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A B S T R A C T   

The increasing penetration of electric vehicles (EVs) inherently couples the transportation system with the 
electricity system through charging stations (CSs). Today’s regulatory context highly incentivizes CS infra
structure investments that are expected to have a significant impact on reducing air pollution, cutting emissions 
and promoting environmentally sustainable cities. The Sizing problem of a CS typically concerns the minimi
zation of the investment cost for charging facilities, subject to the CS being able to fulfill a certain level of 
charging requests. Several studies have shown the potential of Smart Charging technologies, towards controlling 
the charging profiles of EVs, so as to achieve a lower operational cost or a lower peak to average power con
sumption ratio for the CS, by shifting the charging of some EVs. By making more efficient use of charging fa
cilities, Smart Charging can also help reducing the amount of chargers required in order to achieve a certain 
Quality of Service (QoS) for the CS’s clients. In this paper we solve the CS’s sizing problem (i.e. decisions on 
number and types of installed chargers) through an optimization framework that minimizes the investment cost 
of CS operators, subject to achieving a certain QoS for their clients (EV owners). In particular, we extend the 
existing CS sizing models by taking into account also the smart charging capabilities during operation. We 
present a novel formulation for the QoS level of the CS using chance-constraints and propose some relaxations 
that constitute the problem solvable. Finally, we present a methodology that enhances the scalability of the 
optimal sizing algorithm. The proposed methodology is able to offer valuable services to CS operators in 
competitive environments.   

1. Introduction 

The growth of urbanization generates important environmental and 
societal challenges, related to greenhouse gas emissions (GHG), air 
pollution, noise and dependence on fossil fuels (European Environment 
Agency, 2020). For this reason, one of the main challenges for envi
ronmentally sustainable cities is to decouple urban development from 
the deterioration of the quality of life of their citizens and environmental 
conditions. Towards promoting smart, clean and healthy transportation 
systems and infrastructure in cities, the electrification of urban trans
portation is increasingly accelerated in most developed countries 
(Ruggieri, Ruggeri, Vinci, & Poponi, 2021). According to recent tech
nical reports, electric cars reached a 2.6% of global car sales and about 
1% of global car stock in 2019, surpassing 7.2 million electric vehicles 

(EVs) in the roads (IEA, 2020). In order to facilitate this advancement, 
there is an increasingly high demand for investments in charging 
infrastructure. Indicatively, around 130 million private chargers and 13 
million public chargers are estimated to be needed by 2030 to fulfill the 
EVs’ charging energy demand (Chen et al., 2020) and, as a consequence, 
several policy measures are taken towards providing incentives for in
vestments in charging facilities. 

The largest potential reduction in GHG emissions in an EV compared 
to a conventional vehicle occurs in the use phase (i.e. charging) of the 
vehicle, especially when the EV is mostly charged with renewable en
ergy and the respective EV charging infrastructure is developed in a 
smart manner. As a result, the need to create sustainable business 
models for charging station (CS) investments motivates extensive 
techno-economic analysis. One important aspect of CS investment 
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decisions is the sizing problem, i.e. deciding the numbers and types of 
chargers to be installed. At the same time, advancements in information 
and communication technologies, improves data collection which will 
enhance the integration of EVs in the smart grid (Mahmud, Town, 
Morsalin, & Hossain, 2018). Gathered information and aggregation of 
data enables the optimization of the charging process (i.e. Smart 
Charging). 

In smart charging, a management system schedules and controls the 
charging of EVs (Hu, Morais, Sousa, & Lind, 2018). A coordinating en
tity, operates the EV admission control system, makes the assignment of 
EVs to charging spots, and controls the charging power of each EV. The 
decisions are made based on the EVs’ local objectives (i.e. preferences), 
as well as global objectives such as minimizing the CS’s operational cost 
(Tang, Bis, & Jun Zhang, 2014), achieving a fair allocation of resources 
among users (Tsaousoglou, Pinson, & Paterakis, 2020), or complying 
with certain constraints that relate to the safe operation of the under
lying electrical grid (Seklos et al., 2020; Tsaousoglou, Giraldo, Pinson, & 
Paterakis, 2020; Zheng, Nius, Shang, Shao, & Jian, 2019). Three sepa
rate families of studies can be identified in the literature, where the first 
addresses planning and sizing problems for CSs, the second designs 
scheduling algorithms for optimizing the CS’s operation (with given 
charging infrastructure), and the third considers the sizing problem of a 
CS while taking into account also the resulting Quality of Service (QoS). 

1.1. Charging station sizing 

Various studies cope with the siting (determining the locations of 
CSs) and sizing (determining the installed charging capacity of a CS) 
problem of CS investment planning. Such studies either consider public 
CSs, where their objective is to compute the optimal location points for 
building or installing charging stations inside metropolitan cities or 
urban areas (Hea, Yin, & Zhou, 2015), or private CSs in competitive 
market environments (Guo, Deride, & Fan, 2016). 

In Simorgh, Doagou-Mojarrad, Razmi, and Gharehpetian (2018), the 
optimal siting and sizing problem of CSs was modeled as an integer 
optimization problem in which the objective is to minimize: the in
vestment cost, the connection cost, the total cost of power losses, and the 
cost of demand response actions. The solution was obtained using par
ticle swarm optimization. In Yang, Dong, and Hu (2017), the authors 
propose a data-driven method for the sizing problem of taxi-CSs. In Hea 
et al. (2015), the authors also presented simulations that investigate the 
influence of the budget on the types of installed chargers and on the 
average charging time. In Luo et al. (2018), multiple types of chargers 
(slow, medium, fast) are considered. The objective was to find the 
optimal number of chargers to install for each particular charger type. A 
two-step scenario-based optimization model was proposed and trans
formed into a mixed-integer second-order cone program through the 
SOCP relaxation. A two stage optimization was formulated in Hayajneh, 
Naser Bani Salim, Bashetty, and Zhang (2019) for the sizing of CSs 
powered by batteries. In the first stage, a genetic algorithm is used to 
minimize the total transportation energy losses for all the EVs, by 
assigning each EV to a certain CS. In the second stage, the cumulative 
energy demand of each CS’s assigned EVs is calculated based on the state 
of charge of EVs’ batteries. Then, the optimal number of fast and slow 
chargers required to satisfy demands in each station is found through a 
linear optimization problem. In Zhang, Hu, Xu, and Song (2016), the 
social cost of the EV charging system in an urban area is optimized 
through planning the locations of public charging stations. A framework 
for optimal CS planning, considering location, size and charging stra
tegies is presented in Zheng et al. (2014). 

Other studies consider the problem of placing and sizing CSs in 
highways to serve EVs that travel for long distances. In such studies (e.g. 
Huang & Kockelman, 2020; Napoli et al., 2020Napoli, Polimeni, Micari, 
Andaloro, & Antonucci, 2020), only fast chargers are typically 
considered. 

1.2. Scheduling algorithms for smart charging 

There are various economic and technical benefits that smart 
charging offers to customers and power network operators. In particular, 
smart charging technology can be configured with scheduling algo
rithms in order to increase the social welfare by prioritizing the charging 
tasks that are more urgent (Tsaousoglou, Steriotis, Efthymiopoulos, 
Smpoukis, & Varvarigos, 2019), while it also allows the CS to offer de
mand response services to the system operator (Tsaousoglou, Steriotis, 
Efthymiopoulos, Makris, & Varvarigos, 2020). In Sachan, Deb, and 
Singh (2020a), the authors study the impact of different heuristic smart 
charging methods on the underlying electricity grid. 

In Şükrü Kuran et al. (2015), the revenue-maximizing problem of a 
CS is considered. The authors propose a two-layer scheduling method 
and compare it with two heuristic algorithms: first come first serve 
(FCFS) and earliest deadline first (EDF). In Tsaousoglou, Steriotis, and 
Varvarigos (2019), scheduling of EV charging was used as a tool to 
minimize the operational electricity costs of CSs. In Li, Xie, Huang, Lin, 
and Liu (2020), the authors considered the scheduling problem of the 
EVs in a working place parking lot, with the objective of maximizing the 
average user satisfaction. Huang and Zhou (2015) also considers a 
workplace parking lot and leverages smart charging in order to mini
mize costs. A real-time EV charging strategy with preemption is pro
posed in Jiang and Zhen (2019), for a setting with an energy storage 
system and renewable generation. In Vandael, Claessens, Hommelberg, 
Holvoet, and Deconinck (2013), the authors developed a method for 
deciding the aggregate charging energy of a station, and prioritizing the 
station’s EVs based on their urgency. In Tang et al. (2014), an online 
algorithm was developed for deciding the charging rate of EVs in a CS, so 
that the CS’s energy cost is minimized under uncertain future arrivals. 
Finally, Tsaousoglou, Pinson, and Paterakis (2021) proposes a mecha
nism for allocating the available RES generation to EVs, using algo
rithmic game theory. 

1.3. QoS-aware charging station sizing 

Quality of Service is a major key performance indicator as it 
implicitly quantifies the acceptance rate of the proposed CS services 
from the end users’ perspective. Xiao, An, Cai, Wang, and Cai (2020) 
jointly considers the QoS satisfaction of end users and the planning cost 
budget by deciding the optimal CS locations, the optimal quantities of 
chargers installed at each CS, the optimal allowable maximum queue 
length and maximum capacity of each CS. Their results show that the 
total CS infrastructure planning cost can be effectively reduced by 
appropriately increasing the quantity of chargers at each CS and the 
distribution density of CS. 

Chen et al. (2017) emphasizes the need to conduct adequate 
congestion analysis when designing CS in order to guarantee acceptable 
QoS for end users in the future. It also adopts queuing theory to model 
and analyze the charging congestion phenomenon in CS planning re
sults. This work is based on a data-driven methodology. Choi and Lim 
(2020) proposes a queuing model and two congestion control policies 
based on EV queue length thresholds. A thorough CS planning cost 
analysis is performed to investigate situations in which the application 
of each proposed QoS-aware congestion control policy is advantageous. 
However, the proposed QoS-aware schemes are not modelled jointly 
with the CS planning problem, but rather numerical results are provided 
for specific case studies. In Yang, Sun, Deng, Zhao, and Zhou (2018), the 
optimal number of chargers and waiting spaces in the fast charging 
stations are jointly optimized by considering the cost-benefit perfor
mance from both CS operator and EV users’ perspectives. Works similar 
to Yang et al. (2018), such as Zhu et al. (2017) and Su, Li, and Gao 
(2017), have also used queuing theory to build EV charging station 
planning models and determined the optimal CS sites and their optimal 
scale (i.e. quantity of chargers and waiting spaces). 

In this family of studies, QoS is predominantly modelled based on 
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waiting times that result from queuing models, and the effect of smart 
charging capability (as this is proposed by studies in 1.2) is not 
considered. On the other hand, in Zenginis, Vardakas, Zorba, and Ver
ikoukis (2017), Zenginis, Vardakas, Zorba, and Verikoukis (2016) and 
several references therein, the performance of a single CS in terms of the 
trade-off between the EV owners’ QoS and CS operator’s profits is 
evaluated. A QoS-aware scheduling model is proposed for multiple EV 
classes, but the authors do not deal with the CS sizing problem. They 
rather refer to the need to jointly consider CS planning and scheduling 
taking into consideration QoS constraints as a future work, which is this 
paper’s main contribution. 

1.4. Contributions and organization 

The literature review presented above reveals studies that deal with 
the sizing problem of a CS under forecasted charging demand (and 
possibly QoS considerations via queuing models), as well as a distinct 
family of studies that propose smart charging solutions that optimize the 
CS’s operational objective with the CS’s infrastructure (chargers) being 
fixed. However, by using smart charging, a CS can significantly alter its 
daily power demand profile (e.g. shave demand peaks), which in turn 
greatly interacts with the sizing decisions for the number and types of 
chargers to install. For example, if the charging demand of the CS is very 
flexible towards temporal shifting, then the CS can accommodate it with 
fewer chargers by optimizing the charging times of EVs during opera
tion. Nevertheless, to the best of the authors’ knowledge, optimizing the 
sizing decisions of a CS (in terms of cost and QoS) while also considering 
the effect of smart charging during operation, has not been addressed in 
the literature. 

In this paper, we consider a CS with smart charging capabilities and 
formulate the objective of minimizing its investment cost (Capital Ex
penditures) while ensuring a certain level of QoS for its clients, using 
chance-constraints. We model the QoS based on the probability that an 
EV suffers a certain level of waiting time beyond its requested departure 
time. We also model and analyze the effect of smart scheduling and 
smart charging CS capabilities. We approximate through analytic 
probability distributions the parameters of the arriving charging tasks 
and solve the sizing problem using mixed-integer optimization. Finally, 
we perform extensive simulations for a particular case study to analyze 
the relation between the QoS and the investment cost under smart 
charging capabilities. The most important contributions of this paper 
can be summarized as follows:  

• The sizing problem of a CS is extended, so that the CS’s smart 
charging capabilities during operation are also taken into account.  

• A novel formulation for the QoS level of the CS is presented, where 
the QoS is defined based on the probabilities that a charging task will 
suffer various levels of delay with respect to the satisfaction of its 
charging demand.  

• The sizing problem is brought to a solvable form after certain 
constraint relaxations.  

• The scalability of the optimal sizing algorithm is enhanced through a 
methodology based on Monte Carlo simulations.  

• Simulation results are presented, that show the relation between the 
QoS and the cost of the chargers installed as well as the impact of 
smart charging towards reducing the infrastructure cost during the 
sizing phase. 

The rest of the paper is organized as follows. Section 2 presents the 
system model and problem formulation. The evaluation setup and 
simulation results are presented in Section 3. Finally, Section 4, con
cludes the paper. 

2. System model and problem formulation 

We consider the sizing problem of a CS, which can install chargers of 

different types. Let J denote the set of candidate chargers to be installed. 
Each candidate charger j ∈ J is characterized by a maximum charging 
power Pj that it can support and by a cost uj. A candidate charger j ∈ J 
can be selected to be installed or not, depending on the (binary) decision 
variable 

qj ∈ {0, 1}. (1) 

In an operational horizon, the CS admits a set N of arriving EVs. 
Within the horizon, continuous time is divided into a set T of time slots 
of equal duration. An EV i ∈ N, arrives to the CS at an arrival time ai ∈ T, 
and features a certain charging task that it needs to satisfy, which is 
characterized by a departure time di ∈ T, where ai < di, and a certain 
charging energy requirement Ei. The battery of EV i bears a maximum 
charging rate ηi. 

Regarding the level of control that the CS has over the charging 
profile of its EVs, different cases are relevant. In the next three sub
sections, we formulate three different Charging Control models, i.e. 
“Smart Scheduling”, “Smart Charging”, and “First Come First Serve 
policy”, that we later compare with respect to their effects on the CS’s 
sizing problem. 

2.1. Smart Scheduling model 

In the Smart Scheduling model the EV can start charging at some 
timeslot (later than its arrival time ai). The CS can decide the time that 
the EV begins to charge, but once the charging starts it cannot be 
interrupted. We say that the CS faces a non-preemptive scheduling 
problem. Let binary variable xi,j,t denote whether EV i ∈ N starts 
charging at charger j ∈ J at time slot t ∈ T. The EV can only be assigned 
to a charger that is selected to be installed, i.e. 

xi,j,t ≤ qj, ∀i ∈ N, j ∈ J, t ∈ T. (2) 

If i is assigned to charger j, then, depending on the charging power Pj 

of charger j and the battery charging rate ηi of EV i, the EV will need si,j 

timeslots to complete its charging task. It is 

si,j = ⌈ Ei

min{ηi, pj}⌉,

where ⌈.⋅⌉ denotes the rounding to the nearest integer above. 
Each EV is assigned to exactly one charger j ∈ J and starts charging at 

exactly one particular time slot t ∈ T, that is, 

∑

j∈J

∑|T|− si,j+1

t=ai

xi,j,t = 1, ∀i ∈ N. (3)  

Constraint (3) also makes sure that the EV is not assigned to a charger 
that cannot start charging the EV by timeslot |T| − si,j, so as to be able to 
complete the charging task within the horizon T. 

The timeslot ci where EV i completes its charging task is calculated by 
adding the EV’s uninterrupted charging duration si,j to the timeslot in 

which the EV starts charging. The latter is equal to 
∑

j∈J
∑|T|− si,j

t=0 xi,j,t t, 
since, by Eq. (3), variable xi,j,t will be non-zero for only one timeslot. 
Thus, we have 

ci =
∑

j∈J

∑|T |

t=0
xi,j,t⋅(t + si,j), ∀i ∈ N. (4)  

The task of each EV must be completed within the time horizon T, that is, 

ci ≤ |T|, ∀i ∈ N, (5)  
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while at most one EV may be charging on each charger at any given time 
slot: 

∑

i∈N

∑t

τ=max{ai ,t− si,j+1}

xi,j,τ ≤ 1, ∀j ∈ J, t ∈ T (6) 

Depending on the CS’s assignment decision, EV i will suffer a delay of 
ζi timeslots on the completion of its task, where 

ζi = max{ci − di, 0}, ∀i ∈ N. (7)  

2.2. Smart Charging model 

The Smart Charging model differs from Smart Scheduling in the 
sense that it also allows for fully controlling the EV’s charging power, 
while allowing also for charging interruption. Fig. 1 presents this dif
ference graphically. 

Upon arrival, the EV is assigned to a certain charger. Let binary 
variable yi,j denote whether EV i is assigned to charger j. The EV is 
assigned to exactly one charger, i.e. 
∑

j∈J
yi,j = 1, ∀i ∈ N, (8)  

and it can be assigned only to a charger that has been installed, i.e. 

yi,j ≤ qj, ∀i ∈ N, j ∈ J. (9) 

An EV i can charge at charger j and timeslot t, at a power rate pi,j,t ≥ 0 
which is a continuous variable chosen by the charging station, repre
senting smart charging. The EV can receive charging only from the 
charger to which it is assigned: 

pi,j,t ≤ yi,j⋅min{Pj, ηi}, ∀i ∈ N, j ∈ J, t ∈ T, (10)  

where ηi is the EV’s maximum charging rate. Moreover, the EV cannot 
charge before its arrival time 

pi,j,t = 0, ∀t < ai, i ∈ N, j ∈ J. (11)  

Multiple EVs can be assigned to the same charger, but they would have 
to share the charger’s output power: 
∑

i∈N
pi,j,t ≤ qj⋅Pj, ∀j ∈ J, t ∈ T. (12)  

We define a binary variable ci,t to denote whether EV i completes its 
charging task at timeslot t. In order for that to happen, i needs to have 
received a charging equal or higher than its charging demand Ei, up until 
timeslot t. This is expressed as 

∑

j∈J

∑τ=t

τ=1
pi,j,τ ≥ ci,t⋅Ei, ∀i ∈ N, t ∈ T, (13)  

while it is required that i receives its charging demand within the ho
rizon T: 
∑

t∈T
ci,t = 1. (14)  

Depending on the timeslot t⋅ci,t , in which EV i completes its charging 
task, the EV suffers a delay of ζi timeslots, where 

ζi = max

{

0,
∑

t∈T
t⋅ci,t − di

}

(15)  

2.3. First Come First Serve policy 

In order to have a benchmark for comparison, we consider the first- 
come-first-serve (FCFS) policy, as a scheduling policy that represents the 
absence of smart charging/scheduling. In FCFS, the tasks are prioritized 
based on their arrival time, i.e. for two tasks m, n where task m has an 
earlier arrival time (am < an), then task m should start charging earlier 
than n. This is implemented by considering the Smart Scheduling model 
as described, but adding the following constraint 
∑

j∈J

∑

t∈T
xm,j,t t ≤ xn,j,t t, ∀m, n ∈ {Nk : am < an}. (16)  

2.4. Formulation of sizing problem with QoS constraints 

It is assumed that the parameters ai, di,Ei of the EVs that request 
charging services from the CS are not known beforehand for future 
operational days but they can be approximated by known probability 
distributions. Thus, the QoS of the CS is defined by a tuple (Γ,ε,D), where 
Γ is the upper bound on the probability that an EV suffers any amount of 
delay, and ε is an upper bound on the probability that an EV suffers a 
delay higher than D. In order to secure a certain level (Γ, ε,D) of QoS, the 
CS needs to install enough chargers, so that 

Pr{ζi > 0} ≤ Γ, (17)  

and 

Pr{ζi > D} ≤ ε. (18)  

Notice that the CS’s level of QoS, depends on the CS’s sizing decisions qj 

through Eqs. (1)–(18). The sizing problem of the CS is to find the optimal 
configuration of chargers such that the selected level of QoS is ensured, 
with the minimum possible cost. Considering a monetary cost of uj for 
each charger j ∈ J, the CS’s cost is comprised by the investment cost of 
chargers 

∑
j∈Jqjuj. Under these considerations, the CS’s sizing optimi

zation problem with chance constraints for QoS, is formulated as 

min
qj ,𝒱

∑

j∈J
qjuj

s.t. model constraints of a Charging Control model,
(1), (17), (18),

(19)  

where set 𝒱 contains the decision variables of the relevant Charging 
Control model used. 

Chance constraints (17), (18) of problem (19) cannot be handled 
analytically. We tackle problem (19) by a Monte Carlo simulation 
method, where we sample different problem instances from the proba
bility distributions of parameters ai, di, Ei and obtain an estimation of 
Pr{ζi > 0} and Pr{ζi > D}. In particular, we create a set K of problem 

Fig. 1. Difference between Smart Scheduling and Smart Charging.  
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instances, where in each instance k ∈ K a different set Nk of EVs is 
generated. We extend the variable set 𝒱 to 𝒲 = {qj,𝒱

(k),ξ(k)i ,μ(k)
i }, where 

k ∈ K. Binary variable ξ(k)i denotes whether EV i of instance k suffers any 
delay, and binary variable μ(k)

i denotes whether it suffers a delay larger 
than D, i.e.: 

ξ(k)i =

{
1, ζ(k)

i ≥ 0,
0, otherwise,

(20)  

μ(k)
i =

{
1, ζ(k)

i ≥ D,

0, otherwise,
(21) 

Using these auxiliary variables, chance constraint (17) is replaced by 
∑

k∈K
∑

i∈Nk
ξ(k)i

|Nk||K|
≤ Γ, (22)  

and chance constraint (18) is replaced by 
∑

k∈K
∑

i∈Nk
μ(k)

i

|Nk||K|
≤ ε, (23)  

where 
∑

k∈K
∑

i∈Nk
ξ(k)i /|Nk||K| is an estimation of Pr{ζi > 0} and 

∑
k∈K
∑

i∈Nk
μ(k)

i /|Nk||K| is an estimation of Pr{ζi > D}. Finally, the con
straints of the Charging Control model of choice need to hold for all 
instances in K. Therefore, with a slight abuse of notation, we reformulate 
problem (19), as 

min
𝒲

∑

k∈K

(
∑

j∈J
q(k)

j uj

)

s.t. model constraints of a Charging Control model, ∀k ∈ K,

(1), (20)–(23).

(24) 

Problem (24) can now be brought to a solvable form, by relaxing 
constraints (20) and (21), using the big-M method, i.e. 

(1 − ξ(k)i )M + ζ(k)
i > 0, (25)  

ξ(k)i M − ζ(k)
i ≥ 0, (26)  

(1 − μ(k)
i )M + ζ(k)

i − D > 0, (27)  

μ(k)
i M − ζ(k)

i + D ≥ 0, (28)  

where M is a constant large number. 
The last remaining issue is that in order to have a decent estimation 

of the chance-constraint probabilities, a large number of sample in
stances |K| needs to be considered. However, the computational time of 
problem (24) becomes a burden for large values of |K|, due to the in
crease in the number of decision variables. In order to tackle this issue, 
we design an algorithm, in which instead of constraints (22), (23), we 
consider the following constraints: 
∑

i∈Nk
ξ(k)i

|Nk|
≤ Γ, ∀k ∈ K, (29)  

and 
∑

i∈Nk
μ(k)

i

|Nk|
≤ ε, ∀k ∈ K. (30)  

Notice that, in contrast to (22), (23), constraints (29), (30) are required 
to hold for every instance k ∈ K. Therefore, (29) and (30) can be thought 
as the more conservative counterparts of (22) and (23) respectively. 
Indeed, notice that if (29), (30) hold, then so do (22), (23). Therefore, 
the CS will provide a QoS that is at least as good as the selected one. By 

using (29), (30), however, each instance is decoupled from the rest of the 
instances, which allows us to formulate the problem as 

min
𝒲∗

∑

k∈K

(
∑

j∈J
q(k)

j uj

)

s.t. model constraints of a Charging Control model,

(20)–(21),

(29)–(30),

(31)  

where 𝒲∗ = {q(k)
j , 𝒱(k), ξ(k)i , μ(k)

i }. The motivation for the above refor
mulation is that problem (31), is directly separable to |K| subproblems, i. 
e. a separate problem for each instance k ∈ K, since there are no coupling 
constraints between different scenarios k. By leveraging this formula
tion, we can solve |K| instances of problem (31) (possibly in parallel), 
where in each subproblem the order of the number of variables is 
ℴ(|N||J||T| + |N||J| + |N||T| + |J|), instead of one problem (i.e. (24)) with 
a number of variables in the order of 
ℴ(|N||J||T||K| + |N||J||K| + |N||T||K| + |J|). After solving (31) in a 
distributed manner, the decisions for variables qj are taken as 

qj = max
k∈K

{q(k)
j }, ∀j ∈ J. (32) 

In the next section we present a case study and respective simulation 
results of the proposed methodology. 

3. Evaluation setup and results 

We consider a time horizon T which consists of 24 timeslots of equal 
duration, and a number of 50 EVs unless stated otherwise. In order to 
evaluate the proposed methodology, we used an evaluation setup where 
the parameters of the charging demands (EVs) were generated 
randomly, using realistic probability distributions,1 as the ones pre
sented in Ma and Mohammed (2014) and Sachan, Deb, and Singh 
(2020b). In particular, the arrival time ai of an EV is randomly generated 
by a truncated Gaussian distribution with mean μ = 8.5 and standard 
deviation σ = 2.7 (rounded to the nearest integer below). Each EV, 
before reaching the CS is assumed to have driven a distance ρi, where ρi 
follows another truncated Gaussian distribution with mean μ = 40 miles 
and standard deviation σ = 15. 

The departure time di of an EV, is also sampled from a truncated 
Gaussian distribution with mean μ = 18.5 and standard deviation σ =

3.2 (rounded to the nearest integer above). We considered four types of 
EVs with different specifications of energy consumption rate when 
driving θi, battery capacity bi and battery charging rate ηi. The type 
distribution of EVs was generated randomly with a probability weight 
(0.4,0.3, 0.2,0.1) for the EV types “Small”, “Sedan”, “SUV”, and “Truck” 
respectively. The EV types and their characteristics are summarized in 

Table 1 
Types and specifications of EVs.   

Small Sedan SUV Truck 

Consumption rate θi  0.38 0.43 0.57 0.82 
Battery Capacity bi  16 24 54 70 
Max Charging Rate ηi  8 24 50 50  

1 Note that the proposed methodology is not tailored to any particular model 
for the characteristics of the charging demands. Moreover, this paper does not 
discuss which model performs best towards accurate simulation of real EV ar
rivals. Rather, a probabilistic model for the arrival and departure distributions 
is taken from the literature and used as a testbed in order to evaluate the 
proposed methodology. 
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Table 1. The energy demand of each EV i depends on its distance ρi, 
covered before reaching the CS, and its energy consumption rate θi 

Ei = min{bi, ρiθi}. (33) 

For the CS’s choices for charging facilities, we considered three types 
of chargers where each type features a different level of charging rate. 
Level 1 charging uses a standard home (garage) 120 or 230 V, AC 
charger. The second option (Level 2) uses a 240/400 V outlet. Charging 
Level 1 and Level 2 are used mainly in single phase. Level 3, also known 
as fast charging, is a third option. The output power and the price of each 
charger are presented in Table 2. With respect to the QoS level chosen by 
the CS, we considered three different cases.  

1. “No-Delay”: QoS-(0,0,0): 
This QoS level means that Γ = ε = D = 0, which means that each 

one of all the arriving EVs should receive its whole energy demand Ei 
until its deadline di, and no delay is allowed. In practice, this would 
correspond to an expensive CS, whose business model is to guarantee 
that its clients never suffer any delay.  

2. “One-Slot-Delay”: QoS-(0.2, 0, 1): 
This level of QoS means that an arriving EV has a maximum of 20% 

chance of being delayed for one timeslot, but no delay higher than 1 
timeslot is allowed. This business model would correspond to a 
medium QoS in practice.  

3. “Free-Delay”: QoS-(1,0,|T| − di): 
In this QoS-level the EVs have no guarantee with respect to when 

their charging will finish. The only guarantee is that their energy 
demand will be satisfied within the horizon T. 

For each of the above cases, the sizing problem was solved for 
different numbers |N| of arriving EVs and for a number of |K| = 200 
instances (scenarios) for each choice of |N|. These scenarios are modeled 
in python 3.8 using Pyomo 5.7 (Hart et al., 2017), and solved by Gurobi 
12.9 (Gurobi Optimization, 2020). The number of candidate chargers for 

each charger type is set to 
∑

i∈N
E(k)

i
pω |T| , where pω ∈ {4,8, 19.2} is the output 

power of the corresponding charger type. 
First, we evaluate the effect that the different Charging Control 

models have on the CS’s investment cost. Fig. 2 depicts the results for the 
No-Delay case. As the figure suggests, the investment cost with Smart 
Charging can be significantly lower (more than 50%) compared to the 
FCFS case. Moreover, the difference increases with higher numbers of 
EVs, which suggests that it is indeed important to consider the smart 
charging (or smart scheduling) functionality of the CS in the CS sizing 
problem, especially as EV penetration increases. 

In Fig. 3, the amount of investment cost, for the Smart Scheduling 
model, is compared for the three cases of QoS that were considered. It 
can be observed that, in comparison to the Free-Delay case (i.e. the one 
with the worst QoS), the CS can establish a medium level of QoS, i.e. 
One-Slot-Delay, with a relatively small extra cost. 

For the case of One-Slot-Delay, the results of installed chargers (as a 
percentage of charger type) were obtained for different cases of the 
number of EVs |N|. Fig. 4 depicts the results for the Smart Scheduling 
model, while Fig. 5 depicts the results for the Smart Charging model. The 
results show that, in the case of Smart Scheduling, this particular CS 
would be mainly relying on Level 2 and Level 3 chargers. However, the 
results are vastly different in the case of the Smart Charging model: By 
allowing full controllability of the EVs, the Smart Charging model 

Table 2 
Charger types and costs.  

Charger type Charging rate pj  Charger cost uj  

Level 1 4 kW 1000$ 
Level 2 8 kW 1500$ 
Level 3 19.2 kW 2200$  

Fig. 2. Cost of installed chargers as a function of number of EVs for the three 
Charging Control models. 

Fig. 3. Cost of installed chargers for different numbers of EVs.  

Fig. 4. Percentage of installed chargers of each charger type for different 
numbers of EVs for the Smart Scheduling model and for the One-Slot- 
Delay model. 
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enables higher adoption of Level 3 chargers, i.e. the ones that have the 
lowest cost per kW. In contrast, the Smart Scheduling model opts also for 
other types of chargers in order to have more chargers in total since it 
cannot charge EVs simultaneously. As a final observation, we note that 
even with the Smart Charging model the algorithm also chooses some 
Level 1 and Level 2 chargers in most cases, because having more char
gers is still beneficial since it provides more choices for the initial 
assignment of EVs to chargers. 

It is worth noting that we also included an extra charger type in the 
simulations, namely ultra-fast charging with a charging rate of 50 kW, 
and a cost of 50,000$. Notice that, by Tables 1 and 2, this type of 
chargers can charge the Sedans, SUVs and Trucks faster than the other 
charger types, and a naive approach might have also installed some of 
these chargers. Nevertheless, the simulation results show that this 
charger type was never needed to be installed, for the given level of QoS 
(for this reason, it is not included in the figures). 

The results of Fig. 6, depict the respective percentages of installed 
charger types for all three cases of QoS and for both Smart Scheduling 
and Smart Charging models, for a fixed number of 70 EVs. 

Next, we demonstrate the resulting matchings, i.e. in what charger 
type is each EV-type assigned to for the Smart Scheduling model. As 
shown in Fig. 7, the slower Level 1 and Level 2 chargers that are 
installed, are mainly used to charge small EVs. By increasing the battery 
capacity bi and charging rate ηi, EVs are shifting to use faster chargers. 

In Fig. 8, we also compare the two QoS levels that allow delay (i.e. 
Free-Delay and One-Slot-Delay) with respect to the probability that an 

EV will suffer any amount of delay, as computed by 
∑

k∈K

∑
i∈Nk

ξ(k)i

|Nk ||K| . Recall 
that the QoS level for One-Slot-Delay was (0.2, 0, 1) which means that 
we allow up to 20% of EVs to suffer any amount of delay. Note that, 
while the problem was solved using (29), in Fig. 8, the probability of 
delay is evaluated using the metric defined in (22). Thus, the figure 
provides insight into how good the proposed relaxation is. As can be 
observed by the figure, the delay probability for One-Slot Delay is al
ways lower than 20%, which justifies the approach that we adopted by 
replacing (22) with (29). Moreover, the figure demonstrates that the 
proposed relaxation is not only conservative, but actually fairly tight as 
well, since the resulting probability is quite close to 20% in most cases. 

4. Conclusions 

In this paper we considered the sizing problem of a Charging Station 
(CS), i.e. deciding the amounts and types of chargers to be installed. We 
enhanced the sizing optimization models of the existing literature by 
taking into account the ability of the CS to control the charging of EVs 
during operational time, under different charging control models (i.e. 
Smart Scheduling, Smart Charging and First-Come-First-Serve policy). 
The sizing problem was formulated as a cost-minimization problem with 
chance constraints for Quality of Service (QoS). In particular, a CS’s 

Fig. 5. Percentage of installed chargers of each charger type for different 
numbers of EVs for the Smart Charging model and for the One-Slot- 
Delay model. 

Fig. 6. Percentage of installed chargers of each charger type in each Charging 
Model and QoS case. 

Fig. 7. Percentages of EV assignments to each charger type, for all EV types.  

Fig. 8. Probability of suffering delay for different numbers of EVs.  

A. Khaksari et al.                                                                                                                                                                                                                               



Sustainable Cities and Society 70 (2021) 102872

8

level of QoS was defined based on the probability that an EV will suffer a 
delay in the completion of its charging task, and the probability that this 
delay will be higher than a given threshold. We proposed a novel 
methodology based on optimization theory for bringing this problem to 
a solvable form, while we also proposed a conservative relaxation that 
highly reduces the computational time and increases the scalability of 
the proposed algorithm. 

For the case study presented, our simulation results verified that this 
relaxation is indeed conservative (i.e. respects the CS’s desired QoS) and 
even fairly tight (i.e. results in a QoS level which is very close to the one 
desired by the CS). Also, the results show substantial differences in the 
choice of charger types, depending on which charging control model is 
available to the CS. Finally, the motivation for considering the CS’s 
smart charging capabilities into the CS’s sizing problem was verified 
experimentally, since smart charging was shown to reduce the infra
structure cost more than by 50%, and the percentage increases for larger 
charging stations. 
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