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• In 1831 Michael Faraday described how the time variation of the magnetic field flux through a closed 
circuit generated a potential difference along that circuit, and therefore a current. 

• That potential difference could not be ascribed to a specific place on the circuit — it was not like we applied 
a battery to a specific point in the circuit. That potential is “spread” all along the circuit, and for that reason 
this is often referred to as an electromotive force.  We then define this force as in integral over the circuit: 

       

• And since we are talking about the flux through a given surface, it is useful to define the magnetic flux as: 

 

• The observation by Faraday (which,  by the way relies on the notion of field , that he introduced himself!) 
was that the time variation of this flux determined the electromotive force: 

 

• It is remarkable that Faraday’s law introduces two new elements into electromagnetism: first, it connects 
the electric field with the magnetic field. And second, it introduces the notion of time into the game. 

• The sign is sometimes referred to as Lenz’s law: the magnetic field of the induced current opposes the 
change in flux of the external magnetic field through that circuit.

Δϕ ∼ ⃗E ⋅ Δ ⃗x ⇒ ℰ = ∮ d ⃗l ⋅ ⃗E

ΦS = ∫ d ⃗S ⋅ ⃗B

ℰ = −
dΦB

dt
⇔ ∮C

d ⃗l ⋅ ⃗E = −
d
dt ∫S(C)

d ⃗S ⋅ ⃗B

Faraday’s law of induction
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• An interesting property of Faraday’s law is that a change in flux can happen in basically two 
ways: 

(i) we keep the circuit fixed, but we increase the flux — e.g., by increasing the magnitude 
of the magnetic field through the loop; 

(ii) we keep the field configuration fixed, but we move/change the circuit in such a way 
that the flux changes. 

• In order to explore these relationships, let’s consider a circuit which moves with a velocity  
in a region with inhomogeneous magnetic fields, as shown in the figure, so the flux of the 
magnetic field inside the circuit changes as a result of that movement. 

• This is obviously identical to a situation where we move the source of those fields in the 
direction of the circuit: the two configurations should generate the same current in that loop. 

• However, notice that in the reference frame of the “lab" (where it is the circuit which is 
moving), the field is actually constant. How should we then consider Faraday’s law, since it it 
refers to the time variation of the flux through a circuit that is now moving: 

⃗v

∮C
d ⃗l ⋅ ⃗E = −

d
dt ∫S(C)

d ⃗S ⋅ ⃗B

Faraday’s law of induction
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• We can do this by using, in the integral of the magnetic flux, the frame of reference of the circuit,  , in which the circuit 
(and the surface) is fixed. We then have: 

 

                       

• The last term can be rewritten using that  , leading to: 

 

• Now using the Stokes theorem and passing the last term to the left-hand side we get: 

 

• What we have done is, in effect, express Faraday’s law in the reference frame of the “lab", where the magnetic field is static. So, the left-
hand side must be the electric field in the reference frame of the circuit! And in fact, the expression is that for the Lorentz force! 

• So, even if the magnetic field is not really changing at all ( ), there is still an induction in the circuit, due to the fact that the 
circuit is moving, and therefore its charges will feel the Lorentz force from that velocity. 

• In other words: in the frame where the magnetic field is static, the circulation of the electric and magnetic fields in the Lorentz force 
cancel each other exactly! (Notice, however, that the charges do move inside that circuit: it is only this “circulation" that cancels out!)

⃗x c = ⃗x − ⃗v t

∮C
d ⃗l ⋅ ⃗E = − ∫S(C)

d ⃗S ⋅ [ d
dt

⃗B (t, ⃗x c = ⃗x − ⃗v t)]
= − ∫S(C)

d ⃗S ⋅ [ ∂ ⃗B
∂t

+ ( ∂ ⃗x c

∂t
⋅ ⃗∇c) ⃗B ] = − ∫S(C)

d ⃗S ⋅ [ ∂ ⃗B
∂t

− ( ⃗v ⋅ ⃗∇c) ⃗B ]
( ⃗v ⋅ ⃗∇ ) ⃗B = ⃗v ( ⃗∇ ⋅ ⃗B ) − ⃗∇ × ( ⃗v × ⃗B ) = − ⃗∇ × ( ⃗v × ⃗B )

∮C
d ⃗l ⋅ ⃗E = − ∫S(C)

d ⃗S ⋅ [ ∂ ⃗B
∂t

+ ⃗∇c × ( ⃗v × ⃗B )]

∮C
d ⃗l ⋅ ( ⃗E + ⃗v × ⃗B ) = − ∫S(C)

d ⃗S ⋅
∂ ⃗B
∂t

∂ ⃗B /∂t = 0

Faraday’s law of induction
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⃗v

We will  see later this 
this is a bit of an 

oversimplif ication: we really 
ought to use the Lorentz 

transformations! Nevertheless, 
Faraday's law remains exactly 

valid,  as do our derivation — 
for the most part!



• Faraday’s law then tells us that: 

 

 

• For a discussion about energy, though, it is useful to return to the notion of electromotive force, hence”: 

 

• This electromotive force does work on the charges that move around that circuit. In fact: 

 

• Therefore: 

 

• Let’s consider what this means for a circuit that is being kept fixed, as we increase the magnetic field from zero up to a given value.  

• We can express the work that is done in that process, in order to generate the electromotive force, as: 

 

           

∮C
d ⃗l ⋅ ⃗E = ∫S(C)

d ⃗S ⋅ ( ⃗∇ × ⃗E ) = − ∫S(C)
d ⃗S ⋅

∂ ⃗B
∂t

⃗∇ × ⃗E = −
∂ ⃗B
∂t

ℰ = ∮C
d ⃗l ⋅ ⃗E = −

dΦB

dt

∮C
(I d ⃗l ) ⋅ ⃗E = ∮C

(dq ⃗v q) ⋅ ⃗E = ∮C
d ⃗F q ⋅ ⃗v q =

d W
dt

dW
dt

= − I
dΦB

dt

dW
dt

= − I∫S(C)
d ⃗S ⋅

∂ ⃗B
∂t

= − I∫S(C)
d ⃗S ⋅

∂
∂t ( ⃗∇ × ⃗A ) = − I

∂
∂t ∫S(C)

d ⃗S ⋅ ( ⃗∇ × ⃗A )

= − I
∂
∂t ∮C

d ⃗l ⋅ ⃗A

Energy of the magnetic field
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• We just derived an expression for the work that is done by the electromotive force for a circuit with a fixed current , as we increase the field  (or, equivalently, ): 

 

• Therefore, the energy that flowed to the circuit, from the magnetic field, is equal but with opposite sign: 

 

• Now employ Ampère’s law to express the current density in terms of the magnetic field,  : 

  

                

• Finally, assuming a linear constitutive relation between  and  we obtain: 

           is the energy density of the magnetic field. 

• Together with the result for the energy of the electric field we obtain the total energy density of the electromagnetic field: 

        ,        which is correct even in a relativistic sense!

I ⃗A ⃗B

dW
dt

= − I∮C
d ⃗l ⋅

∂ ⃗A
∂t

dUB

dt
= + ∮C

(Id ⃗l) ⋅
∂ ⃗A
∂t

= ∫ ( ⃗J dV) ⋅
∂ ⃗A
∂t

⃗∇ × ⃗H = ⃗J

dUB

dt
= ∫ dV ( ⃗∇ × ⃗H) ⋅

∂ ⃗A
∂t

= ∫ dV [ ⃗H ⋅ ( ⃗∇ ×
∂ ⃗A
∂t ) + ⃗∇ ⋅ ( ⃗H ×

∂ ⃗A
∂t )]

= ∫ dV [ ⃗H ⋅ ( ∂ ⃗B
∂t )] + ∮S(V )

d ⃗S ⋅ [ ⃗H ×
∂ ⃗A
∂t ] → ∫ dV [ ⃗H ⋅ ( ∂ ⃗B

∂t )]
⃗B ⃗H

dUB

dt
=

∂
∂t ∫ dV

1
2

⃗H ⋅ ⃗B ⟹ ρB =
1
2

⃗H ⋅ ⃗B

ρEM =
1
2 ( ⃗D ⋅ ⃗E + ⃗H ⋅ ⃗B )

Energy of the magnetic field
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• The previous discussion means that we the energy in the magnetic field for a collection of  current loops is 
something like: 

    , 

where  is the magnetic flux through the loop  . 

• Therefore, the energy buildup for those loops is expressed as: 

    , 

where the partial derivatives here mean that all other variables are kept constant. 

• Since , we get that: 

 

• In practice it may be very hard to keep all the other magnetic fluxes constant: only a superconductor is able to do that 
(as we will see later). But let’s assume we can do it, in an approximate way. 

• Let’s now do an experiment to measure how the energy gets distributed inside a conductor and how that is related to 
the flux. In this experiment we have a 2D film (a strip) that carries the electrons, and a magnetic field applied 
perpendicular to this strip. In this setup, the electrons form something called an “electron gas”.

N

UB = UB(Φ1, ⃗r1 ; Φ2, ⃗r2 ; … ; ΦN, ⃗rN)

Φi i

dUB =
N

∑
i=1 [ ∂UB

∂Φi
dΦi + ( ⃗∇ iUB) ⋅ d ⃗ri]

ΔUB = I ΔΦ

dUB =
N

∑
i=1

[Ii dΦi − ⃗F ⋅ d ⃗ri]

The quantum Hall effect
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⃗B

I



• Now, let’s apply a potential between the two edges of this conducting strip, in such a way that the electrons drifting through the 
conductor are gently pushed to one side. 

• We can define a “resistivity" related to the drift of these electrons to the side of the strip, as a function of the current along the strip: 

    . 

• Now, since  , we have: 

 

• However, now think about the tiniest possible variation in energy for this configuration: this would correspond to a single electron 
moving along the potential difference , so  . 

• In an electron gas, some of the electronic quantum levels can be degenerate, such that when one electron moves, the others like it 
move as well. Let’s call this degeneracy number . Then, we have . 

• Now, in 1982 Laughlin showed that the magnetic flux through a current-carrying strip like this is actually quantized, and the 
“quanta" of magnetic flux are given by: 

 

• Substituting into the resistivity we get that: 

R⊥ =
V
I

I = ΔUB /ΔΦB

R⊥ = V
ΔΦB

ΔUB

V ΔUe = eV

n ΔUn = neV

δΦB = h /e

R⊥ = V
h /e

n e V
=

h
n e2

The quantum Hall effect
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• We can now think that we keep the current constant and slowly vary the magnetic field, 
changing the magnetic flux. The results are as shown in the plot below, and is known as the 
“Quantum Hall Effect". 

• The perpendicular resistivity is shown in blue, and the longitudinal resistivity in red. An very 
naive explanation for this complementarity of the longitudinal resistivity with respect to the 
perpendicular (Hall) is that when the field (and flux) have just the right values, it is not possible 
for an integer number of electrons to switch from one end of the strip to the other. As a result, 
they accumulate, increasing the resistivity.

The quantum Hall effect
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• Let’s assume that there is some slowly varying magnetic field in the vicinity of a material, in such a way that the induced 
electric fields and currents in that material are not too strong. 

• In that case we can assume that the induced currents are proportional to the induced electric field, according to Ohm’s law: 

 

• We then get that: 

 

But since       ,    we get that      

which leads to: 

 

• But there are no charges in this problem (except, maybe, surface charges in the dielectric),  so  , hence: 

 

• Similarly, we can derive an equation for the magnetic field and the vector potential: 

        ,        or                ,        which is called the magnetic diffusion equation .

⃗J = σ ⃗E

⃗∇ × ⃗H = ⃗J = σ ⃗E ↔ ⃗∇ × ⃗B = μσ ⃗E

⃗∇ × ⃗E = −
∂ ⃗B
∂t

⃗∇ × ( ⃗∇ × ⃗E ) = −
∂ ( ⃗∇ × ⃗B )

∂t
= − μσ

∂ ⃗E
∂t

⃗∇ ( ⃗∇ ⋅ ⃗E ) − ⃗∇2 ⃗E = − μσ
∂ ⃗E
∂t

⃗∇ ⋅ ⃗E = 0

⃗∇2 ⃗E = μσ
∂ ⃗E
∂t

⃗∇2 ⃗A = μσ
∂ ⃗A
∂t

⃗∇2 ⃗B = μσ
∂ ⃗B
∂t

Magnetic diffusion
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• The magnetic diffusion equation tells us that a magnetic field that changes with time can penetrate a medium 
through the induced currents, which generate more magnetic field, which generate more currents, and so on 
and so forth. 

• As it is clear from its name, the “diffusion" in this case refers to the way in which the magnetic field penetrates a 
material, similar to the way in which heat is diffused in a medium. From the diffusion equation we get that: 

    , 

that is, for a field that changes on timescales of  , the diffusion scale is  .  

This is in fact called the skin depth of the material. 

• As an example, consider a set up in which the magnetic field in the region  is  , and in the 

region  we have a material with magnetic permeability  and conductivity  . 

• The boundary conditions tell us that 

        (no free currents!)        ,        and         

• But in this case there is no field in the  direction and the only component is  , so we know that any 
induced surface currents will be in the  direction. Therefore, we try a solution of the sort: 

⃗∇2 ⃗A ∼
Δ ⃗A
Δx2

∼ μσ
∂ ⃗A
∂t

∼ μσ
Δ ⃗A
Δt

Δt Δx ∼ Δt /μσ

z > 0 ⃗H> = H0 eiωt ̂x
z ≤ 0 μ σ

Δ ⃗H || = ⃗K × ̂n → 0 ΔB⊥ = 0

z ⃗H ∼ ̂x
̂y

⃗H< = H0 f (z) eiωt ̂x

Magnetic diffusion
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• Substituting this trial solution into the diffusion equation gives us: 

 

 

• This is just like any other exponential/trigonometric solution, except that the frequency is not pure real nor pure imaginary, but complex: 

        ,        with         

• This can be easily solved using  , hence: 

 

• Clearly, in the  region we have only the solution which decays,  (notice that in this step we use the "boundary condition” that the field at 
spatial infinity, , goes to zero!), leaving us with the solution: 

 

• We now define the skin depth of the material as: 

 

• I will leave it to you as an exercise to show that the electric field and the induced surface current are given by: 

        ,        and that               ,        so that        !

d2

d z2 [H0 f (z) eiωt ̂x] = μσ
d
dt [H0 f (z) eiωt ̂x]

⇒
d2 f
d z2

= iωμσ f (z)

f (z) = f+ eqz + f− e−qz q2 = iωμσ

i = eiπ/2

q = (eiπ/2ωμσ)1/2 = eiπ/4 ωμσ =
1 + i

2
ωμσ

z ≤ 0 ∼ eqz

z → − ∞

⃗H< = H0 exp [ 1 + i
2

ωμσ z] eiωt ̂x

δ =
2

ωμσ
⇒ ⃗H< = H0 ez /δ cos(ωt + z /δ ) ̂x

⃗E < =
μωδ

2
H0 ez /δ cos(ωt + z /δ − 3π /4) ̂y ⃗J = σ ⃗E ∫

0

−∞
dz Jy(z) = − H0 cos ωt

Magnetic diffusion
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• Let’s start by considering a very thin, conducting disk of radius , which is made up of many thin concentric circular wire loops.  

• Let’s say that through this disk passes a magnetic field  that has an angle with the normal to that disk, as shown in the figure. 

• The flux of the magnetic field through an individual loop of radius  is therefore: 

 

• An electromotive force will be generated if we (a) increase the value of the field, or (b) rotate the disk. Let’s assume that we 
keep the disk rigidly in its place, but vary the field, so that: 

 

• But if we have an arbitrarily large number of loops, this sum of electromotive forces could become arbitrarily large as well! So, 
what is going on here? 

• What happens in any real situation is that, in each loop, the external field generates circulating currents which oppose the 
external field. The currents are proportional to the resistance of each loop, which is itself proportional to the length of that 
circuit ( ), so: 

        ,                 

• Therefore, the current grows from the center, and the “backreaction" of the currents induced on the loops lower the field for the 
next loop, and so on and so forth. 

• Another way to think about this is that this is a question about the self-inductance of a material with some bulk volume. We 
will come back to this very soon.

R

⃗B

r

ΦB(r) = πr2 B cos θ

ℰr = −
dΦB

dt
= − πr2 dB

dt
cos θ

2πr

⃗J r = σ ⃗E r ℰr = ∮r
d ⃗l ⋅ ⃗E r ⇒ Ir ∼

ℰr

r
∼ r

Induction: examples
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• When a time-varying magnetic field hits a conductor, it will 
induce currents all over that conductor. 

• But where exactly are those currents? We give them a name, 
Eddy currents (also known as Foucault currents). 

• We should always remember that the laws of Electrodynamics 
are local: what is happening in a microscopic region is 
determined by the fields in that microscopic region. 

• Eddy currents are induced in a completely local manner, but the 
way in which the small domains combine are determined by the 
shape and geometry of the material, by the crystal structure, and 
even by small defects in the material. The overall effect are 
currents which “look" macroscopic, but they are fundamentally 
microscopic!

Induction: examples
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• A radical example of a material which is able to generate very large Eddy currents is a superconductor. 

• In a superconductor, there is no resistivity, : the charges can move freely, without any 
obstruction. This means that an electromotive force will induce currents which can be arbitrarily large, 
since   . 

• The magnetic field generated by the induced currents will grow and grow, until it cancels out the 
external field that caused those induced currents in the first place! At that point, the currents will cease 
to grow, since the total field in that circuit is zero! 

• Microscopically, you can think of the Eddy currents as magnetic dipoles which cancel out the external 
magnetic field, in a similar way that local charges in a conductor cancel out an external electric field 
near a conductor. 

• This means that, as you try to push a magnet closer to a superconductor, there will be a counteracting 
magnetic field from the induced currents, in order to cancel the field inside the superconducting 
material, resulting in a repulsive force. In fact, you can compute the magnetic pressure of a magnetic 
field on a superconductor: 

 

• This forms the basis for the “levitation" experiments that you are all familiar with! [Now let’s watch a nice 
YouTube video: https://www.youtube.com/watch?v=zPqEEZa2Gis]

R → 0

I = ℰ/R

PB =
B2

2μ0

Induction: examples
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• OK, now let’s compute the inductance in some particular cases. Consider a single loop of radius  , with a section of area  , and 
let’s ignore the self-inductance of the loop on itself. 

• Let’s ask what is the work that is done as we induce a current on that loop. 

• In the first situation, let’s assume a neutral wire with a conductivity . In that case we can think of negative charges moving in 
one direction, and positive charges moving in the other direction. In other words: 

        and                ,        but         

• However, each one of those charges move left and right, and in fact it is the negative charges that are really drifting through 
the conductor, so if that movement is in a stationary regime then the power dissipated is given by: 

 

    

• Now, from the discussion of the last slide we have that: 

        ,        therefore: 

 

• Ok, so this is typically dissipated by heat, and that comes from work done to maintain the external field.  

• But what if we could convert some of that energy into motion?

R a

σ

⃗F + = + q ⃗E ⃗F − = − q ⃗E ⃗F Tot = ⃗F + + ⃗F − = 0

P =
dW
dt

= ∮ d ⃗F ⋅ ⃗v = ∮ (dq ⃗v ) ⋅ ⃗E = ∮ (Id ⃗l ) ⋅ ⃗E = ∫V
( ⃗J dV ) ⋅ ⃗E

= σ∫ dV ⃗E 2

E = −
1
2

r ·B cos θ φ̂

P = σ(a2πr) ⃗E 2 =
σπar3

2
·B2 cos θ2

Induction: examples
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• Let’s now say that our loop of radius  is made of a non-conducting material, in which we 
place some charges  at regular intervals — we can think of a linear charge density  . 

• Let’s ask what happens as we induce a current on that loop by varying the magnetic flux. The 
power is given, again, by: 

 

• If the ring starts to rotate, it does so with some angular velocity , so that , and this 
calculation then leads to: 

 

• Therefore, this power is being converted into angular momentum of the ring. 

• Sure, the power itself comes from the source of the external field, and the magnetic field 
carries that power from the source to the wire.  

• But this calculation shows that the magnetic field is also able to carry angular momentum, 
and transfer it to the wire! 

R
q λ

P =
dW
dt

= ∮ d ⃗F ⋅ ⃗v = ∮ (dq ⃗v ) ⋅ ⃗E = ∮ (λdl ⃗v ) ⋅ ⃗E

ω v = ωr

P = λ (2πr) (ωr) (−
1
2

r ·B cos θ) = − λ ω πr2 ·B cos θ

Induction: examples
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• In order to start the discussion about inductance let’s start with the simplest scenario: two coaxial solenoids, 
both of the same length ( ). 

• The inner solenoid, or radius  and cross-section , has  loops, while the outer solenoid, of radius 

, has  loops.  

• The magnetic field of the outer solenoid is: 

        , 

leading to a total flux inside the inner solenoid of: 

        ,        and the proportionality is the inductance:     

• When we invert the situation, we have a magnetic field in the inner solenoid of: 

        , 

but since the area occupied by this magnetic field is still  , the flux inside the outer solenoid is: 

        ,        so the mutual inductances are identical:    

h

R1 A1 = πR2
1 N1

R2 N2

B2 =
N2

h
μ0 I2

Φ1←2 = N1A1 μ0
N2

h
I2 M1←2 = μ0 A1

N1N2

h

B1 =
N1

h
μ0 I1

A1

Φ2←1 = N2A1 μ0
N1

h
I1 M2←1 = M1←2 = μ0 A1

N1N2

h

Inductance and self-inductance
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• Inductance can also be framed as a statement in terms of the vector potential 

• The field generated by one loop is given by: 

        ,        or         

• The flux of the first circuit through the second is given by: 

 

             

• The flux of the second circuit through the first is given by the same expression: 

 

• Is it obvious, then, that the mutual inductance  . This is called the 
“Neumann formula”. 

• Although the inductance may be hard to compute in practice, it is in fact very easy to measure!

⃗B 1( ⃗r ) =
μ0

4π
I1 ∮

d ⃗l1 × ( ⃗r − ⃗r1)
| ⃗r − ⃗r1 |3

⃗A 1( ⃗r ) =
μ0

4π
I1 ∮

d ⃗l1

| ⃗r − ⃗r1 |

Φ2←1 = ∫ d ⃗S 2 ⋅ ⃗B 1 = ∫ d ⃗S 2 ⋅ ( ⃗∇ × ⃗A 1) = ∮ d ⃗l2 ⋅ ⃗A 1

=
μ0

4π
I1 ∮ ∮

d ⃗l2 ⋅ d ⃗l1

| ⃗r2 − ⃗r1 |

Φ1←2 = =
μ0

4π
I2 ∮ ∮

d ⃗l1 ⋅ d ⃗l2

| ⃗r1 − ⃗r2 |

L12 = Φ1←2 /I2 = Φ2←2 /I1 = L21

Inductance and self-inductance
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• It is interesting to compute the self-inductance that a system has with itself. Let’s consider a 
circular loop of radius  that we consider, for now, to be made of a very thin wire. 

• The self-inductance is then expressed as the sum of the inductances of each piece of that wire 
with every other piece of the wire, as the same double integral: 

 

     

     

• We can change variables and use   ,    , and after taking into account 
the Jacobian for this transformation we obtain: 

        ,        but in that case this expression diverges!

a

L =
μ0

4π ∮ ∮
d ⃗l2 ⋅ d ⃗l1

| ⃗r2 − ⃗r1 |

=
μ0

4π ∮ ∮
(adφ1φ̂1) ⋅ (adφ2φ̂2)

|a ̂r2 − a ̂r1 |

=
μ0

4π ∫
2π

0
dφ1 ∫

2π

0
dφ2

a2 cos(φ1 − φ2)
a 2 − 2 cos(φ1 − φ2)

ψ = φ2 − φ1 α = φ2 + φ1

L =
μ0

4
a∫

2π

0
dψ

cos ψ
1 − cos ψ
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• The problem here is that we assumed that the wire is infinitely thin, instead of assuming it has a cross section with 

a finite area, where, for simplicity, we can assume that  .  

• If we want to make a rigorous calculation, we end up with an elliptical integral (!!).  

• However, we can obtain the same qualitative result if we “regularize" the limits  and  in the previous 
integral. In fact, looking at a wire with a finite cross section we can even estimate the size of this angle: 

    

• Using these finite intervals, the integral can actually be evaluated analytically: 

        

The result is shown below, as a function of this regularization angle  : 

A ≪ a2

ψ → 0 ψ → 2π

δψ ∼
A

a

L =
μ0

4
a∫

2π−δψ

δψ
dψ

cos ψ
1 − cos ψ

=
μ0 a

2 [ sin ψ
1 − cos ψ (2 cos

ψ
2

+ log tan
ψ
4 )]

2π−δψ

δψ

δψ
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• Maxwell’s equations 

• The Maxwell “displacement current" 

• Introduction to Electrodynamics 

• Jackson, Ch. 6

Next class:
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