EXERCÍCIO - Fatorial Fracionado 27-4

BOTTLENECK AT THE FILTRATION STAGE OF AN INDUSTRIAL PLANT

Várias plantas químicas operaram com sucesso por vários anos em diferentes <u>local</u>idades. Nas plantas antigas o tempo para completar um ciclo particular de filtração foi 40 min, mas numa planta nova este ciclo demorou duas vezes mais, causando prejuízos. Qual foi a causa desta demora?

Uma reunião com técnicos foi feita para tentar determinar as causas do problema Possibilidades:

1) **Engenheiro** da planta suspeitou da fonte de água

Planta nova - reserva da cidade

Plantas velhas – poços particulares

(Conteúdo mineral de água pode afetar a filtração)

2) Superintendente do processo suspeitou da origem da matéria prima

Fonte deste material na planta nova era diferente do que as fontes das plantas antigas.

- 3) Químico suspeitou do nível de temperatura de filtração. Temperatura na planta nova era um pouco mais baixa do que nas outras plantas.
- 4) Presença de um dispositivo de reciclagem na planta nova que não existe nas plantas antigas.
- 5) Velocidade de adição de soda cáustica. Estava mais alta na planta nova. O chefe dos operadores sugeriu que esta velocidade seja diminuída para resolver o problema.
- **Tipo de pano de filtro**. Um novo. tipo foi usado na planta nova. O superintendente do processo falou que seria relativamente simples de substituir este pano.
- 7) Comprimento de "holdup time". Este tempo foi mais baixo na planta nova. O engenheiro de controle de qualidade sugeriu que talvez este tempo fosse a causa do problema.

A pessoa responsável por este estudo achou que provavelmente somente uma ou duas destas condições foram responsáveis pelo problema. A chance de que mais do que duas variáveis sejam significantes foi considerada remota.

Foi decidido usar um planejamento fatorial fracionado 2⁷⁻⁴ que tem resolução III (efeitos principais e de interação de 2^a ordem são misturados).

Fatores		Nível		
		-	+	
A-	Fonte de Água	reserva	poço	
B-	Matéria Prima	nova	velha	
C-	Temperatura	baixa	alta	
D-	Reciclagem	sim	não	
E-	Soda Cáustica	rápida	devagar	
F-	Pano de Filtro	novo	velho	
G-	Hold up time	baixo	alto	

Exp	A	В	C	AB	AC	BC	ABC	Tempo de
				D	E	F	G	Filtração (min)
1								68.4
2								77.7
3								66.4
4								81.0
5								78.6
6								41.2
7								68.7
8								38.7

Pedem-se:

- a) calcular os efeitos dos fatores
- discutir os resultado e fazer uma primeira proposta de ajuste do processo, com as decisões necessárias