theorem

* The sum of a“large number” of random variables is always normally
distributed




Basic idea

* MC is the most efficient way to perform multi-dimensional integrals.
* The simplest idea: integrand is a function of a random variable

0.1 and ()= [ def@) 5 3 f@)

1=1

x is uniformly distributed [crude MC]

* f(x) is a crude estimator of (f)

* f(x) is a random variable with variance

= [ - = on=k
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* We can estimate the probability of the result being correct:

+2
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e we can estimate the error from the MC simulation

n—lz:: 2



Initial remarks

|. MC is exact for f constant. The flatter the better!
2. We should avoid near-singular integrands, e.g.,

d do
/ ( M)28_|_ M2F2 — m Wlth S — M2 — MFtan@
S —_—

3.Avoid discontinuities of f if possible.
4. MC is a direct simulation of what happens physically.
5.We can also generate events weighted by f(x)

6. The dependence on N is fixed
/. We can improve the method reducing g

= [ = on=



Stratified sampling

* just break the range of integration

O=0opg < a1 <oarp=1

* apply crude MC to each interval

e variance is reduce for same number of calls of f.



Importance sampling

* use more points where the function is larger

* implementation using g(x) pdf:

0= [ o s@ = [ 2D = [Cag 1

where G(x) = /O:E dy g(y)

* Generating random numbers according g(x):

1N L g
0= ¥ L0




* choosing g(x) we can reduce the variance.
1 2
e the variance is g?/g — /O dC (f(az‘) <f>)

* g should be simple to obtain G explicitly

e if g=cf the variance vanishes
* choose a good function g similar to f
* g(x) approaching zero might jeopardize the variance gain
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The change reduces the number of evaluations by 100
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 Main features of the method:

|. Random variable distribution should be close to the integrated
function

2. Basically this is a change of variable to render the integrand flatter

3. Requires the knowledge of the approximate function

4. Requires knowing the integrated function main features



Control Variates

* Use g(x) with a known integral as

[ dw 1) = [ dw (@) = g(@) + [ do gl

to reduce the variance



Adaptative Monte Carlo

* Basic idea: to create the approximation function on the flight
* VEGAS algorithm combines stratified and importance samplings

* VEGAS creates an approximated version of the ideal function

@
90) = Tz [7(2)]

|. start with equal bins

2. rebin to each bin have similar contribution #

3. redo the integration with importance
sampling and return to 2




|. start with equal bins
2. rebin to each bin have similar contribution
3. redo the integration with importance sampling and return to 2

* At each iteration j

N

(-

= — Z f with estimated variance S; =

1
3k1 Njk:
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the cumulative estimate after m iterations is

—1
N " N.E
> |
j=1 J 71=1

and the estimated chi squared E =



* In more than one dimension, we use a separable probability g(x)

g(.CB) — 9z, (xl)gsz (2132) -Gz p (CED)

* there are potential problems

« We need to
ensure the
factorization !

= Additional
change of
variable
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* there are potential problems

N

« We need to
ensure the
factorization !

= Additional
change of
variable
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Y1

we need a more efficient method




Multi-channel Monte Carlo

What do we do if there is
no transformation that

aligns all integrand peaks
to the chosen axes!?
Vegas is bound to fail!
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What do we do if there is
no transformation that
aligns all integrand peaks
to the chosen axes!?

Vegas is bound to fail!

with each pi(x) taking care of one “peak” at the time

* Catch: we need to know the integrand! Know thy problem :-)
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Weighted to Unweighted Events

How do we generate x according to the pdf p(x)?

First method: inverse transform method

Consider the cumulative distribution function

P(x) = /CU dt p(t) = P(x) € |0, 1]

Now consider a random variable u uniformly distributed in [0, 1]

r =P Hu) = p(z)dr = du

* This requires knowing analytically the inverse of P
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Acceptance-rejection method

* Consider x a random variable uniformly distributed between [0, 1]
* Draw a first value of the x (x|)

* Draw a second value of x (x2)

e Accept x| if p(x1) > xoL

* the resulting distribution of accepted points follow p(x)




e Let’s return to the cross section evaluation

o = / dv1dey Y far (1) fanyp(22)

subp
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that requires a suitable choice of the integration variables
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* |nitially we map the integration region into a 3n-2 hypercube

3n—2
diljldﬂ?gdq)n = J H d?“z'

i=1
* |t is easy to reconstruct the momenta and implement the cuts

* This procedure generate weighted events with weight

W = Z 28(2m)an 4 Z f(xl)f(xz)i\/\/l\z O (cuts) ,

{r;} subprocesses

* Now it is possible to generate distributions

* Unweighted events can also be obtained

29



% Example: eTe~ — 2 particles in the final state

™ pT™
Vs Vs

with cos#; = —1 + 2r; and ¢; = 2nrs. More, | can construct the (massless)
momentum with this

dq)z = d cos 91d¢1 = X 4m X dT’ld’f'Q

|
N

D1 = % (1, sinf; cos ¢1, sinfqsin ¢y, cosb;)

S
p2:§ (11

—sin #; cos ¢1, —sin @y sin ¢y, — cos 6;)
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