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(Due to April 13, 2021)

1 Question

Given the following vector �eld F = f ~∇g, with f and g scalar functions, prove the �rst Green identity:∫
V

dV
(
f∇2g + ~∇f · ~∇g

)
=

∮
S(V )

d~S ·
(
f ~∇g

)
. (1)

What do we need to suppose about f and g to deduce this identity?

1.1 Solution
Considering the vector �eld F = f ~∇g, its divergence is given by

~∇ · F = ~∇ · (f ~∇g) = ~∇f · ~∇g + f∇2g. (2)

Integrating the above relation in the volume V we get∫
V

dV
[
~∇f · ~∇g + f∇2g

]
=

∫
V

dV ~∇ · F =

∫
V

dV ~∇ · (f ~∇g). (3)

Then, using the divergence theorem for the �eld F∫
V

dV ~∇ · F =

∮
S(V )

dS · F (4)

we have ∫
V

dV
(
f∇2g + ~∇f · ~∇g

)
=

∮
S(V )

dS ·
(
f ~∇g

)
�. (5)

Basically, f needs to be once continuously di�erentiable (C1) and g needs to be twice continuously
di�erentiable (C2).

2 Question
Show that

∇2

(
1

r

)
= −4πδ(r). (6)
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2.1 Solution
If we take the gradient of 1/r we have

∇1

r
= − r̂

r2
= − r

r3
, (7)

for r 6= 0. Then, we can write

∇2

(
1

r

)
= ∇ ·

(
− r

r3

)
= 0, (8)

when r 6= 0. However, integrating the above quantity in all the space (in spherical coordinates) and
using the divergence theorem, we get∫

V

dV∇2

(
1

r

)
=

∫
V

dV∇ ·
(
− r

r3

)
= −

∮
S(V )

dS · r
r3

= −
∫ 2π

0

dφ

∫ π

0

dθ sin θr2r̂ · r
r3

= −4π. (9)

Therefore, the value of the Laplacian is zero everywhere except zero and the integral over any
volume containing the origin is equal to −4π. In this way,

∇2

(
1

r

)
= −4πδ(r)�. (10)

3 Question
Using the second Green identity:∫

V

dV
(
f∇2g − g∇2f

)
=

∮
S(V )

dS ·
(
f ~∇g − g~∇f

)
, (11)

taking f = φ(x′) (for the electrostatic potential E = ~∇φ) and g = 1/R = 1/|x− x′|, show that

φ(x) =

∫
V

d3x′
ρ(x′)

R
+

1

4π

∮
S(V )

dS′ ·
[

1

R
~∇′φ(x′)− φ(x′)~∇′ 1

R

]
, (12)

where ~∇′ corresponds to di�erential operation related to x′.

3.1 Solution
We can substitute f and g into the second Green identity as∫

V

dV ′
[
φ(x′)∇′2 1

R
− 1

R
∇′2φ(x′)

]
=

∮
S(V )

dS ·
[
φ(x′)~∇′ 1

R
− 1

R
~∇′φ(x′)

]
. (13)

Here we need to use that

∇′2 1

R
= ∇′2 1

|x− x′|
= −4πδ(x− x′) (14)
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and the �rst Maxwell equation

~∇ · E = −∇2φ(x) = 4πρ(x) (15)

then, ∫
V

dV ′
[
−4πφ(x′)δ(x− x′) +

4πρ(x′)

R

]
=

∮
S(V )

dS ·
[
φ(x′)~∇′ 1

R
− 1

R
~∇′φ(x′)

]
. (16)

Rearranging the above expression, we arrive that

φ(x) =

∫
V

d3x′
ρ(x′)

R
+

1

4π

∮
S(V )

dS′ ·
[

1

R
~∇′φ(x′)− φ(x′)~∇′ 1

R

]
�. (17)

4 Question
Consider the electric �eld

E =
Aer/r0

r
r̂. (18)

a) Determine the density of charge.

b) Determine the total charge into a radius R.

4.1 Solution
a) Using the �rst Maxwell equation ~∇ · E = 4πρ, we have

ρ =
~∇ · E
4π

=
1

4π

[
1

r2

∂

∂r

(
r2Ae

r/r0

r

)]
=

1

4π

Aer/r0

r

(
1

r
+

1

r0

)
. (19)

b) The total charge is given just integrating the previous item in spherical coordinates as

Q =

∫
V (R)

dq =

∫
V (R)

dV ρ

=

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ R

0

drr2 1

4π

Aer/r0

r

(
1

r
+

1

r0

)
= A

[∫ R

0

drer/r0 +

∫ R

0

dr
r

r0

er/r0
]

= A
{
r0

(
eR/r0 − 1

)
+
[
(R− r0) eR/r0 + r0

]}
= AReR/r0 . (20)
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5 Question
Consider two in�nite plates (with zero thickness) with the distributions of charge σ and−σ, respectively.
The plates are orthogonal to each other.

x

y

+σ−σ

I

II

III

IV

Figure 1: Figure for the question 5.

a) Find the electric �eld in all the regions (I, II, III, IV and total space).

b) Draw a �gure, representing the electrical �eld.

5.1 Solution
a) Considering the Gauss theorem together with the �rst Maxwell’s equation we have∫

V

dV ~∇ · E =

∫
V

dV 4πρ =

∮
S(V )

dS · E. (21)

Then, applying this to a cylinder with super�cial density σ and superior and inferior area A

4πσA = 2A|E|
E = 2πσn̂. (22)

This means that the plate with−σ will have the electrical �eld entering on itself and the other, with
σ, have it pointing out of the plane. Considering a vector sum, and the normals written in terms of
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the angles with the planes and the axes, we just end up with:

EI = −2πσ (sin θ + cos θ, sin θ − cos θ, 0)θ=45◦ = −2πσ
√

2x̂ (23)

EII = −2πσ (cos θ − sin θ, sin θ + cos θ, 0)θ=45◦ = −2πσ
√

2ŷ (24)

EIII = 2πσ (cos θ + sin θ, sin θ − cos θ, 0)θ=45◦ = 2πσ
√

2x̂ (25)

EIV = 2πσ (cos θ − sin θ, sin θ + cos θ, 0)θ=45◦ = 2πσ
√

2ŷ (26)
Etotal = 0. (27)

b)

x

y

+σ−σ

I

II

III

IV

Figure 2: Figure for the solution of item b, question 5.

6 Question
A spherical shell of radius R is made with isolating material and has a surface density of charge σ
(that, in principle, we do not know). The electric potential outside the sphere is Vout(r) = V0

(
R
r

)2
cos θ,

where V0 is a constant. The electric �eld Eins(r) = −V0
R
ẑ. Compute:

a) the electric �eld outside the sphere Eout(r) and the electric potential inside the sphere Vins;

b) the super�cial density of charge σ;

c) the force per unity of area f over the surface of the sphere;

6.1 Solution
a) To compute the electrical �eld outside, we can follow its de�nition according to the gradient of
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the potential outside the sphere as

Eout(r) = −~∇Vout = − ∂

∂r

[
V0

(
R

r

)2

cos θ

]
r̂ − 1

r

∂

∂θ

[
V0

(
R

r

)2

cos θ

]
θ̂

= 2V0 cos θ
R2

r3
r̂ + V0 sin θ

R2

r3
θ̂. (28)

The electric potential inside the sphere is giving performing a line integral, “inverting” the pre-
vious relation in the region inside the sphere

Vout(R)− Vins(r) = −
∫ R

r

dr′ · Eins(r
′) = −

∫ R

r

dr′ · −V0

R
ẑ

V0 cos θ − Vins(r) =

∫ R

r

dr′
V0 cos θ

R
=
V0 cos θ

R
(R− r)

Vins(r) = V0 cos θ
r

R
. (29)

Notice that we use V (r = R) to match with the exterior potential on r = R.

b) We know that, if we consider the continuity equation of the electric �eld we get the super�cial
density of charge, then,

σ =
1

4π
[Eout(r)− Eins(r)]r=R · n̂

=
1

4π

(
2V0 cos θ

R2

r3
r̂ + V0 sin θ

R2

r3
θ̂ +

V0

R
ẑ

)
· r̂

=
1

4π

(
2V0 cos θ

1

R
+ 0 +

V0

R
cos θ

)
=

1

4π

3V0 cos θ

R
. (30)

c) The force could be computed as

f =
σ [Eout(r) + Eins(r)]

2 r=R

=
3V0 cos θ

8πR

[
2V0 cos θ

1

R
r̂ + V0 sin θ

1

R
θ̂ − V0

R
ẑ

]
=

3V 2
0 cos θ

8πR2

[
2 cos θr̂ + sin θθ̂ − ẑ

]
(31)

7 Question
Consider a potential problem in the half-space de�ned by z ≥ 0, with Dirichlet boundary conditions on
the plane z = 0 (and at in�nity).

a)Write down the appropriate Green’s function G(r, r′).

b) If the potential on the plane z = 0 is speci�ed to be Φ = V inside a circle of radius a centered
at the origin, and Φ = 0 outside that circle, �nd an integral expression for the potential at a point P
speci�ed in terms of cylindrical coordinates ρ, φ, z.
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c) Show that, along the axis of the circle (ρ = 0), the potential is given by

Φ = V

(
1− z√

a2 + z2

)
. (32)

d) Show that at large distances (ρ2 + z2 � a2) the potential can be expanded in a power series in
(ρ2 + z2)−1, and that the leading terms are

Φ =
V a2

2

z

(ρ2 + z2)3/2

[
1− 3a2

4(ρ2 + z2)
+

5(3ρ2a2 + a4)

8(ρ2 + z2)2
+ . . .

]
. (33)

Verify that the result of (c) is consistent with this results.

7.1 Solution
a) We need to �nd a Green function of the form

G(r, r′) =
1

|r− r′|
+H(r− r′) (34)

that follows∇2Φ = −4πρ with Dirichlet boundary conditions Φz=0 = α and Φr=∞ = β.
This problem could be solved by themethod of the images, and be thought as a situation where

we have a point of charge q at r′, which creates a potential of the form 1/|r−r′| in the presence of a
�at conductor in the plane z = 0. Then, putting the image charge at (x′, y′,−z′) (such as the plane
was a “mirror”), the potential Φ could be written as

Φ =
q√

(x− x′)2 + (y − y′)2 + (z − z′)2
+

q′√
(x− x′)2 + (y − y′)2 + (z + z′)2

(35)

Taking Φz=0 = 0, leads to the conclusion that q′ = −q.
In this way, due to the Green method the appropriate Green function is

G(r, r′) =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
− 1√

(x− x′)2 + (y − y′)2 + (z + z′)2
. (36)

b) Now, the potential on the plane, i.e., z = 0 could be written as

Φz=0 =

{
V, x2 + y2 ≤ a
0, x2 + y2 > a

(37)

and, we are going to use the Green’s theorem

Φ(r) =

∫
V

dV ′ρ(r′)G(r, r′) +
1

4π

[∫
S(V )

dS ′
(

Φ
∂G

∂n′
−G∂Φ

∂n′

)]
. (38)

Here the surface is composed by the plane (at z = 0) and the in�nity. It has zero potential at
in�nity and all other regions outside the circle. Then, it only remains the circle in the integration.
It follows that the normal vector points to −ẑ and we have

∂G

∂n′ z′=0
= −∂G

∂z′ z′=0
=

2z

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2
. (39)
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Replacing on Φ (remembering that ρ(r′) = 0 and ∂Φ
∂n′

= 0) we obtain

Φ(r) =
1

4π

∫
S(V )

dS ′
2V z

[(x− x′)2 + (y − y′)2 + z2]3/2
. (40)

This integral could be changed to cylindrical coordinates: [(x, y, z), (x′, y′, z′)]⇒ [(ρ, φ, z), (ρ′, φ′, z′)],
using

(x−x′)2+(y−y′)2 = ρ2+(ρ′)2−2ρρ′ [cosφ cosφ′ + sinφ sinφ′] = ρ2+(ρ′)2−2ρρ′ cos(φ−φ′) (41)

and we get

Φ(ρ, φ, z) =
zV

2π

∫ a

0

dρ′ρ′
∫ 2π

0

dφ′

[ρ2 + (ρ′)2 − 2ρρ′ cos(φ− φ′) + z2]3/2
. (42)

c) Here, we can solve the previous integral for ρ = 0. In this way this stays

Φ(z) =
zV

2π

∫ a

0

dρ′ρ′
∫ 2π

0

dφ′

[(ρ′)2 + z2]3/2

=
zV

2

∫ ρ′=a

ρ′=0

du

u3/2
= V

(
1− z√

a2 + z2

)
(43)

where we have changed the variables using u = [(ρ′)2 + z2].
d) Once again we use the integral solution, but now we want to do an expansion for power series

in (ρ2 + z2)−1. One way to do this is as follows

Φ(ρ, φ, z) =
zV

2π

∫ a

0

dρ′ρ′
∫ 2π

0

dφ′

[ρ2 + (ρ′)2 − 2ρρ′ cos(φ− φ′) + z2]3/2
(ρ2 + z2)3/2

(ρ2 + z2)3/2

=
zV

2π(ρ2 + z2)3/2

∫ a

0

dρ′ρ′
∫ 2π

0

dφ′
[
ρ2 + (ρ′)2 − 2ρρ′ cos(φ− φ′) + z2

(ρ2 + z2)

]−3/2

=
zV

2π(ρ2 + z2)3/2

∫ a

0

dρ′ρ′
∫ 2π

0

dφ′
[
1 +

(ρ′)2 − 2ρρ′ cos(φ− φ′)
(ρ2 + z2)

]−3/2

. (44)

Taking the expansion

(1 + x)n = (1 + nx) +
n(n− 1)x2

2
+ . . . , (45)

with x = (ρ′)2−2ρρ′ cos(φ−φ′)
(ρ2+z2)

, n = −3/2 and n(n− 1) = 15/4 we have

Φ(ρ, φ, z) =
zV

2π(ρ2 + z2)3/2

∫ a

0

dρ′ρ′
∫ 2π

0

dφ′
{

1− 3

2

[
(ρ′)2 − 2ρρ′ cos(φ− φ′)

(ρ2 + z2)

]
+

15

8

[
(ρ′)2 − 2ρρ′ cos(φ− φ′)

(ρ2 + z2)

]2
}

=
V a2

2

z

(ρ2 + z2)3/2

[
1− 3a2

4(ρ2 + z2)
+

5(3ρ2a2 + a4)

8(ρ2 + z2)2
+ . . .

]
. (46)

Notice that, the above integral is easier if we notice that there is azimuthal symmetry and you could
simply use (φ− φ′ ⇒ φ′).

Verifying what happens for ρ = 0, we have (expanding for (1 + x)−1/2 = 1 − x/2 + 3x3/8 −
5x3/16 + . . . , with x = (a/z)2)

Φ(ρ, φ, z) =
V a2

2

z

(z2)3/2

[
1− 3a2

4(z2)
+

5(a4)

8(z2)2
+ . . .

]
= V

[
1− z√

a2 + z2

]
, (47)
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which is a result equivalent to item (c) because the expansion (1 + x)−1/2 for x = a2/z2.

9



8 Question
An in�nite metallic plate has a spherical overhang of radius a. This plate is grounded. A charge +q is
placed over the hemisphere of the overhang, with a distance d of the center of the sphere. Show that the
induced charge on the overhang is

q′ = −q
[
1− (d2 − a2)

d
√
d2 + a2

]
. (48)

S1

S2

y

x

q

Figure 3: Figure for the question 5.

8.1 Solution
This problem could be solved by the Method of the images, as we have the superposition of a
in�nite plane and a sphere of radius a, as indicated in the �gure.

Solving the Green function to the plane, considering the charge q on r′ and the image q′ on
(−x′, y′, z′), we can write the potential

Φ =
q√

(x− x′)2 + (y − y′)2 + (z − z′)2
+

q′√
(x+ x′)2 + (y − y′)2 + (z − z′)2

. (49)
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S1

S2

y

x

q

Figure 4: In�nite plane with the spherical overhang of radius a and a charge q on dx̂.

Taking Φx=0 = 0, we can say that q′ = −q.
Now you can think that, the sphere “see” two sources, given by the solution of the plane. Thus,

we have to create two other image charges: one for the real charge: q′R, on r′RR and other for the �rst
image q′I , on r′II . Because it is easier, we can write the potential already in the spherical coordinates
as

Φ =
q√

r2 + (r′R)2 − 2rr′R cos γR
− q√

r2 + (r′I)
2 + 2rr′I cos γI

+
q′R√

r2 + (r′RR)2 − 2rr′RR cos γR
+

q′I√
r2 + (r′II)

2 − 2rr′II cos γI
(50)

and take it on r = a, such that Φ(r = a) = 0. Then, one terms equals the other (remembering that
all the charges will be in the same line, then the angles are the same between: (r′R, r) and (r′RR, r);
(r′I , r) and (r′II , r)), we have:

[a2 + (r′R)2 − 2a(r′R) cos γR](q′R)2 = q2[a2 + (r′RR)2 − 2ar′RR cos γR] (51)
[a2 + (r′I)

2 + 2ar′I cos γI ](q
′
I)

2 = q2[a2 + (r′II)
2 − 2ar′II cos γI ]. (52)
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We need to solve the following systems

[a2 + (r′R)2](q′R)2 = q2[a2 + (r′RR)2] (53)
[a2 + (r′I)

2](q′I)
2 = q2[a2 + (r′II)

2] (54)
−2a(r′R) cos γR(q′R)2 = −q22a(r′RR) cos γR (55)

2a(r′I) cos γI(q
′
I)

2 = −q22a(r′II) cos γI (56)

�nding that
q′R = −aq/r′R, r′RR = a2/r′R and q′I = aq/r′I , r

′
II = −a2/r′I . (57)

Finally, taking the position of the real charge as dx̂, the potential is written as

Φ(r) =
q√

r2 + d2 − 2rd cos γ
− q√

r2 + d2 + 2rd cos γ

− qa/d√
r2 +

(
a2

d

)2 − 2r
(
a2

d

)
cos γ

+
qa/d√

r2 +
(
a2

d

)2
+ 2r

(
a2

d

)
cos γ

. (58)

Having the electric potential, σ is given, on r = a, due

σ = − 1

4π
∇ΦS1 = − 1

4π

∂Φ

∂r r=a

=

[
q(r − d cos γ)

(r2 + d2 − 2rd cos γ)3/2
− q(r + d cos γ)

(r2 + d2 + 2rd cos γ)3/2

− qa/d(r − a2/d cos γ)[
r2 +

(
a2

d

)2 − 2r
(
a2

d

)
cos γ

]3/2
+

qa/d(r + a2/d cos γ)[
r2 +

(
a2

d

)2
+ 2r

(
a2

d

)
cos γ

]3/2


r=a

= − 1

4π

[ q
a

(a2 − d2)

(d2 + a2 − 2ad cos γ)3/2
−

q
a

(a2 − d2)

(d2 + a2 + 2ad cos γ)3/2

]
. (59)

Thus, we can �nd the total charge integrating over the surface

Q =

∫
dSσ = −

∫ 2π

0

dφ

∫ π

0

dγ sin γ
q
a

(a2 − d2)

4π

[
1

(d2 + a2 + 2ad cos γ)3/2

− 1

(d2 + a2 − 2ad cos γ)3/2

]
= −q

[
1− (d2 − a2)

d
√
d2 + a2

]
. (60)

of course after change the variables u = a2 + d2 + 2ad cos γ.
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